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Introduction.

The study of real hypersurfaces of a complex projective space P,C was
initiated by Takagi [15], who proved that all homogeneous hypersurfaces of
P,C could be divided into six types which are said to be of type A,, As, B, C,
D and E. He showed also in [15, 16] that if a real hypersurface M of P,C
has two or three distinct constant principal curvatures, then M is locally con-
gruent to one of the homogeneous ones of type A,, A, and B. This result is
generalized by Kimura [5], who proves that a real hypersurface M of P,C has
constant principal curvatures and the structure vector § is principal if and only
if M is locally congruent to one of the homogeneous real hypersurfaces. In
part’icvular, real hypersurfaces of type A,, A; and B of P,C have been studied by
several authofs (cf. Cecil and Ryan [2], Kimura [5], Maeda and Okumura

On the other hand, real hypersurfaces of a complex -hyperbolic space H,C
have also been investigated from different points of view and there are some
studies by the authors [9], Montiel [1I], Montiel and Romero [12]. In parti-
cular, real hypersurfaces of H,C, which are said of type A, A, and A, were
treated by Montiel and Romero [1Z]. o

Now, let M be a real hypersurface of a complex space form M,(c), c+D.
The Ricci tensor S of M is said to be cyclic-parallel if it satisfies

(*) - &VS(X, Y, 2)=8g(VxS(Y), Z)=0

for any vector fields X, Y and Z, where & and V denote the cyclic sum and
the Riemannian connection, respectively. It is seen that the Ricci tensor of a
real hypersurface of type A, or A, (resp. A, A, or A,;) of P,C (resp. H,C) is
cyclic-parallel. In a previous paper [9], this converse is investigated. On the
other hand, the notion of a %-parallel shape operator is recently introduced by
Kimura and Maeda [8]. A shape operator A is said to be 7p-parallel, if it
satisfies g(VxA(Y), Z)=0 for any vector fields orthogonal to & They prove
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that in a real hypersurface of P,C the shape operator is z-parallel and ¢ is
principal if and only if it is of type A,, A, or B.

The Ricci tensor S is said to be cyclic-n-parallel, if it satisfies () for any
vector fields X, Y and Z orthogonal to & The purpose of this note is to prove
the following

Theorem. Let M be a real hypersurface of My(c), ¢#0, n=3, on which the
structure vector & is principal. Then the Ricci tensor is cyclic-n-parallel if and
only if M is locally congruent to one of real hypersurfaces of type A,~B of
P,C or of type Ai~B of H,C.

1. Preliminaries.

Let M be a real hypersurface of an n(=2)-dimensional complex space form
M,(c) of constant holomorphic curvature ¢ (#0) and let C be a unit normal
field on a neighborhood of a point x in M. We denote by J an almost complex
structure of M,(c). For a local vector field X on a neighborhood of x in M,
the transformations of X and C under J can be represended as

JX=¢X+n(X)§, JC=-¢,

where ¢ defines a skew-symmetric transformation on the tangent bundle TM of
M, while » and & denote a l-form and a vector field on a neighborhood of x
in M, respectively. Moreover, it is seen that g(§, X)=n5(X), where g denotes
the induced Riemannian metric on M. By properties of the almost complex
structure J, a set (@, &, n, &) of tensors satisfies then

(1.1) p*=—I+7R¢, ¢£=0, n(¢X)=0, 5=1,

where I denotes the identity transformation. Accordingly, the set defines an
almost contact metric structure. Furthermore the covariant derivatives of the
structure tensors are given by

(1.2) VrpV)=n(Y)AX—g(AX, Y)§, Vx§=¢AX,

where ¥ is the Riemannian connection of g and A denotes the shape operator
with respect to C on M.

Since the ambient space is of constant holomorphic curvature ¢, the equa-
tions of Gauss and Codazzi are respectively given as follows:

(1.3) R(X, V)Z=cl{gY, Z)X—g(X, 2)Y
+8(@Y, Z2)pX—2(9X, Z)pY —2g( X, Y)$2)/4
+g(AY, Z)AX—g(AX, 2)AY ,
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(1.4) Vx AY)=Vr A(X)=c{n(X)gY —n(YV)pX—28(p X, Y ){}/4,

where R denotes the Riemannian curvature tensor of M and VxA denotes the
covariant derivative of the shape operator A with respect to X.

The Ricci tensor S’ of M is the tensor of type (0, 2) given by S'(X, Y)=
tr {Z—-R(Z, X)Y'}. But it may be also regarded as the tensor of type (1, 1)
and denoted by S: TM—TM; it satisfies S'(X, Y)=g(SX,Y). By the Gauss
equation, [(1.1) and [(1.2) the Ricci tensor S is given by

(1.5) S=c{@n+1I—-39QE}/4+hA—A?,

where h is the trace of the shape operator A. The covariant derivative of S
is also given by

(1.6) VxSY)=—3c{g(pAX, Y §+7(Y)pAX}/4
—dh(X)AY +(hI— AV x A(Y )+ x A(AY).

Now, some fundamental properties about the structure vector & are stated
here for later use. First of all, we have the following fact, which is proved
by Maeda and Ki and Suh [4], according as ¢>0 and ¢<0.

Proposition A. Let M be a real hypersurface of Mx(c), ¢#0. If the struc-
ture vector & is principal, then the corresponding principal curvature a is locally
constant.

In the sequel, that the structure vector ¢ is principal, that is, A§=af is
assumed. It follows from that we have ’

1.7 2A¢pA=cp/24+a)Ad+pA)
and therefore, if AX=A1X for any vector field X, then we have
(1.8) (CA—a)Ap X=(al+c/2)pX.

Accordingly, it turns out that in the case where a*+c+#0, ¢.X is also a principal
vector with principal curvature A2’'=(ad+c/2)/(24—a), namely, we have

24—a+0,
(1.9)
ApX=2¢X, A=(al+c/2)/2A—a).
On the other hand, for any principal curvature 2 we find
(1.10) dA®)=0

by the Codazzi equation [(1.4) and [Proposition Al In fact, the Codazzi equation
gives Vx A()—V:A(X)=—c¢$X/4 for any X orthogonal to & Accordingly, for
any principal vector X in &* with principal curvature 4, we have g(VxA(§)—
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V. AX), X)=(a—2)g(Vx&, X)+dA(#)g(X, X), which implies that dA(§)=0, because
of This is due to Kimura and Maeda [8].

Let A(2) be an eigenspace of A with the eigenvalue 4. A subspace &;* of
the tangent space T.M at x consisting of vectors orthogonal to §. can be then
decomposed as ‘

(1.11). §:=A)DAQRDD - DAL,).

By P the operator defined by A*—hA is denoted. Then, for any vector
fields X, Y and Z in &* we have

(1.12) g(VxSY), Z)=—g(NxP(Y), Z),
where
(1.13) gV xPY), Z)=g(NxA(AY), Z)+g(NxA(Y), AZ)

—dh(X)g(AY, Z)—hg(NxA(Y), Z).
In particular, for any X AQQ), Y€ A(p) and Z A(b) we get
(L1  g(VxPY), Z)=fy+o—h)g(VxA(Y), Z)—dn(X)g(AY, Z).
When we define VP(X, Y, Z)=g(N.P(Y), Z), it follows from that we have
(L15)  SVP(X,Y, Z)=(24+p+0)—3h} gVx ALY, 2) |
—{pdh(X)g(Y, Z)+adh(Y)g(Z, X)+2dh(Z2)g(X, Y)}.
On the other hand, it is easily seen that we get

(1.16) gV xAY), Z)=du(X)g(Y, Z)+(n—0)g(NxY, Z).

2. Proof of Theorem.

Let M be a real hypersurface of a complex space form M,(c), ¢#0, on which

the structure vector & is principal. Assume that the Ricci tensor S is cyclic-2-
parallel, that is, it satisfies '

&VS'(X, Y, Z)=0

for any vector fields in &*. This is equivalent to &VP(X, Y, Z)=0. Putting
X=Y=Z in (1.15), we have

22— g x A(X), X)—Adh(X)=0
where X is a unit vector in A(1). By it is reformed to
(2.1) (22—R)dA(X)—2dh(X)=0.

On the other hand, putting again Y=2Z in (1.15) and supposing that X and YV
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are orthonormal, and making use of we get
2.2) @A+4p—3h)d p(X)— pd h(X)=0..

First of all, the following property is verified.

Lemma 2.1. Let M be a real hypersurface of M,(c), ¢#+0, n=3, on which
§ is principal. If the Ricci tensor is cyclic-n-parallel, then the mean curvature
of M is constant.

Proof. Suppose that a®*+c¢=0. Then, without less of generality, we may
suppose that there are at least one principal curvatures, say 4, different from
a/2. For any X in A(2), it is seen that §.X belongs to A(1’), where ’=a/2 by
means of Applying [2.2) to the pair (X, ¢X), one gets adh(X)=0.
Furthermore, for any Y € A(a/2), it follows from that adh(Y)=0. On the
other hand, since h is constant along the &-direction, the mean curvature is
constant.

The case where a®+c+0 is next considered. For any vector X in A(Q),
¢X is also principal and the corresponding principal curvature 4’ is given by
(al+c/2)/(22—a). Because of

di(X)=—(a’+c)dA(X)/22—a)?,
combining it together with we have
(@®+c)2A+42—3h)d A X)+ A (22— a)?d h(X)=0

for any X in A(A). Since dA(X) can be substituted from and the above
equation, the following equation holds:

{(@®4c)A(224-42" —3h)+ 2 (22— h)22A—a)*} d h(X)=0

for any X A(1). For any fixed X in A(R), a connected component of a subset
of M consisting of points x at which dA(X)(x)+#0 is denoted by M(X). Suppose
that M(X) is not empty. Then we have

(2.3) 8al'—4(a*+ha—2c)2*+{@Aa*—2ha*—2ca—8ch)A?
+(2ha*+3ca’+5cha+2c?)A—cha®/2=0.

Suppose that a=0. Then the corresponding principal curvatures 2 and A’ satisfy
AA=c/4 and on M(X) they satisfy also A(22>—hi+c/4)=0 by Because of
2A—a+0, we have A+#0 and hence A*—hi+c/4=A(A—h+A)=0, which yields
that 24+4"=h. Now, for any principal curvature g different from a, 2 and 2/,
it follows from the equation that we have

@Ap'+c—3hp')d p(X)=cd h(X)/4,
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where g’ denotes the principal curvature corresponding to ¢ and they satisfy
pp'=c/4. Similarly, we get

CAp+c—3hp)dp' (X)=cdh(X)/4.

By adding these two equations and by making use of the fact that gp’ is con-
stant, the following relationship d(p+p'XX)=dh(X)/2 is given, because of c¢+0.
Let 2, -+, 4 be mutually different principal curvatures except for @ such that
A=A, 2p.1=2" and 2,+,=2,”. Then h is given by 2:2n.(2:,+254+r), Where n.
denotes the multiplicity of A,. Accordingly we have (n,—1)A+3),2,(i,+4,’)
=0, from which it follows that we have (n,—1)dh(X)+32,2,d(A,+2,"X(X)=0.
Combining these two equations, we have

(n+n,—3)dh(X)=0.

on M(X), which contradicts to the assumption n=3, because of n,=>1. This
means that the fact a#0 holds. Thus, by differentiating in the direction

of X and by taking account of the simple straightforward calculation
gives rise to

2.4) - 24ai*—82at+ha—c)A*+26a*—hat+3ca—4ch)2?
+2(ca’+c®)A+cha?/2=0.

Since [2.3) and [2.4) can be regarded as linear equations with the variable h
and they are also linearly independent, we can eliminate the function ~ from
these two equations and the argument gives us an equation with the variable A
of degree 7 and with constant coefficients. This means that A must be constant
on M(X) and hence it turns out that Adh(X)=0 by that is, A=0 on the
subset M(X). Accordingly, we get cath=0 by and hence the function A
vanishes identically on M(X), a contradiction.

Consequently, the subset M(X) is empty and we have dh(X)=0 for any
vector field Xe A(2) and any principal curvature 4, which completes the proof.

Proof of Theorem. By Lemma 2. the mean curvature may be assumed

to be constant, and hence the function 4 is constant. Then and are
simplified as

(2.5) (24— h)dA(X)=0, (22+4p—3h)du(X)=0.

For any fixed distinct principal curvatures 2 and g, let M, be a connected
component of a subset of M consisting points x at which (22—hA)(x)#0 holds.
Since M, is open, dA(X) vanishes identically on M, Let M, be a connected
component of the interior of the complement M—M, of M, if there exists.
Then A is equal to h/2 on M, and it is constant, so we get dA(X)=0 on M,,
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which means by the continuity of principal curvatures that 4 is constant along
the distribution A(4). Next, let M, be a subset of M consisting of point x such
that (22+4p—3h)(x)#0. Then [2.2) implies that du(X)=0 on M,. Since we
have 44p=3h—224 on a connected component of the interior of the complement
of M, we have 2du(X)=—dA(X) on it, which means that du(X) vanishes
identically on M. Thus the principal curvature g different from 2 is also con-
stant along the distribution A(2) and hence it yields that any principal curvature
A is constant along the £*-direction. While it is already seen that 4 is constant
along the &-direction, any principal curvature is constant on M. By the classi-
fication theorems of real hypersurfaces of Ma,(c), ¢+0, due to Takagi [15],
Kimura and Berndt [1], M is locally congruent to one of real hypersurfaces
of type A,~FE of P,C or of type A,~B of H,C.

Let M be a real hypersurface of type A,~B of P,C or of type A,~B of
H,C. By the characterization theorems of the 7-parallel shape operator due to
Kimura and Maeda [8] and Suh [14], the shape operator A is 7-parallel. Since
the subspace & is A-invariant, it follows from [1.12) and [(1.13) that P is y-
parallel and hence so is the Ricci tensor S. Accordingly, the Ricci tensor of
M is cyclic-n-parallel.

In order to prove the theorem, it suffices to show that the real hypersurface
of type C, D or E can not occur. Let M be a real hypersurface of type C, D
or E. Suppose that the Ricci tensor S is cyclic-n-parallel. By the classification
theorem due to Takagi [15], M has mutually distinct five constant principal
curvatures, say a=+/c cot 20, 0<0<n/4, ;=+/c /2cot 0, py=—+/Cc/2tan b, A=
V¢ /2cot(0—=n/4) and gy=—+/c/2tan(@—n/4). Thus we have for any X&
AQQ), YeA(p) and Z< A(o)

(2.6) SVP(X,Y, Z)={2(A+p+0)—3h}g(N AY), Z)=0

by (1.15), because h is constant. ,

Suppose that y+#¢. There exists a 1-parameter family of real hypersurfaces
M(6) of type C, D or E of P,C and 2(A+p+0)—3h and g(NxA(Y), Z) are both
smooth functions. Moreover, there is a unique value 8, for each of type C, D
or E and such that {2(A+u-+a)—3h}(8,)=0, because of h=pa—cq/a, where
0<a<e and, p=n—2, 4 or 8 and ¢=2, 4 or 6, according as M is of type C,
Dor E. This means that g(VxA(Y), Z)=0 except for 6, and hence g(NxAY), Z)
=0 for any Ye€A(p), Y=A(s), p+o. Since it is trivial by that
&N xA(Y), Z)=0 for any Y, Z< A(y), the shape operator A must be 75-parallel.

This completes the proof.

Let M be a real hypersurface of M(c), ¢+0, whose Ricci tensor is cyclic-
parallel and whose structure vector is principal. Then it is already shown by
authors [9] that all principal curvatures are constant. Accordingly, we can
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apply our theorem to this situation, which means that the real hypersurfaces of

type C, D and E can not occur. Theorem 5.3 in [9] together with this fact
shows that the following theorem holds.

Theorem 2.2. Let M be a complete and connected real hypersurface of P,C.
If the Ricci tensor is cyclic-parallel and if the structure vector is principal, then
M is congruent to one of My2n—1,1t), M(2n—1, m, t) and M(2n—1, 1/(3n—2)).

Remark 2.1. For the definition of the above hypersurfaces, refer to cf. the
authors [9]. It is seen in Cecil and Ryan that the hypersurface M,(2n—1,¢)
is a tube of radius »r=cos~'(t/(t+1))"/* over a totally geodesic P,_,C, which is
of type A,. The hypersurface M(2n—1, m, t) is a tube of radius r=cos~'(¢/(t+1))!/2
over a totally geodesic P,C, 0<m<n—1, which is of type 4,. The hyper-

surface of M(2n—1, t) is a tube of radius »=(1/2) cos~'t over a complex quadric
Qn-1, which is of type B,

3. A complex hyperbolic space.

In this séction, we are concerned with real hypersurfaces of a complex
hyperbolic space H,C. Some properties about real hypersurfaces of H,C are
already investigated by Montiel [11], Montiel and Romero and so on. In
particular, it is proved in [12] that a complete and connected real hypersurface
of H,C is congruent to M, () or M, if it satisfies Ap—pA=0. These hyper-
surfaces are explained in the next paragraph. We shall here investigate whether
or not holds in the case of H,C.

In order to investigate real hypersurfaces of H,C with cyclic-parallel Ricci
tensors, some standard examples of real hypersurfaces of H,C whose Ricci
tensors are cyclic-parallel are given. In a complex Euclidean space C"*' with
the standard basis, let F be a Hermitian form F defined by

F(z, wW)=—20+:2:2:Ws ,

where z=(z,, :--, z,) and w=(w,, --, w,) are in C™*'* Then (C"*, F) is a
Minkowski space, which is simply denoted by C7*'. A scalar product given
by F(z, w) is a semi-Riemannian metric of index 2 in C?%*!. Let H?"*!' be a
real hypersurface of C%+' defined by

Hi**'={z&C?*': F(z, 2)=—1},

and let G be a semi-Riemannian metric of H?**' induced from the complex
Lorentz metric Re F of C?*'. Then (H?"**!, G) is the Lorentz manifold of con-
stant curvature —1, which is called an anti-de Sitter space. For any point z of
H3"+' the tangent space T,H?"*! can be identified with {weC?"+': Re F(z, w)
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=0}. Let T’, be an orthogonal complement of the vector iz in T,H2"*!. When
the anti-de Sitter space H?"*!is considered as a principal fiber bundle over H,C
with the structure group S' and the projection z, there is a connection such
that 7', is the horizontal subspace at z which is invariant under the S'-action.
The metric g of constant holomorphic sectional curvature —4 is given by
&x(X, Y)=Re F,(X*, Y*) for any tangent vectors X and Y in T,(H,C), where
z is any point of H?**' with n(z)=p and, X* and Y* are vectors in T’, such
that dx X*=X and dzY*=Y. On the other hand, a complex structure J: w—iw
in T’, is compatible with the action of S' and induces the almost complex
structure Jon H,C such that dzw-i=J-dx. Thus H,C is a complex hyperbolic space
with constant holomorphic curvature —4 and it is seen that H2?"+' is a principal
S'-bundle over a complex hyperbolic space H,C with the projection = : H2*+'—
H,C, which is a semi-Riemannian submersion with the fundamental tensor J
and time-like totally geodesic fibres.

Now, for given integers p and ¢ with p+4+¢g=n—1 and t€R with 0<t<1,
a Lorentz hypersurface N, ,(t) of H?"+' is defined by

Np.()={(20, -+, za)EHI* : r(— | 20|+ 221 | 251 )=—22p 411251}
and a Lorentz hypersurface N, of H?"*! is given by
Nn-:{(Zo, tee, Zn)EH§n+l: |20_2x|2=1}.

Lastly, for any fixed t=R with t>1, let N(t) be a real hypersurface of H,C
defined by

N)=A{(20, -, 2a)EHTCO™': | =22+ 322,22 =t}.
Then it is seen that N, (), N, and N(t) are all isoparametric hypersurface of
Hin+,
For a real hypersurface M of H,C it is known that we can construct a
real hypersurface N of Hi"+' which is a principal S'-bundle over M with totally

geodesic fibres and the projection =. Moreover, the projection is compatible
with the Hopf fibration n: H3"+*'-H,C, that is, the diagram

i’

1
N —— H*+

T l l T
M——H,C
1
is commutative (7’ and i being the respective immersions). Then M, ()=
7(Np,o(t)) is a real hypersurface of H,C, which is a tube of radius r over a
totally geodesic submanifold H,C imbedded in H,C, where v/t =tanhr. It is
said to be of type A, or A,, according as p=0, n—1 or 0<p<n—1 and it is
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seen by the authors [9] that these Ricci tensors are cyclic-parallel. M,=n(N,)
and M@)=n(Mt)) (n=3) are examples of real hypersurfaces of H,C. The
former is totally »-umbilical with principal curvatures 1 and 2, which is said
to be of type A,. The real hypersurface M, of type A, has also cyclic-parallel
Ricci tensor, which is also called a Montiel tube. The latter M(t) is a tube of
radius » over a totally real n-dimensional submanifold H.R of H,C, where t=

cosh?2r, which is said to be of type B.

Théorem 3.1. Let M be a complete and connected real hypersurface of H,C.
If the Ricci tensor is cyclic-parallel and if the structure vector is principal, then
M is congruent to one of Ma, Man-1,o(), Mo.an-1(t) or Mp (8), 0<p, g<n—L.

Proof. Leét M be a real hypersurface of H,C. Assume that § is principal
and the Ricci tensor is cyclic-parallel. Then it is in [9, Theorem 3.2] that
all principal curvatures are constant. So h is constant and M is locally con-
gruent to one of real hypersurfaces of type A,, A:, A; or B by It is
essentially due to Berndt [I]. In order to prove [Theorem 3.1 it suffices to
show that the ease of type B can not occur, because it is seen in that M,
and M, /) have cyclic-parallel Ricci tensors. Let M be a real hypersurface of
type B of H,C. Suppose that the Ricci tensor is cyclic-parallel. Since a is
constant by Ki and Suh [4], the equation (3.3) in means that &VS’'(X, U, &)
=0 for any X, Y in &* is equivalent to |

2a(Ap—p AV — (AG—$A)=0,  k=(3ha—2c—2a’).
Because of a®+c+0, it is reduced to
A—p){a(A+pu)—k}=0,

where a=+/—ctanhr, A=+/—c¢/2cothr and g=+/—c/2tanhr. Accordingly,
A#p and A+p=—c/a, and hence it follows from the above equation that h=
2a/3. On the other hand, since the multiplicities of 2 and g are equal in the
real hypersurface of type B, the constant i is given by h=a+(n—1)(A+ ).
Thus we get a®*—3c(n—1)=0, a contradiction.

This completes the proof.
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