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Introduction.

The study of real hypersurfaces of a complex projective space $P_{n}C$ was
initiated by Takagi [15], who proved that all homogeneous hypersurfaces of
$P_{n}C$ could be divided into six types which are said to be of type $A_{1},$ $A_{f},$ $B,$ $C$ ,
$D$ and $E$ . He showed also in $[15, 16]$ that if a real hypersurface $M$ of $P_{n}C$

has two or three distinct constant principal curvatures, then $M$ is locally con-
gruent to one of the homogeneous ones of type $A_{1},$ $A_{g}$ and $B$ . This result is
generalized by Kimura [5], who proves that a real hypersurface $M$ of $P_{n}C$ has
constant principal curvatures and the structure vector $\xi$ is principal if and only
if $M$ is locally congruent to one of the homogeneous real hypersurfaces. In
particular, real hypersurfaces of type $A_{1},$ $A_{g}$ and $B$ of $P_{n}C$ have been studied by
several authors (cf. Cecil and Ryan [2], Kimura [5], Maeda [6] and Okumura
[10]).

On the other hand, real hypersurfaces of a compleX hyperbolic space $H_{n}C$

have also been investigated from different points of view and there are some
studies by the authors [9], Montiel [11], Montiel and Romero [12]. In parti-
cular, real hypersurfaces of $H_{n}C$ , which are said of $tyPe$ $A_{0},$ $A_{1}$ and $A_{2}$ were
treated by Montiel and Romero [12].

Now, let $M$ be a real hypersurface of a complex space form $M_{n}(c)$ , $c\neq 0$ .
The Ricci tensor $S$ of $M$ is said to be cyclic-parallel if it satisfies

$(*)$ $\mathfrak{S}\nabla S^{\prime}(X, Y, Z)=\mathfrak{S}g(\nabla_{X}S(Y), Z)=0$

for any vector fields $X,$ $Y$ and $Z$ , where $\mathfrak{S}$ and $\nabla$ denote the cyclic sum and
the Riemannian connection, respectively. It is seen that the Ricci tensor of a
real hypersurface of type $A_{1}$ or $A_{g}$ (resp. $A_{0},$ $A_{1}$ or $A_{g}$) of $P_{n}C$ (resp. $H_{n}C$ ) is
cyclic-parallel. In a previous paper [9], this converse is investigated. On the
other hand, the notion of a $\eta$-parallel shape operator is recently introduced by
Kimura and Maeda [8]. A shape operator $A$ is said to be $\eta$ -paralIel, if it
satisfies $g(\nabla_{X}A(Y), Z)=0$ for any vector fields orthogonal to $\xi$ . They prove
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that in a real hypersurface of $P_{n}C$ the shape operator is $\eta$-parallel and $\xi$ is
principal if and only if it is of type $A_{1},$ $A_{2}$ or $B$ .

The Ricci tensor $S$ is said to be $cyclic-\eta- Parallel$ , if it satisfies $(*)$ for any
vector fields $X,$ $Y$ and $Z$ orthogonal to $\xi$ . The purpose of this note is to prove
the following

Theorem. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 3$ , on which the
structure vector $\xi$ is principal. Then the Ricci tensor is $ cyclic-\eta$-parallel if and
only if $M$ is locally congruent to one of real hypersurfaces of fype $A_{1}\sim B$ of
$P_{n}C$ or of type $A_{0}\sim B$ of $H_{n}C$ .

1. Preliminaries.

Let $M$ be a real hypersurface of an $n(\geqq 2)$-dimensional complex space form
$M_{n}(c)$ of constant holomorphic curvature $c(\neq 0)$ and let $C$ be a unit normal
field on a neighborhood of a point $x$ in $M$. We denote by $J$ an almost complex

structure of $M_{n}(c)$ . For a local vector field $X$ on a neighborhood of $x$ in $M$,

the transformations of $X$ and $C$ under $J$ can be represended as

$ JX=\phi X+\eta(X)\xi$ , $ JC=-\xi$ ,

where $\phi$ defines a skew-symmetric transformation on the tangent bundle $TM$ of
$M$, while $\eta$ and $\xi$ denote a l-form and a vector field on a neighborhood of $x$

in $M$, respectively. Moreover, it is seen that $g(\xi, X)=\eta(X)$, where $g$ denotes
the induced Riemannian metric on $M$. By properties of the almost complex

structure $J$, a set $(\phi, \xi, \eta, g)$ of tensors satisfies then

(1.1) $\phi^{2}=-I+\eta\otimes\xi$, $\phi\xi=0$, $\eta(\phi X)=0$ , $\eta(\xi)=1$ ,

where $I$ denotes the identity transformation. Accordingly, the set defines an
almost contact metric structure. Furthermore the covariant derivatives of the
structure tensors are given by

(1.2) $\nabla_{X}\phi(Y)=\eta(Y)AX-g(AX, Y)\xi$ , $\nabla_{X}\xi=\phi AX$ ,

where $\nabla$ is the Riemannian connection of $g$ and $A$ denotes the shape operator

with respect to $C$ on $M$.
Since the ambient space is of constant holomorphic curvature $c$ , the equa-

tions of Gauss and Codazzi are respectively given as follows:

(1.3) $R(X, Y)Z=c\{g(Y, Z)X-g(X, Z)Y$

$+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y-2g(\phi X, Y)\phi Z)/4$

$+g(AY, Z)AX-g(AX, Z)AY$ ,
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(1.4) $\nabla_{X}A(Y)-\nabla_{Y}A(X)=c\{\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi\}/4$ ,

where $R$ denotes the Riemannian curvature tensor of $M$ and $\nabla_{X}A$ denotes the
covariant derivative of the shape operator $A$ with respect to $X$.

The Ricci tensor $S^{\prime}$ of $M$ is the tensor of type $(0,2)$ given by $S^{\prime}(X, Y)=$

tr $\{Z\rightarrow R(Z, X)Y\}$ . But it may be also regarded as the tensor of type $(1, 1)$

and denoted by $S:TM\rightarrow TM$ ; it satisfies $S^{\prime}(X, Y)=g(SX, Y)$ . By the Gauss
equation, (1.1) and (1.2) the Ricci tensor $S$ is given by

(1.5) $S=c\{(2n+1)I-3\eta\otimes\xi\}/4+hA-A^{2}$ ,

where $h$ is the trace of the shape operator $A$ . The covariant derivative of $S$

is also given by

(1.6) $V_{X}S(Y)=$ $3c\{g(\phi AX, Y)\xi+\eta(Y)\phi AX\}/4$

$-dh(X)AY+(hI-A)\nabla_{X}A(Y)+\nabla_{X}A(AY)$ .
Now, some fundamental properties about the structure vector $\xi$ are stated

here for later use. First of all, we have the following fact, which is proved
by Maeda [10] and Ki and Suh [4], according as $c>0$ and $c<0$ .

Proposition A. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0$ . If the struc-
ture vector $\xi$ is principal, then the corresponding Principal curvature $a$ is locally
constant.

In the sequel, that the structure vector $\xi$ is principal, that is, $ A\xi=a\xi$ is
assumed. It follows from (1.4) that we have

(1.7) $ 2A\phi A=c\phi/2+\alpha$)$A\phi+\phi A$)

and therefore, if $AX=\lambda X$ for any vector field $X$, then we have

(1.8) $(2\lambda-a)A\phi X=(\alpha\lambda+c/2)\phi X$ .
Accordingly, it turns out that in the case where $a^{t}+c\neq 0,$ $\phi X$ is also a principal
vector with principal curvature $\lambda^{\prime}=(a\lambda+c/2)/(2\lambda-a)$ , namely, we have

(1.9) $\left\{\begin{array}{ll}2\lambda-\alpha\neq 0, & \\A\phi X=\lambda^{\prime}\phi X, & \lambda^{\prime}=(\alpha\lambda+c/2)/(2\lambda-\alpha).\end{array}\right.$

On the other hand, for any principal curvature $\lambda$ we find

(1.10) $d\lambda(\xi)=0$

by the Codazzi equation (1.4) and Proposition A. In fact, the Codazzi equation
gives $\nabla_{X}A(\xi)-\nabla_{\xi}A(X)=-c\phi X/4$ for any $X$ orthogonal to $\xi$. Accordingly, for
any principal vector $X$ in $\xi^{\perp}$ with principal curvature $\lambda$ , we have $g(\nabla_{X}A(\xi)-$
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$\nabla_{\xi}A(X),$ $X$) $=(\alpha-\lambda)g(\nabla_{X}\xi, X)+d\lambda(\xi)g(X, X)$, which implies that $d\lambda(\xi)=0$, because
of (1.2). This is due to Kimura and Maeda [8].

Let $A(\lambda)$ be an eigenspace of $A$ with the eigenvalue $\lambda$ . $A$ subspace $\xi_{x}^{\perp}$ of
the tangent space $T_{x}M$ at $x$ consisting of vectors orthogonal to $\xi_{x}$ can be then
decomposed as
(1.11) $\xi_{x}^{\perp}=A(\lambda_{1})\oplus A(\lambda_{z})\oplus\cdots\oplus A(\lambda_{p})$ .

By $P$ the operator defined by $A^{8}-hA$ is denoted. Then, for any vector
fields $X,$ $Y$ and $Z$ in $\xi^{\perp}$ we have

(1.12) $g(\nabla_{X}S(Y), Z)=$ $g(\nabla_{X}P(Y), Z)$ ,

where
(1.13) $g(\nabla_{X}P(Y), Z)=g(\nabla_{X}A(AY), Z)+g(\nabla_{X}A(Y), AZ)$

– $dh(X)g(AY, Z)-hg(\nabla_{X}A(Y), Z)$ .
In particular, for any $X\in A(\lambda),$ $Y\in A(\mu)$ and $Z\in A(\sigma)$ we get

(1.14) $g(\nabla_{X}P(Y), Z)=(\mu+\sigma-h)g(\nabla_{X}A(Y), Z)-dh(X)g(AY, Z)$ .
When we define $\nabla P(X, Y, Z)=g(\nabla_{x}P(Y), Z)$ , it follows from (1.14) that we have

(1.15) $\mathfrak{S}\nabla P(X, Y, Z)=\{2(\lambda+\mu+a)-3h\}g(\nabla_{X}A(Y), Z)$

$-\{\mu dh(X)g(Y, Z)+\sigma dh(Y)g(Z, X)+\lambda dh(Z)g(X, Y)\}$ .
On the other hand, it is easily seen that we get

(1.16) $g(\nabla_{X}A(Y), Z)=d\mu(X)g(Y, Z)+(\mu-\sigma)g(\nabla_{X}Y, Z)$ .

2. Proof of Theorem.

Let $M$ be a real hypersurface of a complex space form $M_{n}(c),$ $c\neq 0$ , on which
the structure vector $\xi$ is principal. Assume that the Ricci tensor $S$ is $cyclic-\eta-$

parallel, that is, it satisfies

$\mathfrak{S}\nabla S^{\prime}(X, Y, Z)=0$

for any vector fields in $\xi^{\perp}$ . This is equivalent to $\mathfrak{S}\nabla P(X, Y, Z)=0$ . Putting
$X=Y=Z$ in (1.15), we have

$(2\lambda-h)g(\nabla_{X}A(X), X)-\lambda dh(X)=0$

where $X$ is a unit vector in $A(\lambda)$ . By (1.16) it is reformed to

(2.1) $(2\lambda-h)d\lambda(X)-\lambda dh(X)=0$ .
On the other hand, putting again $Y=Z$ in (1.15) and supposing that $X$ and $Y$
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are orthonormal, and making use of (1.16), we get

(2.2) $(2\lambda+4\mu-3h)d\mu(X)-\mu dh(X)=0$ .
First of all, the following property is verified.

Lemma 2.1. Let $M$ be a real $hyPersurface$ of $M_{n}(c),$ $c\neq 0,$ $n\geqq 3$ , on which
$\xi$ is principal. If the Ricci tensor is $cyclic-\eta- Parallel$ , then the mean curvature
of $M$ is constant.

Proof. Suppose that $\alpha^{2}+c=0$ . Then, without less of generality, we may
suppose that there are at least one principal curvatures, say $\lambda$ , different from
$a/2$ . For any $X$ in $A(\lambda)$ , it is seen that $\phi X$ belongs to $A(\lambda^{\prime})$ , where $\lambda^{\prime}=a/2$ by
means of (1.8). Applying (2.2) to the pair (X, $\phi X$), one gets adh(X) $=0$ .
Furthermore, for any $Y\in A(a/2)$ , it follows from (2.1) that $adh(Y)=0$ . On the
other hand, since $h$ is constant along the $\xi$-direction, the mean curvature is
constant.

The case where $\alpha^{2}+c\neq 0$ is next considered. For any vector $X$ in $A(\lambda)$ ,
$\phi X$ is also principal and the corresponding principal curvature $\lambda^{\prime}$ is given by
$(a\lambda+c/2)/(2\lambda-a)$ . Because of

$d\lambda^{\prime}(X)=-(\alpha^{2}+c)d\lambda(X)/(2\lambda-\alpha)^{2}$ ,

combining it together with (2.2), we have

$(\alpha^{2}+c)(2\lambda+4\lambda^{\prime}-3h)d\lambda(X)+\lambda^{\prime}(2\lambda-a)^{2}dh(X)=0$

for any $X$ in $A(\lambda)$ . Since $d\lambda(X)$ can be substituted from (2.1) and the above
equation, the following equation holds:

$\{(a^{2}+c)\lambda(2\lambda+4\lambda^{\prime}-3h)+\lambda^{\prime}(2\lambda-h)(2\lambda-\alpha)^{2}\}dh(X)=0$

for any $X\in A(\lambda)$ . For any fixed $X$ in $A(\lambda)$ , a connected component of a subset
of $M$ consisting of points $x$ at which $dh(X)(x)\neq 0$ is denoted by $M(X)$ . Suppose
that $M(X)$ is not empty. Then we have

(2.3) $8a\lambda^{4}-4(\alpha^{2}+h\alpha-2c)\lambda^{3}+(4\alpha^{3}-2h\alpha^{2}-2c\alpha-8ch)\lambda^{2}$

$+(2h\alpha^{3}+3c\alpha^{2}+5ch\alpha+2c^{2})\lambda-ch\alpha^{2}/2=0$ .
Suppose that $\alpha=0$ . Then the corresponding principal curvatures $\lambda$ and $\lambda^{\prime}$ satisfy
$\lambda\lambda^{\prime}=c/4$ and on $M(X)$ they satisfy also $\lambda(\lambda^{2}-h\lambda+c/4)=0$ by (2.3). Because of
$2\lambda-\alpha\neq 0$ , we have $\lambda\neq 0$ and hence $\lambda^{2}-h\lambda+c/4=\lambda(\lambda-h+\lambda^{\prime})=0$ , which yields
that $\lambda+\lambda^{\prime}=h$ . Now, for any principal curvature $\mu$ different from $a,$

$\lambda$ and $\lambda^{\prime}$ ,
it follows from the equation (2.2) that we have

$(2\lambda\mu^{\prime}+c-3h\mu^{\prime})d\mu(X)=cdh(X)/4$ ,
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where $\mu^{\prime}$ denotes the principal curvature corresponding to $\mu$ and they satisfy
$\mu\mu^{\prime}=c/4$ . Similarly, we get

$(2\lambda\mu+c-3h\mu)d\mu^{\prime}(X)=cdh(X)/4$ .
By adding these two equations and by making use of the fact that $\mu\mu^{\prime}$ is con-
stant, the following relationship $d(\mu+\mu^{\prime})(X)=dh(X)/2$ is given, because of $c\neq 0$ .
Let $\lambda_{1},$ $\cdots$ , $\lambda_{2p}$ be mutually different principal curvatures except for $a$ such that
$\lambda_{1}=\lambda,$ $\lambda_{p+1}=\lambda^{\prime}$ and $\lambda_{p+r}=\lambda_{r}^{\prime}$ . Then $h$ is given by $\Sigma_{r=1}^{p}n_{r}(\lambda_{r}+\lambda_{p+r})$, where $n_{r}$

denotes the multiplicity of $\lambda_{r}$ . Accordingly we have $(n_{1}-1)h+\Sigma_{r=2}^{p}(\lambda_{r}+\lambda_{r}^{\prime})$

$=0$, from which it follows that we have $(n_{1}-1)dh(X)+\Sigma_{r=2}^{p}d(\lambda_{r}+\lambda_{r}^{\prime})(X)=0$ .
Combining these two equations, we have

$(n+n_{1}-3)dh(X)=0$ .
on $M(X)$, which contradicts to the assumption $n\geqq 3$ , because of $n_{1}\geqq 1$ . This
means that the fact $\alpha\neq 0$ holds. Thus, by differentiating (2.3) in the direction
of $X$ and by taking account of (2.1), the simple straightforward calculation
gives rise to

(2.4) $24\alpha\lambda^{4}-8(2\alpha^{2}+h\alpha-c)\lambda^{s}+2(6\alpha^{3}-h\alpha^{2}+3c\alpha-4ch)\lambda^{2}$

$+2(c\alpha^{2}+c^{2})\lambda+ch\alpha^{2}/2=0$ .
Since (2.3) and (2.4) can be regarded as linear equations with the variable $h$

and they are also linearly independent, we can eliminate the function $h$ from
these two equations and the argument gives us an equation with the variable $\lambda$

of degree 7 and with constant coefficients. This means that $\lambda$ must be constant
on $M(X)$ and hence it turns out that $\lambda dh(X)=0$ by (2.1), that is, $\lambda=0$ on the
subset $M(X)$ . Accordingly, we get $c\alpha^{2}h=0$ by (2.3) and hence the function $h$

vanishes identically on $M(X)$ , a contradiction.
Consequently, the subset $M(X)$ is empty and we have $dh(X)=0$ for any

vector field $X\in A(\lambda)$ and any principal curvature $\lambda$ , which completes the proof.

Proof of Theorem. By Lemma 2.1 the mean curvature may be assumed
to be constant, and hence the function $h$ is constant. Then (2.1) and (2.2) are
simplified as

(2.5) $(2\lambda-h)d\lambda(X)=0$ , $(2\lambda+4\mu-3h)d\mu(X)=0$ .
For any fixed distinct principal curvatures $\lambda$ and $\mu$ , let $M_{0}$ be a connected

component of a subset of $M$ consisting points $x$ at which $(2\lambda-h)(x)\neq 0$ holds.
Since $M_{0}$ is open, $d\lambda(X)$ vanishes identically on $M_{0}$ . Let $M_{1}$ be a connected
component of the interior of the complement $M-M_{0}$ of $M_{0}$ , if there exists.
Then $\lambda$ is equal to $h/2$ on $M_{1}$ and it is constant, so we get $d\lambda(X)=0$ on $M_{1}$ ,
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which means by the continuity of principal curvatures that $\lambda$ is constant along

the distribution $A(\lambda)$ . Next, let $M_{2}$ be a subset of $M$ consisting of point $x$ such
that $(2\lambda+4\mu-3h)(x)\neq 0$ . Then (2.2) implies that $d\mu(X)=0$ on $M_{2}$ . Since we
have $ 4\mu=3h-2\lambda$ on a connected component of the interior of the complement
of $M_{2}$ , we have $2d\mu(X)=-d\lambda(X)$ on it, which means that $d\mu(X)$ vanishes
identically on $M$. Thus the principal curvature $\mu$ different from $\lambda$ is also con-
stant along the distribution $A(\lambda)$ and hence it yields that any principal curvature
$\lambda$ is constant along the $\xi^{\perp}$ -direction. While it is already seen that $\lambda$ is constant
along the $\xi$-direction, any principal curvature is constant on $M$. By the classi-
fication theorems of real hypersurfaces of $M_{n}(c),$ $c\neq 0$ , due to Takagi [15],

Kimura [5] and Berndt [1], $M$ is locally congruent to one of real hypersurfaces
of type $A_{1}\sim E$ of $P_{n}C$ or of type $A_{0}\sim B$ of $H_{n}C$ .

Let $M$ be a real hypersurface of type $A_{1}\sim B$ of $P_{n}C$ or of type $A_{0}\sim B$ of
$H_{n}^{\prime}C$ . By the characterization theorems of the $\eta$-parallel shape operator due to
Kimura and Maeda [8] and Suh [14], the shape operator $A$ is $\eta$-parallel. Since
the subspace $\xi^{\perp}$ is A-invariant, it follows from (1.12) and (1.13) that $P$ is $\eta-$

parallel and hence so is the Ricci tensor $S$ . Accordingly, the Ricci tensor of
$M$ is $cyclic-\eta- parallel$ .

In order to prove the theorem, it suffices to show that the real hypersurface
of type $C,$ $D$ or $E$ can not occur. Let $M$ be a real hypersurface of type $C,$ $D$

or $E$ . Suppose that the Ricci tensor $S$ is $cyclic-\eta$-parallel. By the classification
theorem due to Takagi [15], $M$ has mutually distinct five constant principal
curvatures, say $\alpha=\sqrt{c}\cot 2\theta,$ $0<\theta<\pi/4,$ $\lambda_{1}=\sqrt{c}/2$ cot $\theta,$ $\mu_{1}=-\sqrt{c}/2$ tan $\theta,$ $\lambda_{2}=$

$\sqrt{c}/2\cot(\theta-\pi/4)$ and $\mu_{2}=-\sqrt{c}/2\tan(\theta-\pi/4)$ . Thus we have for any $ X\in$

$A(\lambda),$ $Y\in A(\mu)$ and $Z\in A(\sigma)$

(2.6) $\mathfrak{S}\nabla P(X, Y, Z)=\{2(\lambda+\mu+\sigma)-3h\}g(\nabla_{x}A(Y), Z)=0$

by (1.15), because $h$ is constant.
Suppose that $\mu\neq\sigma$ . There exists a l-parameter family of real hypersurfaces

$M(\theta)$ of tyPe $C,$ $D$ or $E$ of $P_{n}C$ and $2(\lambda+\mu+\sigma)-3h$ and $g(\nabla_{X}A(Y), Z)$ are both
smooth functions. Moreover, there is a unique value $\theta_{0}$ for each of type $C,$ $D$

or $E$ and such that $\{2(\lambda+\mu+a)-3h\}(\theta_{0})=0$ , because of $ h=P\alpha-cq/\alpha$ , where
$ 0<\alpha<\infty$ and, $P=n-2,4$ or 8 and $q=2,4$ or 6, according as $M$ is of type $C$ ,
$D$ or $E$ . This means that $g(\nabla_{X}A(Y), Z)=0$ except for $\theta_{0}$ and hence $g(\nabla_{X}A(Y), Z)$

$=0$ for any $Y\in A(\mu)$, $Y\in A(\sigma)$ , $\mu\neq\sigma$ . Since it is trivial by (1.16) that
$g(\nabla_{X}A(Y), Z)=0$ for any $Y,$ $Z\in A(\mu)$ , the shape operator $A$ must be $\eta$ -parallel.

This completes the proof.

Let $M$ be a real hypersurface of $M(c),$ $c\neq 0$ , whose Ricci tensor is cyclic-
parallel and whose structure vector is principal. Then it is already shown by
authors [9] that all principal curvatures are constant. Accordingly, we can



52 J.-H. KWON and H. NAKAGAWA

apply our theorem to this situation, which means that the real hypersurfaces of
type $C,$ $D$ and $E$ can not occur. Theorem 5.3 in [9] together with this fact
shows that the following theorem holds.

Theorem 2.2. Let $M$ be a complete and connected real hypersurface of $P_{n}C$ .
If the Ricci tensor is cyclic-parallel and if the structure vector is principal, then
$M$ is congruent to one of $M_{0}(2n-1, t),$ $M(2n-1, m, t)$ and $M(2n-1,1/(3n-2))$ .

Remark 2.1. For the definition of the above hypersurfaces, refer to cf. the
authors [9]. It is seen in Cecil and Ryan [2] that the hypersurface $M_{0}(2n-1, t)$

is a tube of radius $r=\cos^{-1}(t/(t+1))^{1/2}$ over a totally geodesic $P_{n-1}C$ , which is
of type $A_{1}$ . The hypersurface $M(2n-1, m, t)$ is a tube of radius $r=\cos^{-1}(t/(t+1))^{1/2}$

over a totally geodesic $P_{m}C,$ $0<m<n-1$ , which is of type $A_{2}$ . The hyper-
surface of $M(2n-1, t)$ is a tube of radius $r=(1/2)\cos^{-1}t$ over a complex quadric
$Q_{n-1}$ , which is of type $B$ ,

3. A complex hyperbolic space.

In this section, we are concerned with real hypersurfaces of a complex
hyperbolic space $H_{n}C$ . Some properties about real hypersurfaces of $H_{n}C$ are
already investigated by Montiel [11], Montiel and Romero [12] and so on. In
particular, it is proved in [12] that a complete and connected real hypersurface
of $H_{n}C$ is congruent to $M_{p.q}(t)$ or $M_{n}$ if it satisfies $A\phi-\phi A=0$ . These hyper-
surfaces are explained in the next paragraph. We shall here investigate whether
or not Theorem 2.2 holds in the case of $H_{n}C$ .

In order to investigate real hypersurfaces of $H_{n}C$ with cyclic-parallel Ricci
tensors, some standard examples of real hypersurfaces of $H_{n}C$ whose Ricci
tensors are cyclic-parallel are given. In a complex Euclidean space $C^{n+1}$ with
the standard basis, let $F$ be a Hermitian form $F$ defined by

$F(z, w)=-z_{0}\overline{w}_{0}+\Sigma_{k=1}^{n}z_{k}\overline{w}_{k}$ ,

where $z=(z_{0}, \cdots , z_{n})$ and $w=(w_{0}, \cdots , w_{n})$ are in $C^{n+1}$ Then $(C^{n+1}, F)$ is a
Minkowski space, which is simply denoted by $C_{1}^{n+1}$ . A scalar product given
by $F(z, w)$ is a semi-Riemannian metric of index 2 in $C_{1}^{n+1}$ . Let $H_{1}^{2n+1}$ be a
real hypersurface of $C_{1}^{n+1}$ defined by

$H_{\iota^{n+1}}^{2}=\{z\in C_{1}^{n+1} : F(z, z)=-1\}$ ,

and let $G$ be a semi-Riemannian metric of $H_{1}^{2n+1}$ induced from the complex
Lorentz metric ${\rm Re} F$ of $C_{1}^{n+1}$ . Then $(H_{\iota^{n+1}}^{l}, G)$ is the Lorentz manifold of con-
stant curvature $-1$ , which is called an anti-de Sitter sPace. For any point $z$ of
$H_{1}^{2n+1}$ the tangent space $T{}_{z}H_{1}^{2n+1}$ can be identified with { $w\in C_{1}^{nn+1}$ : ${\rm Re} F(z, w)$
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$=0\}$ . Let $T_{z}^{\prime}$ be an orthogonal complement of the vector $iz$ in $T{}_{z}H_{1}^{2n+1}$ . When
the anti-de Sitter space $H_{1}^{2n+1}$ is considered as a principal fiber bundle over $H_{n}C$

with the structure group $S^{1}$ and the projection $\pi$ , there is a connection such
that $T_{z}^{\prime}$ is the horizontal subspace at $z$ which is invariant under the $S^{1}$ -action.
The metric $g$ of constant holomorphic sectional curvature $-4$ is given by
$g_{p}(X, Y)={\rm Re} F_{z}(X^{*}, Y^{*})$ for any tangent vectors $X$ and $Y$ in $T_{p}(H_{n}C)$, where
$z$ is any point of $H_{1}^{2n+1}$ with $\pi(z)=p$ and, $x*$ and $Y^{*}$ are vectors in $T_{z}^{\prime}$ such
that $d\pi X^{*}=X$ and $d\pi Y^{*}=Y$ . On the other hand, a complex structure $J:w\rightarrow iw$

in $T_{z}^{\prime}$ is compatible with the action of $S^{1}$ and induces the almost complex
structure $J$ on $H_{n}C$ such that $ d\pi oi=J\circ d\pi$ . Thus $H_{n}C$ is a complex hyperbolic space
with constant holomorphic curvature-4 and it is seen that $H_{1}^{2n+1}$ is a principal
S’-bundle over a complex hyperbolic space $H_{n}C$ with the projection $\pi;H_{1}^{2n+1}\rightarrow$

$H_{n}C$, which is a semi-Riemannian submersion with the fundamental tensor $J$

and time-like totally geodesic fibres.
Now, for given integers $P$ and $q$ with $P+q=n-1$ and $t\in R$ with $0<t<1$ ,

a Lorentz hypersurface $N_{p.q}(t)$ of $H_{1}^{2n+1}$ is defined by

$N_{p.q}(t)=\{(z_{0}, z_{n})\in H_{1}^{2n+1} ; r(-|z_{0}|^{2}+\Sigma_{j=1}^{p}|z_{j}|^{2})=-\Sigma_{j=p+1}^{n}|z_{j}|^{2}\}$

and a Lorentz hypersurface $N_{n}$ of $H_{1}^{2n+1}$ is given by

$N_{n}=\{(z_{0}, z_{n})\in H_{1}^{2n+1} : |z_{0}-z_{1}|^{2}=1\}$ .
Lastly, for any fixed $t\in R$ with $t>1$ , let $N(t)$ be a real hypersurface of $H_{n}C$

defined by

$Nt)=\{(z_{0}, z_{n})\in H_{1}^{2n+1}\subset C^{n+1} : |-z_{0^{2}}+\Sigma_{j=1}^{n}z_{j^{2}}|^{2}=t\}$ .
Then it is seen that $N_{p.q}(t),$ $N_{n}$ and $N(l)$ are all isoparametric hypersurface of
$H_{1}^{2n+1}$ .

For a real hypersurface $M$ of $H_{n}C$ it is known that we can construct a
real hypersurface $N$ of $H_{1}^{2n+1}$ which is a principal $S^{1}$-bundle over $M$ with totally
geodesic fibres and the projection $\pi$ . Moreover, the projection is compatible
with the Hopf fibration $\pi;H_{1}^{2n+1}\rightarrow H_{n}C$ , that is, the diagram

$i^{\prime}$

$N\rightarrow H_{1}^{2n+1}$

$\pi\downarrow$ $\downarrow\pi$

$M\rightarrow H_{n}C$
$i$

is commutative ( $i^{\prime}$ and $i$ being the respective immersions). Then $M_{p.q}(t)=$

$\pi(N_{p.q}(t))$ is a real hypersurface of $H_{n}C$ , which is a tube of radius $r$ over a
totally geodesic submanifold $H_{p}C$ imbedded in $H_{n}C$ , where $\sqrt{t}=\tanh r$ . It is
said to be of type $A_{1}$ or $A_{2}$ , according as $p=0,$ $n-1$ or $0<p<n-1$ and it is
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seen by the authors [9] that these Ricci tensors are cyclic-parallel. $M_{n}=\pi(N_{n})$

and $M(t)=\pi(N(t))(n\geqq 3)$ are examples of real hypersurfaces of $H_{n}C$ . The
former is totally $\eta$ -umbilical with principal curvatures 1 and 2, which is said

to be of tyPe $A_{0}$ . The real hypersurface $M_{n}$ of type $A_{0}$ has also cyclic-parallel

Ricci tensor, which is also called a Montiel tube. The latter $M(t)$ is a tube of

radius $r$ over a totally real n-dimensional submanifold $H_{n}R$ of $H_{n}C$ , where $t=$

$\cosh^{2}2r$ , which is said to be of type B.

Theorem 3.1. Let $M$ be a complefe and connected real hypersurface of $H_{n}C$ .
If the Ricci tensor is cyclic-parallel and if the structure vector is principal, then
$M$ is congruent to one of $M_{n},$ $M_{2n-1.0}(t),$ $M_{0.2n-1}(t)$ or $M_{p.q}(t),$ $0<P,$ $q<n-1$ .

Proof. Let $M$ be a real hypersurface of $H_{n}C$ . Assume that $\xi$ is principal

and the Ricci tensor is cyclic-parallel. Then it is in [9, Theorem 3.2] that
all principal curvatures are constant. So $h$ is constant and $M^{\prime}$ is locally con-
gruent to one of real hypersurfaces of type $A_{0},$ $A_{1},$ $A_{2}$ or $B$ by Theorem. It is
essentially due to Berndt [1]. In order to prove Theorem 3.1, it suffices to

show that the ease of type $B$ can not occur, because it is seen in [9] that $M_{n}$

and $M_{p.q}(t)$ have cyclic-parallel Ricci tensors. Let $M$ be a real hypersurface of
type $B$ of $H_{n}C$ . Suppose that the Ricci tensor is cyclic-parallel. Since $\alpha$ is
constant by Ki and Suh [4], the equation (3.3) in [9] means that $\mathfrak{S}\nabla S^{\prime}(X, U, \xi)$

$=0$ for any $X,$ $Y$ in $\xi^{\perp}$ is equivalent to

$2\alpha(A^{2}\phi-\phi A^{2})-k(A\phi-\phi A)=0$ , $k=(3ha-2c-2\alpha^{2})$ .
Because of $\alpha^{2}+c\neq 0$ , it is reduced to

$(\lambda-\mu)\{a(\lambda+\mu)-k\}=0$ ,

where $a=\sqrt{-c}$ tanh $r,$
$\lambda=\sqrt{-c}/2$ coth $r$ and $\mu=\sqrt{-c}/2$ tanh $r$ . Accordingly,

$\lambda\neq\mu$ and $\lambda+\mu=-c/a$ , and hence it follows from the above equation that $h=$

$2\alpha/3$ . On the other hand, since the multiplicities of $\lambda$ and $\mu$ are equal in the
real hypersurface of type $B$ , the constant $h$ is given by $h=\alpha+(n-1)(\lambda+\mu)$ .
Thus we get $\alpha^{\epsilon}-3c(n-1)=0$ , a contradiction.

This completes the proof.
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