REAL HYPERSURFACES WITH CYCLIC η-PARALLEL RICCI TENSOR OF A COMPLEX SPACE FORM

Jung-Hwan Kwon* and Hisao Nakagawa

(Received November 2, 1988)

Introduction.

The study of real hypersurfaces of a complex projective space $P_{n} C$ was initiated by Takagi [15], who proved that all homogeneous hypersurfaces of $P_{n} C$ could be divided into six types which are said to be of type A_{1}, A_{2}, B, C, D and E. He showed also in $[15,16]$ that if a real hypersurface M of $P_{n} C$ has two or three distinct constant principal curvatures, then M is locally congruent to one of the homogeneous ones of type A_{1}, A_{2} and B. This result is generalized by Kimura [5], who proves that a real hypersurface M of $P_{n} C$ has constant principal curvatures and the structure vector ξ is principal if and only if M is locally congruent to one of the homogeneous real hypersurfaces. In particular, real hypersurfaces of type A_{1}, A_{2} and B of $P_{n} C$ have been studied by several authors (cf. Cecil and Ryan [2], Kimura [5], Maeda [6] and Okumura [10]).

On the other hand, real hypersurfaces of a complex hyperbolic space $H_{n} C$ have also been investigated from different points of view and there are some studies by the authors [9], Montiel [11], Montiel and Romero [12]. In particular, real hypersurfaces of $H_{n} \boldsymbol{C}$, which are said of type A_{0}, A_{1} and A_{2} were treated by Montiel and Romero [12].

Now, let M be a real hypersurface of a complex space form $M_{n}(c), c \neq 0$. The Ricci tensor S of M is said to be cyclic-parallel if it satisfies

$$
\begin{equation*}
\text { ऽ } \nabla S^{\prime}(X, Y, Z)=\varsigma^{S} g\left(\nabla_{X} S(Y), Z\right)=0 \tag{*}
\end{equation*}
$$

for any vector fields X, Y and Z, where \subseteq and ∇ denote the cyclic sum and the Riemannian connection, respectively. It is seen that the Ricci tensor of a real hypersurface of type A_{1} or A_{2} (resp. A_{0}, A_{1} or A_{2}) of $P_{n} C$ (resp. $H_{n} \boldsymbol{C}$) is cyclic-parallel. In a previous paper [9], this converse is investigated. On the other hand, the notion of a η-parallel shape operator is recently introduced by Kimura and Maeda [8]. A shape operator A is said to be η-parallel, if it satisfies $g\left(\nabla_{X} A(Y), Z\right)=0$ for any vector fields orthogonal to ξ. They prove

[^0]that in a real hypersurface of $P_{n} \boldsymbol{C}$ the shape operator is η-parallel and ξ is principal if and only if it is of type A_{1}, A_{2} or B.

The Ricci tensor S is said to be cyclic- η-parallel, if it satisfies (*) for any vector fields X, Y and Z orthogonal to ξ. The purpose of this note is to prove the following

Theorem. Let M be a real hypersurface of $M_{n}(c), c \neq 0, n \geqq 3$, on which the structure vector ξ is principal. Then the Ricci tensor is cyclic- η-parallel if and only if M is locally congruent to one of real hypersurfaces of type $A_{1} \sim B$ of $P_{n} \boldsymbol{C}$ or of type $A_{0} \sim B$ of $H_{n} \boldsymbol{C}$.

1. Preliminaries.

Let M be a real hypersurface of an $n(\geqq 2)$-dimensional complex space form $M_{n}(c)$ of constant holomorphic curvature $c(\neq 0)$ and let C be a unit normal field on a neighborhood of a point x in M. We denote by J an almost complex structure of $M_{n}(c)$. For a local vector field X on a neighborhood of x in M, the transformations of X and C under J can be represended as

$$
J X=\phi X+\eta(X) \xi, \quad J C=-\xi,
$$

where ϕ defines a skew-symmetric transformation on the tangent bundle $T M$ of M, while η and ξ denote a 1 -form and a vector field on a neighborhood of x in M, respectively. Moreover, it is seen that $g(\xi, X)=\eta(X)$, where g denotes the induced Riemannian metric on M. By properties of the almost complex structure J, a set (ϕ, ξ, η, g) of tensors satisfies then

$$
\begin{equation*}
\phi^{2}=-I+\eta \otimes \xi, \quad \phi \xi=0, \quad \eta(\phi X)=0, \quad \eta(\xi)=1, \tag{1.1}
\end{equation*}
$$

where I denotes the identity transformation. Accordingly, the set defines an almost contact metric structure. Furthermore the covariant derivatives of the structure tensors are given by

$$
\begin{equation*}
\nabla_{x} \phi(Y)=\eta(Y) A X-g(A X, Y) \xi, \quad \nabla_{x} \xi=\phi A X \tag{1.2}
\end{equation*}
$$

where ∇ is the Riemannian connection of g and A denotes the shape operator with respect to C on M.

Since the ambient space is of constant holomorphic curvature c, the equations of Gauss and Codazzi are respectively given as follows:

$$
\begin{align*}
R(X, Y) Z= & c\{g(Y, Z) X-g(X, Z) Y \tag{1.3}\\
& +g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z) / 4 \\
& +g(A Y, Z) A X-g(A X, Z) A Y
\end{align*}
$$

$$
\begin{equation*}
\nabla_{X} A(Y)-\nabla_{Y} A(X)=c\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\} / 4, \tag{1.4}
\end{equation*}
$$

where R denotes the Riemannian curvature tensor of M and $\nabla_{X} A$ denotes the covariant derivative of the shape operator A with respect to X.

The Ricci tensor S^{\prime} of M is the tensor of type $(0,2)$ given by $S^{\prime}(X, Y)=$ $\operatorname{tr}\{Z \rightarrow R(Z, X) Y\}$. But it may be also regarded as the tensor of type (1, 1) and denoted by $S: T M \rightarrow T M$; it satisfies $S^{\prime}(X, Y)=g(S X, Y)$. By the Gauss equation, (1.1) and (1.2) the Ricci tensor S is given by

$$
\begin{equation*}
S=c\{(2 n+1) I-3 \eta \otimes \xi\} / 4+h A-A^{2}, \tag{1.5}
\end{equation*}
$$

where h is the trace of the shape operator A. The covariant derivative of S is also given by

$$
\begin{align*}
\nabla_{X} S(Y)= & -3 c\{g(\phi A X, Y) \xi+\eta(Y) \phi A X\} / 4 \tag{1.6}\\
& -d h(X) A Y+(h I-A) \nabla_{X} A(Y)+\nabla_{X} A(A Y)
\end{align*}
$$

Now, some fundamental properties about the structure vector ξ are stated here for later use. First of all, we have the following fact, which is proved by Maeda [10] and Ki and Suh [4], according as $c>0$ and $c<0$.

Proposition A. Let M be a real hypersurface of $M_{n}(c), c \neq 0$. If the structure vector ξ is principal, then the corresponding principal curvature α is locally constant.

In the sequel, that the structure vector ξ is principal, that is, $A \xi=\alpha \xi$ is assumed. It follows from (1.4) that we have

$$
\begin{equation*}
2 A \phi A=c \phi / 2+\alpha) A \phi+\phi A) \tag{1.7}
\end{equation*}
$$

and therefore, if $A X=\lambda X$ for any vector field X, then we have

$$
\begin{equation*}
(2 \lambda-\alpha) A \phi X=(\alpha \lambda+c / 2) \phi X \tag{1.8}
\end{equation*}
$$

Accordingly, it turns out that in the case where $\alpha^{2}+c \neq 0, \phi X$ is also a principal vector with principal curvature $\lambda^{\prime}=(\alpha \lambda+c / 2) /(2 \lambda-\alpha)$, namely, we have

$$
\left\{\begin{array}{l}
2 \lambda-\alpha \neq 0, \tag{1.9}\\
A \phi X=\lambda^{\prime} \phi X, \quad \lambda^{\prime}=(\alpha \lambda+c / 2) /(2 \lambda-\alpha) .
\end{array}\right.
$$

On the other hand, for any principal curvature λ we find

$$
\begin{equation*}
d \lambda(\xi)=0 \tag{1.10}
\end{equation*}
$$

by the Codazzi equation (1.4) and Proposition A. In fact, the Codazzi equation gives $\nabla_{x} A(\xi)-\nabla_{\xi} A(X)=-c \phi X / 4$ for any X orthogonal to ξ. Accordingly, for any principal vector X in ξ^{\perp} with principal curvature λ, we have $g\left(\nabla_{X} A(\xi)-\right.$
$\left.\nabla_{\xi} A(X), X\right)=(\alpha-\lambda) g\left(\nabla_{x} \xi, X\right)+d \lambda(\xi) g(X, X)$, which implies that $d \lambda(\xi)=0$, because of (1.2), This is due to Kimura and Maeda [8].

Let $A(\lambda)$ be an eigenspace of A with the eigenvalue λ. A subspace $\boldsymbol{\xi}_{x}{ }^{1}$ of the tangent space $T_{x} M$ at x consisting of vectors orthogonal to ξ_{x} can be then decomposed as

$$
\begin{equation*}
\xi_{x}{ }^{1}=A\left(\lambda_{1}\right) \oplus A\left(\lambda_{z}\right) \oplus \cdots \oplus A\left(\lambda_{p}\right) . \tag{1.11}
\end{equation*}
$$

By P the operator defined by $A^{2}-h A$ is denoted. Then, for any vector fields X, Y and Z in ξ^{\perp} we have

$$
\begin{equation*}
g\left(\nabla_{x} S(Y), Z\right)=-g\left(\nabla_{x} P(Y), Z\right) \tag{1.12}
\end{equation*}
$$

where

$$
\begin{align*}
g\left(\nabla_{x} P(Y), Z\right)= & g\left(\nabla_{x} A(A Y), Z\right)+g\left(\nabla_{x} A(Y), A Z\right) \tag{1.13}\\
& -d h(X) g(A Y, Z)-h g\left(\nabla_{X} A(Y), Z\right)
\end{align*}
$$

In particular, for any $X \in A(\lambda), Y \in A(\mu)$ and $Z \in A(\sigma)$ we get

$$
\begin{equation*}
g\left(\nabla_{X} P(Y), Z\right)=(\mu+\sigma-h) g\left(\nabla_{X} A(Y), Z\right)-d h(X) g(A Y, Z) \tag{1.14}
\end{equation*}
$$

When we define $\nabla P(X, Y, Z)=g\left(\nabla_{x} P(Y), Z\right)$, it follows from (1.14) that we have

$$
\begin{align*}
\Theta \nabla P(X, Y, Z)= & \{2(\lambda+\mu+\sigma)-3 h\} g\left(\nabla_{X} A(Y), Z\right) \tag{1.15}\\
& -\{\mu d h(X) g(Y, Z)+\sigma d h(Y) g(Z, X)+\lambda d h(Z) g(X, Y)\}
\end{align*}
$$

On the other hand, it is easily seen that we get

$$
\begin{equation*}
g\left(\nabla_{X} A(Y), Z\right)=d \mu(X) g(Y, Z)+(\mu-\sigma) g\left(\nabla_{X} Y, Z\right) \tag{1.16}
\end{equation*}
$$

2. Proof of Theorem.

Let M be a real hypersurface of a complex space form $M_{n}(c), c \neq 0$, on which the structure vector $\boldsymbol{\xi}$ is principal. Assume that the Ricci tensor S is cyclic- η parallel, that is, it satisfies

$$
\varsigma \nabla S^{\prime}(X, Y, Z)=0
$$

for any vector fields in ξ^{\perp}. This is equivalent to $\operatorname{S} \nabla P(X, Y, Z)=0$. Putting $X=Y=Z$ in (1.15), we have

$$
(2 \lambda-h) g\left(\nabla_{x} A(X), X\right)-\lambda d h(X)=0
$$

where X is a unit vector in $A(\lambda)$. By (1.16) it is reformed to

$$
\begin{equation*}
(2 \lambda-h) d \lambda(X)-\lambda d h(X)=0 . \tag{2.1}
\end{equation*}
$$

On the other hand, putting again $Y=Z$ in (1.15) and supposing that X and Y
are orthonormal, and making use of (1.16), we get

$$
\begin{equation*}
(2 \lambda+4 \mu-3 h) d \mu(X)-\mu d h(X)=0 . \tag{2.2}
\end{equation*}
$$

First of all, the following property is verified.
Lemma 2.1. Let M be a real hypersurface of $M_{n}(c), c \neq 0, n \geqq 3$, on which $\boldsymbol{\xi}$ is principal. If the Ricci tensor is cyclic- η-parallel, then the mean curvature of M is constant.

Proof. Suppose that $\alpha^{2}+c=0$. Then, without less of generality, we may suppose that there are at least one principal curvatures, say λ, different from $\alpha / 2$. For any X in $A(\lambda)$, it is seen that ϕX belongs to $A\left(\lambda^{\prime}\right)$, where $\lambda^{\prime}=\alpha / 2$ by means of (1.8), Applying (2.2) to the pair $(X, \phi X)$, one gets $\alpha d h(X)=0$. Furthermore, for any $Y \in A(\alpha / 2)$, it follows from (2.1) that $\alpha d h(Y)=0$. On the other hand, since h is constant along the ξ-direction, the mean curvature is constant.

The case where $\alpha^{2}+c \neq 0$ is next considered. For any vector X in $A(\lambda)$, ϕX is also principal and the corresponding principal curvature λ^{\prime} is given by $(\alpha \lambda+c / 2) /(2 \lambda-\alpha)$. Because of

$$
d \lambda^{\prime}(X)=-\left(\alpha^{2}+c\right) d \lambda(X) /(2 \lambda-\alpha)^{2},
$$

combining it together with (2.2), we have

$$
\left(\alpha^{2}+c\right)\left(2 \lambda+4 \lambda^{\prime}-3 h\right) d \lambda(X)+\lambda^{\prime}(2 \lambda-\alpha)^{2} d h(X)=0
$$

for any X in $A(\lambda)$. Since $d \lambda(X)$ can be substituted from (2.1) and the above equation, the following equation holds:

$$
\left\{\left(\alpha^{2}+c\right) \lambda\left(2 \lambda+4 \lambda^{\prime}-3 h\right)+\lambda^{\prime}(2 \lambda-h)(2 \lambda-\alpha)^{2}\right\} d h(X)=0
$$

for any $X \in A(\lambda)$. For any fixed X in $A(\lambda)$, a connected component of a subset of M consisting of points x at which $d h(X)(x) \neq 0$ is denoted by $M(X)$. Suppose that $M(X)$ is not empty. Then we have

$$
\begin{align*}
8 \alpha \lambda^{4} & -4\left(\alpha^{2}+h \alpha-2 c\right) \lambda^{3}+\left(4 \alpha^{3}-2 h \alpha^{2}-2 c \alpha-8 c h\right) \lambda^{2} \tag{2.3}\\
& +\left(2 h \alpha^{3}+3 c \alpha^{2}+5 c h \alpha+2 c^{2}\right) \lambda-c h \alpha^{2} / 2=0 .
\end{align*}
$$

Suppose that $\alpha=0$. Then the corresponding principal curvatures λ and λ^{\prime} satisfy $\lambda \lambda^{\prime}=c / 4$ and on $M(X)$ they satisfy also $\lambda\left(\lambda^{2}-h \lambda+c / 4\right)=0$ by (2.3), Because of $2 \lambda-\alpha \neq 0$, we have $\lambda \neq 0$ and hence $\lambda^{2}-h \lambda+c / 4=\lambda\left(\lambda-h+\lambda^{\prime}\right)=0$, which yields that $\lambda+\lambda^{\prime}=h$. Now, for any principal curvature μ different from α, λ and λ^{\prime}, it follows from the equation (2.2) that we have

$$
\left(2 \lambda \mu^{\prime}+c-3 h \mu^{\prime}\right) d \mu(X)=c d h(X) / 4,
$$

where μ^{\prime} denotes the principal curvature corresponding to μ and they satisfy $\mu \mu^{\prime}=c / 4$. Similarly, we get

$$
(2 \lambda \mu+c-3 h \mu) d \mu^{\prime}(X)=c d h(X) / 4 .
$$

By adding these two equations and by making use of the fact that $\mu \mu^{\prime}$ is constant, the following relationship $d\left(\mu+\mu^{\prime}\right)(X)=d h(X) / 2$ is given, because of $c \neq 0$. Let $\lambda_{1}, \cdots, \lambda_{2 p}$ be mutually different principal curvatures except for α such that $\lambda_{1}=\lambda, \lambda_{p+1}=\lambda^{\prime}$ and $\lambda_{p+r}=\lambda_{r}$. Then h is given by $\Sigma_{r} \underline{\underline{p}}_{1} n_{r}\left(\lambda_{r}+\lambda_{p+r}\right)$, where n_{r} denotes the multiplicity of λ_{r}. Accordingly we have $\left(n_{1}-1\right) h+\Sigma_{r}{ }_{\underline{=}}{ }_{2}\left(\lambda_{r}+\lambda_{r}{ }^{\prime}\right)$ $=0$, from which it follows that we have $\left(n_{1}-1\right) d h(X)+\Sigma_{r} \underline{\underline{p}}_{2} d\left(\lambda_{r}+\lambda_{r}{ }^{\prime}\right)(X)=0$. Combining these two equations, we have

$$
\left(n+n_{1}-3\right) d h(X)=0 .
$$

on $M(X)$, which contradicts to the assumption $n \geqq 3$, because of $n_{1} \geqq 1$. This means that the fact $\alpha \neq 0$ holds. Thus, by differentiating (2.3) in the direction of X and by taking account of (2.1), the simple straightforward calculation gives rise to

$$
\begin{align*}
& 24 \alpha \lambda^{4}-8\left(2 \alpha^{2}+h \alpha-c\right) \lambda^{3}+2\left(6 \alpha^{3}-h \alpha^{2}+3 c \alpha-4 c h\right) \lambda^{2} \tag{2.4}\\
& \quad+2\left(c \alpha^{2}+c^{2}\right) \lambda+c h \alpha^{2} / 2=0 .
\end{align*}
$$

Since (2.3) and (2.4) can be regarded as linear equations with the variable h and they are also linearly independent, we can eliminate the function h from these two equations and the argument gives us an equation with the variable λ of degree 7 and with constant coefficients. This means that λ must be constant on $M(X)$ and hence it turns out that $\lambda d h(X)=0$ by (2.1), that is, $\lambda=0$ on the subset $M(X)$. Accordingly, we get $c \alpha^{2} h=0$ by (2.3) and hence the function h vanishes identically on $M(X)$, a contradiction.

Consequently, the subset $M(X)$ is empty and we have $d h(X)=0$ for any vector field $X \in A(\lambda)$ and any principal curvature λ, which completes the proof.

Proof of Theorem. By Lemma 2.1 the mean curvature may be assumed to be constant, and hence the function h is constant. Then (2.1) and (2.2) are simplified as

$$
\begin{equation*}
(2 \lambda-h) d \lambda(X)=0, \quad(2 \lambda+4 \mu-3 h) d \mu(X)=0 . \tag{2.5}
\end{equation*}
$$

For any fixed distinct principal curvatures λ and μ, let M_{0} be a connected component of a subset of M consisting points x at which $(2 \lambda-h)(x) \neq 0$ holds. Since M_{0} is open, $d \lambda(X)$ vanishes identically on M_{0}. Let M_{1} be a connected component of the interior of the complement $M-M_{0}$ of M_{0}, if there exists. Then λ is equal to $h / 2$ on M_{1} and it is constant, so we get $d \lambda(X)=0$ on M_{1},
which means by the continuity of principal curvatures that λ is constant along the distribution $A(\lambda)$. Next, let M_{2} be a subset of M consisting of point x such that $(2 \lambda+4 \mu-3 h)(x) \neq 0$. Then (2.2) implies that $d \mu(X)=0$ on M_{2}. Since we have $4 \mu=3 h-2 \lambda$ on a connected component of the interior of the complement of M_{2}, we have $2 d \mu(X)=-d \lambda(X)$ on it, which means that $d \mu(X)$ vanishes identically on M. Thus the principal curvature μ different from λ is also constant along the distribution $A(\lambda)$ and hence it yields that any principal curvature λ is constant along the ξ^{\perp}-direction. While it is already seen that λ is constant along the ξ-direction, any principal curvature is constant on M. By the classification theorems of real hypersurfaces of $M_{n}(c), c \neq 0$, due to Takagi [15], Kimura [5] and Berndt [1], M is locally congruent to one of real hypersurfaces of type $A_{1} \sim E$ of $P_{n} \boldsymbol{C}$ or of type $A_{0} \sim B$ of $H_{n} \boldsymbol{C}$.

Let M be a real hypersurface of type $A_{1} \sim B$ of $P_{n} C$ or of type $A_{0} \sim B$ of $H_{n} \boldsymbol{C}$. By the characterization theorems of the η-parallel shape operator due to Kimura and Maeda [8] and Suh [14], the shape operator A is η-parallel. Since the subspace ξ^{\perp} is A-invariant, it follows from (1.12) and (1.13) that P is η parallel and hence so is the Ricci tensor S. Accordingly, the Ricci tensor of M is cyclic- η-parallel.

In order to prove the theorem, it suffices to show that the real hypersurface of type C, D or E can not occur. Let M be a real hypersurface of type C, D or E. Suppose that the Ricci tensor S is cyclic- η-parallel. By the classification theorem due to Takagi [15], M has mutually distinct five constant principal curvatures, say $\alpha=\sqrt{c} \cot 2 \theta, 0<\theta<\pi / 4, \lambda_{1}=\sqrt{c} / 2 \cot \theta, \mu_{1}=-\sqrt{c} / 2 \tan \theta, \lambda_{2}=$ $\sqrt{c} / 2 \cot (\theta-\pi / 4)$ and $\mu_{2}=-\sqrt{c} / 2 \tan (\theta-\pi / 4)$. Thus we have for any $X \in$ $A(\lambda), Y \in A(\mu)$ and $Z \in A(\sigma)$

$$
\begin{equation*}
\varsigma \nabla P(X, Y, Z)=\{2(\lambda+\mu+\sigma)-3 h\} g\left(\nabla_{x} A(Y), Z\right)=0 \tag{2.6}
\end{equation*}
$$

by (1.15), because h is constant.
Suppose that $\mu \neq \sigma$. There exists a 1-parameter family of real hypersurfaces $M(\theta)$ of type C, D or E of $P_{n} C$ and $2(\lambda+\mu+\sigma)-3 h$ and $g\left(\nabla_{X} A(Y), Z\right)$ are both smooth functions. Moreover, there is a unique value θ_{0} for each of type C, D or E and such that $\{2(\lambda+\mu+\sigma)-3 h\}\left(\theta_{0}\right)=0$, because of $h=p \alpha-c q / \alpha$, where $0<\alpha<\infty$ and, $p=n-2,4$ or 8 and $q=2,4$ or 6 , according as M is of type C, D or E. This means that $g\left(\nabla_{X} A(Y), Z\right)=0$ except for θ_{0} and hence $g\left(\nabla_{X} A(Y), Z\right)$ $=0$ for any $Y \in A(\mu), Y \in A(\sigma), \mu \neq \sigma$. Since it is trivial by (1.16) that $g\left(\nabla_{X} A(Y), Z\right)=0$ for any $Y, Z \in A(\mu)$, the shape operator A must be η-parallel.

This completes the proof.
Let M be a real hypersurface of $M(c), c \neq 0$, whose Ricci tensor is cyclicparallel and whose structure vector is principal. Then it is already shown by authors [9] that all principal curvatures are constant. Accordingly, we can
apply our theorem to this situation, which means that the real hypersurfaces of type C, D and E can not occur. Theorem 5.3 in [9] together with this fact shows that the following theorem holds.

Theorem 2.2. Let M be a complete and connected real hypersurface of $P_{n} \boldsymbol{C}$. If the Ricci tensor is cyclic-parallel and if the structure vector is principal, then M is congruent to one of $M_{0}(2 n-1, t), M(2 n-1, m, t)$ and $M(2 n-1,1 /(3 n-2))$.

Remark 2.1. For the definition of the above hypersurfaces, refer to cf. the authors [9]. It is seen in Cecil and Ryan [2] that the hypersurface $M_{0}(2 n-1, t)$ is a tube of radius $r=\cos ^{-1}(t /(t+1))^{1 / 2}$ over a totally geodesic $P_{n-1} C$, which is of type A_{1}. The hypersurface $M(2 n-1, m, t)$ is a tube of radius $r=\cos ^{-1}(t /(t+1))^{1 / 2}$ over a totally geodesic $P_{m} \boldsymbol{C}, 0<m<n-1$, which is of type A_{2}. The hypersurface of $M(2 n-1, t)$ is a tube of radius $r=(1 / 2) \cos ^{-1} t$ over a complex quadric Q_{n-1}, which is of type B,

3. A complex hyperbolic space.

In this section, we are concerned with real hypersurfaces of a complex hyperbolic space $H_{n} \boldsymbol{C}$. Some properties about real hypersurfaces of $H_{n} \boldsymbol{C}$ are already investigated by Montiel [11], Montiel and Romero [12] and so on. In particular, it is proved in [12] that a complete and connected real hypersurface of $H_{n} \boldsymbol{C}$ is congruent to $M_{p, q}(t)$ or M_{n} if it satisfies $A \phi-\phi A=0$. These hypersurfaces are explained in the next paragraph. We shall here investigate whether or not Theorem 2.2 holds in the case of $H_{n} \boldsymbol{C}$.

In order to investigate real hypersurfaces of $H_{n} \boldsymbol{C}$ with cyclic-parallel Ricci tensors, some standard examples of real hypersurfaces of $H_{n} \boldsymbol{C}$ whose Ricci tensors are cyclic-parallel are given. In a complex Euclidean space \boldsymbol{C}^{n+1} with the standard basis, let F be a Hermitian form F defined by

$$
F(z, w)=-z_{0} \bar{w}_{0}+\sum_{k=1}^{n} z_{k} \bar{w}_{k},
$$

where $z=\left(z_{0}, \cdots, z_{n}\right)$ and $w=\left(w_{0}, \cdots, w_{n}\right)$ are in \boldsymbol{C}^{n+1}. Then $\left(\boldsymbol{C}^{n+1}, F\right)$ is a Minkowski space, which is simply denoted by \boldsymbol{C}_{1}^{n+1}. A scalar product given by $F(z, w)$ is a semi-Riemannian metric of index 2 in \boldsymbol{C}_{1}^{n+1}. Let $H_{1}^{2 n+1}$ be a real hypersurface of \boldsymbol{C}_{1}^{n+1} defined by

$$
H_{1}^{2 n+1}=\left\{z \in \boldsymbol{C}_{1}^{n+1}: F(z, z)=-1\right\},
$$

and let G be a semi-Riemannian metric of $H_{1}^{2 n+1}$ induced from the complex Lorentz metric $\operatorname{Re} \boldsymbol{F}$ of \boldsymbol{C}_{1}^{n+1}. Then ($H_{1}^{2 n+1}, G$) is the Lorentz manifold of constant curvature -1 , which is called an anti-de Sitter space. For any point z of $H_{1}^{2 n+1}$ the tangent space $T_{z} H_{1}^{2 n+1}$ can be identified with $\left\{w \in \boldsymbol{C}_{1}^{n n+1}: \operatorname{Re} F(z, w)\right.$
$=0\}$. Let T_{z}^{\prime} be an orthogonal complement of the vector $i z$ in $T_{z} H_{1}^{2 n+1}$. When the anti-de Sitter space $H_{1}^{2 n+1}$ is considered as a principal fiber bundle over $H_{n} \boldsymbol{C}$ with the structure group S^{1} and the projection π, there is a connection such that $T^{\prime}{ }_{z}$ is the horizontal subspace at z which is invariant under the S^{1}-action. The metric g of constant holomorphic sectional curvature -4 is given by $g_{p}(X, Y)=\operatorname{Re} F_{z}\left(X^{*}, Y^{*}\right)$ for any tangent vectors X and Y in $T_{p}\left(H_{n} \boldsymbol{C}\right)$, where z is any point of $H_{1}^{2 n+1}$ with $\pi(z)=p$ and, X^{*} and Y^{*} are vectors in $T^{\prime}{ }_{z}$ such that $d \pi X^{*}=X$ and $d \pi Y^{*}=Y$. On the other hand, a complex structure $J: w \rightarrow i w$ in T_{z}^{\prime} is compatible with the action of S^{1} and induces the almost complex structure J on $H_{n} C$ such that $d \pi \circ i=J \circ d \pi$. Thus $H_{n} C$ is a complex hyperbolic space with constant holomorphic curvature -4 and it is seen that $H_{1}^{2 n+1}$ is a principal S^{1}-bundle over a complex hyperbolic space $H_{n}^{\prime} \boldsymbol{C}$ with the projection $\pi: H_{1}^{2 n+1} \rightarrow$ $H_{n} C$, which is a semi-Riemannian submersion with the fundamental tensor J and time-like totally geodesic fibres.

Now, for given integers p and q with $p+q=n-1$ and $t \in \boldsymbol{R}$ with $0<t<1$, a Lorentz hypersurface $N_{p, \mathrm{q}}(t)$ of $H_{1}^{2 n+1}$ is defined by

$$
N_{p, q}(t)=\left\{\left(z_{0}, \cdots, z_{n}\right) \in H_{1}^{2 n+1}: r\left(-\left|z_{0}\right|^{2}+\sum_{j=1}^{p}\left|z_{j}\right|^{2}\right)=-\sum_{j=p+1}^{n}\left|z_{j}\right|^{2}\right\}
$$

and a Lorentz hypersurface N_{n} of $H_{1}^{2 n+1}$ is given by

$$
N_{n}=\left\{\left(z_{0}, \cdots, z_{n}\right) \in H_{1}^{2 n+1}:\left|z_{0}-z_{1}\right|^{2}=1\right\} .
$$

Lastly, for any fixed $t \in \boldsymbol{R}$ with $t>1$, let $N(t)$ be a real hypersurface of $H_{n} \boldsymbol{C}$ defined by

$$
N(t)=\left\{\left(z_{0}, \cdots, z_{n}\right) \in H_{1}^{2 n+1} \subset C^{n+1}:\left|-z_{0}^{2}+\sum_{j=1}^{n} z_{j}^{2}\right|^{2}=t\right\} .
$$

Then it is seen that $N_{p, q}(t), N_{n}$ and $N(t)$ are all isoparametric hypersurface of $H_{1}^{2 n+1}$.

For a real hypersurface M of $H_{n} \boldsymbol{C}$ it is known that we can construct a real hypersurface N of $H_{1}^{2 n+1}$ which is a principal S^{1}-bundle over M with totally geodesic fibres and the projection π. Moreover, the projection is compatible with the Hopf fibration $\pi: H_{1}^{2 n+1} \rightarrow H_{n} \boldsymbol{C}$, that is, the diagram

is commutative (i^{\prime} and i being the respective immersions). Then $M_{p, q}(t)=$ $\pi\left(N_{p, q}(t)\right)$ is a real hypersurface of $H_{n} \boldsymbol{C}$, which is a tube of radius r over a totally geodesic submanifold $H_{p} \boldsymbol{C}$ imbedded in $H_{n} \boldsymbol{C}$, where $\sqrt{t}=\tanh r$. It is said to be of type A_{1} or A_{2}, according as $p=0, n-1$ or $0<p<n-1$ and it is
seen by the authors [9] that these Ricci tensors are cyclic-parallel. $M_{n}=\pi\left(N_{n}\right)$ and $M(t)=\pi(N(t)) \quad(n \geqq 3)$ are examples of real hypersurfaces of $H_{n} \boldsymbol{C}$. The former is totally η-umbilical with principal curvatures 1 and 2 , which is said to be of type A_{0}. The real hypersurface M_{n} of type A_{0} has also cyclic-parallel Ricci tensor, which is also called a Montiel tube. The latter $M(t)$ is a tube of radius r over a totally real n-dimensional submanifold $H_{n} \boldsymbol{R}$ of $H_{n} \boldsymbol{C}$, where $t=$ $\cosh ^{2} 2 r$, which is said to be of type B.

Theorem 3.1. Let M be a complete and connected real hypersurface of $H_{n} \boldsymbol{C}$. If the Ricci tensor is cyclic-parallel and if the structure vector is principal, then M is congruent to one of $M_{n}, M_{2 n-1,0}(t), M_{0,2 n-1}(t)$ or $M_{p, 9}(t), 0<p, q<n-1$.

Proof. Let M be a real hypersurface of $H_{n} \boldsymbol{C}$. Assume that $\boldsymbol{\xi}$ is principal and the Ricci tensor is cyclic-parallel. Then it is in [9, Theorem 3.2] that all principal curvatures are constant. So h is constant and M^{\prime} is locally congruent to one of real hypersurfaces of type A_{0}, A_{1}, A_{2} or B by Theorem. It is essentially due to Berndt [1]. In order to prove Theorem 3.1, it suffices to show that the ease of type B can not occur, because it is seen in [9] that M_{n} and $M_{p, q}(t)$ have cyclic-parallel Ricci tensors. Let M be a real hypersurface of type B of $H_{n} C$. Suppose that the Ricci tensor is cyclic-parallel. Since α is constant by Ki and Suh [4], the equation (3.3) in [9] means that $\subseteq \nabla S^{\prime}(X, U, \xi)$ $=0$ for any X, Y in ξ^{\perp} is equivalent to

$$
2 \alpha\left(A^{2} \phi-\phi A^{2}\right)-k(A \phi-\phi A)=0, \quad k=\left(3 h \alpha-2 c-2 \alpha^{2}\right) .
$$

Because of $\alpha^{2}+c \neq 0$, it is reduced to

$$
(\lambda-\mu)\{\alpha(\lambda+\mu)-k\}=0,
$$

where $\alpha=\sqrt{-c} \tanh r, \lambda=\sqrt{-c} / 2 \operatorname{coth} r$ and $\mu=\sqrt{-c} / 2 \tanh r$. Accordingly, $\lambda \neq \mu$ and $\lambda+\mu=-c / \alpha$, and hence it follows from the above equation that $h=$ $2 \alpha / 3$. On the other hand, since the multiplicities of λ and μ are equal in the real hypersurface of type B , the constant h is given by $h=\alpha+(n-1)(\lambda+\mu)$. Thus we get $\alpha^{2}-3 c(n-1)=0$, a contradiction.

This completes the proof.

References

[1] J. Berndt: Real hypersurfaces with constant principal curvature in complex hyperbolic space, J. reine angew. Math., 395 (1989), 132-141.
[2] T.E. Cecil and P.J. Ryan: Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269(1982), 481-499.
[3] U-H. Ki, H. Nakagawa and Y.-J. Suh: Real hypersurfaces with harmonic Weyl tensor of a complex space form, to appear in Hiroshima Math. J.
[4] U-H. Ki and Y.-J. Suh: On real hypersurfaces of a complex space form, to appear in Okayama Math. J.
[5] M. Kimura: Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 296(1986), 137-149.
[6] M. Kimura: Sectional curvatures of holomorphic planes on a real hypersurface in $P^{n}(C)$, Math. Ann., 27 (1987), 487-497.
[7] M. Kimura: Some real hypersurfaces of a complex space, Saitama Math. J., 5 (1987), 1-7.
[8] M. Kimura and S. Maeda: On real hypersurfaces of a complex projective space, to appear in Math. Z.
[9] J.-H. Kwon and H. Nakagawa: Real hypersurfaces with cyclic parallel Ricci tensor of a complex space form, Hokkaido J. Math., 17 (1988), 355-371.
[10] Y. Maeda: On real hypersurfaces of a complex projective space, J. Math. Soc. Japan, 28 (1976), 529-540.
[11] S. Montiel : Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan, 37 (1985), 515-535.
[12] S. Montiel and A. Romero: On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata, 20 (1986), 245-261.
[13] M. Okumura: On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 212(1975), 355-364.
[14] Y.-J. Suh: On real hypersurfaces of a complex space form with η-parallel Ricci tensor, to appear in Tsukuba J. Math..
[15] R. Takagi: Real hypersurfaces in a complex projective space, Osaka J. Math., 10 (1975), 495-506.
[16] R. Takagi: Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan, 27 (1975), 43-53, 507-516.

Taegu University	University of Tsukuba
Taegu, 705-033	Ibaraki, 305
Korea	Japan

[^0]: * This research was partially supported by KOSEF.

