Yokohama Mathematical Journal Vol, 37, 1989

REAL HYPERSURFACES WITH CYCLIC 7-PARALLEL RICCI TENSOR OF A COMPLEX SPACE FORM

JUNG-HWAN KWON* and HISAO NAKAGAWA

(Received November 2, 1988)

Introduction.

The study of real hypersurfaces of a complex projective space P_nC was initiated by Takagi [15], who proved that all homogeneous hypersurfaces of P_nC could be divided into six types which are said to be of type A_1, A_2, B, C , D and E. He showed also in [15, 16] that if a real hypersurface M of P_nC has two or three distinct constant principal curvatures, then M is locally congruent to one of the homogeneous ones of type A_1, A_2 and B. This result is generalized by Kimura [5], who proves that a real hypersurface M of P_nC has constant principal curvatures and the structure vector ξ is principal if and only if M is locally congruent to one of the homogeneous real hypersurfaces. In particular, real hypersurfaces of type A_1, A_2 and B of P_nC have been studied by several authors (cf. Cecil and Ryan [2], Kimura [5], Maeda [6] and Okumura [10]).

On the other hand, real hypersurfaces of a complex hyperbolic space H_nC have also been investigated from different points of view and there are some studies by the authors [9], Montiel [11], Montiel and Romero [12]. In particular, real hypersurfaces of H_nC , which are said of type A_0 , A_1 and A_2 were treated by Montiel and Romero [12].

Now, let M be a real hypersurface of a complex space form $M_n(c)$, $c \neq 0$. The Ricci tensor S of M is said to be *cyclic-parallel* if it satisfies

(*)
$$\mathfrak{ST}S'(X, Y, Z) = \mathfrak{S}g(\mathfrak{T}_X S(Y), Z) = 0$$

for any vector fields X, Y and Z, where \mathfrak{S} and ∇ denote the cyclic sum and the Riemannian connection, respectively. It is seen that the Ricci tensor of a real hypersurface of type A_1 or A_2 (resp. A_0 , A_1 or A_2) of P_nC (resp. H_nC) is cyclic-parallel. In a previous paper [9], this converse is investigated. On the other hand, the notion of a η -parallel shape operator is recently introduced by Kimura and Maeda [8]. A shape operator A is said to be η -parallel, if it satisfies $g(\nabla_X A(Y), Z)=0$ for any vector fields orthogonal to ξ . They prove

^{*} This research was partially supported by KOSEF.

that in a real hypersurface of $P_n C$ the shape operator is η -parallel and ξ is principal if and only if it is of type A_1 , A_2 or B.

The Ricci tensor S is said to be cyclic- η -parallel, if it satisfies (*) for any vector fields X, Y and Z orthogonal to ξ . The purpose of this note is to prove the following

Theorem. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 3$, on which the structure vector $\boldsymbol{\xi}$ is principal. Then the Ricci tensor is cyclic- η -parallel if and only if M is locally congruent to one of real hypersurfaces of type $A_1 \sim B$ of $P_n C$ or of type $A_0 \sim B$ of $H_n C$.

1. Preliminaries.

Let M be a real hypersurface of an $n(\geq 2)$ -dimensional complex space form $M_n(c)$ of constant holomorphic curvature $c \ (\neq 0)$ and let C be a unit normal field on a neighborhood of a point x in M. We denote by J an almost complex structure of $M_n(c)$. For a local vector field X on a neighborhood of x in M, the transformations of X and C under J can be represended as

$$JX = \phi X + \eta(X)\xi, \qquad JC = -\xi,$$

where ϕ defines a skew-symmetric transformation on the tangent bundle TM of M, while η and ξ denote a 1-form and a vector field on a neighborhood of x in M, respectively. Moreover, it is seen that $g(\xi, X) = \eta(X)$, where g denotes the induced Riemannian metric on M. By properties of the almost complex structure J, a set (ϕ, ξ, η, g) of tensors satisfies then

(1.1)
$$\phi^2 = -I + \eta \otimes \xi, \quad \phi \xi = 0, \quad \eta(\phi X) = 0, \quad \eta(\xi) = 1,$$

where I denotes the identity transformation. Accordingly, the set defines an almost contact metric structure. Furthermore the covariant derivatives of the structure tensors are given by

(1.2)
$$\nabla_{\mathbf{X}}\phi(Y) = \eta(Y)AX - g(AX, Y)\xi, \quad \nabla_{\mathbf{X}}\xi = \phi AX$$

where ∇ is the Riemannian connection of g and A denotes the shape operator with respect to C on M.

Since the ambient space is of constant holomorphic curvature c, the equations of Gauss and Codazzi are respectively given as follows:

(1.3) $R(X, Y)Z = c\{g(Y, Z)X - g(X, Z)Y + g(\phi Y, Z)\phi X - g(\phi X, Z)\phi Y - 2g(\phi X, Y)\phi Z)/4 + g(AY, Z)AX - g(AX, Z)AY,$

46

REAL HYPERSURFACES WITH CYCLIC η -PARALLEL

(1.4)
$$\nabla_{\mathbf{X}} A(Y) - \nabla_{\mathbf{Y}} A(X) = c \{ \eta(X) \phi Y - \eta(Y) \phi X - 2g(\phi X, Y) \xi \} / 4 ,$$

where R denotes the Riemannian curvature tensor of M and $\nabla_X A$ denotes the covariant derivative of the shape operator A with respect to X.

The Ricci tensor S' of M is the tensor of type (0, 2) given by S'(X, Y) =tr $\{Z \rightarrow R(Z, X)Y\}$. But it may be also regarded as the tensor of type (1, 1)and denoted by $S: TM \rightarrow TM$; it satisfies S'(X, Y) = g(SX, Y). By the Gauss equation, (1.1) and (1.2) the Ricci tensor S is given by

(1.5)
$$S = c \{(2n+1)I - 3\eta \otimes \xi\}/4 + hA - A^2,$$

where h is the trace of the shape operator A. The covariant derivative of S is also given by

(1.6)
$$\nabla_{\mathbf{X}} S(Y) = -3c \{g(\phi AX, Y)\xi + \eta(Y)\phi AX\}/4$$
$$-dh(X)AY + (hI - A)\nabla_{\mathbf{X}} A(Y) + \nabla_{\mathbf{X}} A(AY).$$

Now, some fundamental properties about the structure vector $\boldsymbol{\xi}$ are stated here for later use. First of all, we have the following fact, which is proved by Maeda [10] and Ki and Suh [4], according as c>0 and c<0.

Proposition A. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$. If the structure vector $\boldsymbol{\xi}$ is principal, then the corresponding principal curvature $\boldsymbol{\alpha}$ is locally constant.

In the sequel, that the structure vector ξ is principal, that is, $A\xi = \alpha \xi$ is assumed. It follows from (1.4) that we have

(1.7)
$$2A\phi A = c\phi/2 + \alpha)A\phi + \phi A$$

and therefore, if $AX = \lambda X$ for any vector field X, then we have

(1.8)
$$(2\lambda - \alpha)A\phi X = (\alpha\lambda + c/2)\phi X.$$

Accordingly, it turns out that in the case where $\alpha^2 + c \neq 0$, ϕX is also a principal vector with principal curvature $\lambda' = (\alpha \lambda + c/2)/(2\lambda - \alpha)$, namely, we have

(1.9)
$$\begin{cases} 2\lambda - \alpha \neq 0, \\ A\phi X = \lambda' \phi X, \qquad \lambda' = (\alpha \lambda + c/2)/(2\lambda - \alpha). \end{cases}$$

On the other hand, for any principal curvature λ we find

$$(1.10) d\lambda(\xi) = 0$$

by the Codazzi equation (1.4) and Proposition A. In fact, the Codazzi equation gives $\nabla_X A(\xi) - \nabla_{\xi} A(X) = -c\phi X/4$ for any X orthogonal to ξ . Accordingly, for any principal vector X in ξ^{\perp} with principal curvature λ , we have $g(\nabla_X A(\xi) - \nabla_{\xi} A(\xi))$

 $\nabla_{\xi}A(X), X = (\alpha - \lambda)g(\nabla_X \xi, X) + d\lambda(\xi)g(X, X)$, which implies that $d\lambda(\xi) = 0$, because of (1.2). This is due to Kimura and Maeda [8].

Let $A(\lambda)$ be an eigenspace of A with the eigenvalue λ . A subspace ξ_x^{\perp} of the tangent space $T_x M$ at x consisting of vectors orthogonal to ξ_x can be then decomposed as

(1.11)
$$\boldsymbol{\xi}_{\boldsymbol{x}^{\perp}} = A(\boldsymbol{\lambda}_1) \oplus A(\boldsymbol{\lambda}_{\boldsymbol{z}}) \oplus \cdots \oplus A(\boldsymbol{\lambda}_{\boldsymbol{p}}) \,.$$

By P the operator defined by $A^2 - hA$ is denoted. Then, for any vector fields X, Y and Z in ξ^1 we have

(1.12)
$$g(\nabla_X S(Y), Z) = -g(\nabla_X P(Y), Z),$$

where

(1.13)
$$g(\nabla_X P(Y), Z) = g(\nabla_X A(AY), Z) + g(\nabla_X A(Y), AZ)$$

$$-dh(X)g(AY, Z)-hg(\nabla_X A(Y), Z).$$

In particular, for any $X \in A(\lambda)$, $Y \in A(\mu)$ and $Z \in A(\sigma)$ we get

(1.14)
$$g(\nabla_X P(Y), Z) = (\mu + \sigma - h)g(\nabla_X A(Y), Z) - dh(X)g(AY, Z).$$

When we define $\nabla P(X, Y, Z) = g(\nabla_x P(Y), Z)$, it follows from (1.14) that we have

(1.15)
$$\Im \nabla P(X, Y, Z) = \{2(\lambda + \mu + \sigma) - 3h\} g(\nabla_X A(Y), Z)$$

$$- \{ \mu dh(X)g(Y, Z) + \sigma dh(Y)g(Z, X) + \lambda dh(Z)g(X, Y) \}.$$

On the other hand, it is easily seen that we get

(1.16)
$$g(\nabla_X A(Y), Z) = d\mu(X)g(Y, Z) + (\mu - \sigma)g(\nabla_X Y, Z).$$

2. Proof of Theorem.

Let M be a real hypersurface of a complex space form $M_n(c)$, $c \neq 0$, on which the structure vector ξ is principal. Assume that the Ricci tensor S is cyclic- η parallel, that is, it satisfies

$$SVS'(X, Y, Z)=0$$

for any vector fields in ξ^{\perp} . This is equivalent to $\Im \nabla P(X, Y, Z)=0$. Putting X=Y=Z in (1.15), we have

$$(2\lambda - h)g(\nabla_X A(X), X) - \lambda dh(X) = 0$$

where X is a unit vector in $A(\lambda)$. By (1.16) it is reformed to

(2.1)
$$(2\lambda - h)d\lambda(X) - \lambda dh(X) = 0.$$

On the other hand, putting again Y=Z in (1.15) and supposing that X and Y

are orthonormal, and making use of (1.16), we get

(2.2)
$$(2\lambda + 4\mu - 3h)d\mu(X) - \mu dh(X) = 0.$$

First of all, the following property is verified.

Lemma 2.1. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 3$, on which ξ is principal. If the Ricci tensor is cyclic- η -parallel, then the mean curvature of M is constant.

Proof. Suppose that $\alpha^2 + c = 0$. Then, without less of generality, we may suppose that there are at least one principal curvatures, say λ , different from $\alpha/2$. For any X in $A(\lambda)$, it is seen that ϕX belongs to $A(\lambda')$, where $\lambda' = \alpha/2$ by means of (1.8). Applying (2.2) to the pair $(X, \phi X)$, one gets $\alpha dh(X)=0$. Furthermore, for any $Y \in A(\alpha/2)$, it follows from (2.1) that $\alpha dh(Y)=0$. On the other hand, since h is constant along the ξ -direction, the mean curvature is constant.

The case where $\alpha^2 + c \neq 0$ is next considered. For any vector X in $A(\lambda)$, ϕX is also principal and the corresponding principal curvature λ' is given by $(\alpha\lambda + c/2)/(2\lambda - \alpha)$. Because of

$$d\lambda'(X) = -(\alpha^2 + c)d\lambda(X)/(2\lambda - \alpha)^2$$
,

combining it together with (2.2), we have

$$(\alpha^{2}+c)(2\lambda+4\lambda'-3h)d\lambda(X)+\lambda'(2\lambda-\alpha)^{2}dh(X)=0$$

for any X in $A(\lambda)$. Since $d\lambda(X)$ can be substituted from (2.1) and the above equation, the following equation holds:

$$\{(\alpha^{2}+c)\lambda(2\lambda+4\lambda'-3h)+\lambda'(2\lambda-h)(2\lambda-\alpha)^{2}\}dh(X)=0$$

for any $X \in A(\lambda)$. For any fixed X in $A(\lambda)$, a connected component of a subset of M consisting of points x at which $dh(X)(x) \neq 0$ is denoted by M(X). Suppose that M(X) is not empty. Then we have

(2.3)
$$8\alpha\lambda^{4} - 4(\alpha^{2} + h\alpha - 2c)\lambda^{3} + (4\alpha^{3} - 2h\alpha^{2} - 2c\alpha - 8ch)\lambda^{2} + (2h\alpha^{3} + 3c\alpha^{2} + 5ch\alpha + 2c^{2})\lambda - ch\alpha^{2}/2 = 0.$$

Suppose that $\alpha=0$. Then the corresponding principal curvatures λ and λ' satisfy $\lambda\lambda'=c/4$ and on M(X) they satisfy also $\lambda(\lambda^2-h\lambda+c/4)=0$ by (2.3). Because of $2\lambda-\alpha\neq 0$, we have $\lambda\neq 0$ and hence $\lambda^2-h\lambda+c/4=\lambda(\lambda-h+\lambda')=0$, which yields that $\lambda+\lambda'=h$. Now, for any principal curvature μ different from α , λ and λ' , it follows from the equation (2.2) that we have

$$(2\lambda\mu' + c - 3h\mu')d\mu(X) = cdh(X)/4$$
,

J.-H. KWON and H. NAKAGAWA

where μ' denotes the principal curvature corresponding to μ and they satisfy $\mu\mu'=c/4$. Similarly, we get

$$(2\lambda\mu+c-3h\mu)d\mu'(X)=cdh(X)/4.$$

By adding these two equations and by making use of the fact that $\mu\mu'$ is constant, the following relationship $d(\mu+\mu')(X)=dh(X)/2$ is given, because of $c\neq 0$. Let $\lambda_1, \dots, \lambda_{2p}$ be mutually different principal curvatures except for α such that $\lambda_1=\lambda, \lambda_{p+1}=\lambda'$ and $\lambda_{p+r}=\lambda_r'$. Then h is given by $\sum_r \underline{p}_1 n_r(\lambda_r+\lambda_{p+r})$, where n_r denotes the multiplicity of λ_r . Accordingly we have $(n_1-1)h+\sum_r \underline{p}_2(\lambda_r+\lambda_r')$ =0, from which it follows that we have $(n_1-1)dh(X)+\sum_r \underline{p}_2 d(\lambda_r+\lambda_r')(X)=0$. Combining these two equations, we have

$$(n+n_1-3)dh(X)=0$$
.

on M(X), which contradicts to the assumption $n \ge 3$, because of $n_1 \ge 1$. This means that the fact $\alpha \ne 0$ holds. Thus, by differentiating (2.3) in the direction of X and by taking account of (2.1), the simple straightforward calculation gives rise to

(2.4)
$$24\alpha\lambda^4 - 8(2\alpha^2 + h\alpha - c)\lambda^3 + 2(6\alpha^3 - h\alpha^2 + 3c\alpha - 4ch)\lambda^2 + 2(c\alpha^2 + c^2)\lambda + ch\alpha^2/2 = 0.$$

Since (2.3) and (2.4) can be regarded as linear equations with the variable h and they are also linearly independent, we can eliminate the function h from these two equations and the argument gives us an equation with the variable λ of degree 7 and with constant coefficients. This means that λ must be constant on M(X) and hence it turns out that $\lambda dh(X)=0$ by (2.1), that is, $\lambda=0$ on the subset M(X). Accordingly, we get $c\alpha^2 h=0$ by (2.3) and hence the function h vanishes identically on M(X), a contradiction.

Consequently, the subset M(X) is empty and we have dh(X)=0 for any vector field $X \in A(\lambda)$ and any principal curvature λ , which completes the proof.

Proof of Theorem. By Lemma 2.1 the mean curvature may be assumed to be constant, and hence the function h is constant. Then (2.1) and (2.2) are simplified as

(2.5)
$$(2\lambda - h)d\lambda(X) = 0, \quad (2\lambda + 4\mu - 3h)d\mu(X) = 0.$$

For any fixed distinct principal curvatures λ and μ , let M_0 be a connected component of a subset of M consisting points x at which $(2\lambda - h)(x) \neq 0$ holds. Since M_0 is open, $d\lambda(X)$ vanishes identically on M_0 . Let M_1 be a connected component of the interior of the complement $M-M_0$ of M_0 , if there exists. Then λ is equal to h/2 on M_1 and it is constant, so we get $d\lambda(X)=0$ on M_1 , which means by the continuity of principal curvatures that λ is constant along the distribution $A(\lambda)$. Next, let M_2 be a subset of M consisting of point x such that $(2\lambda+4\mu-3h)(x)\neq 0$. Then (2.2) implies that $d\mu(X)=0$ on M_2 . Since we have $4\mu=3h-2\lambda$ on a connected component of the interior of the complement of M_2 , we have $2d\mu(X)=-d\lambda(X)$ on it, which means that $d\mu(X)$ vanishes identically on M. Thus the principal curvature μ different from λ is also constant along the distribution $A(\lambda)$ and hence it yields that any principal curvature λ is constant along the ξ^1 -direction. While it is already seen that λ is constant along the ξ -direction, any principal curvature is constant on M. By the classification theorems of real hypersurfaces of $M_n(c)$, $c\neq 0$, due to Takagi [15], Kimura [5] and Berndt [1], M is locally congruent to one of real hypersurfaces of type $A_1 \sim E$ of $P_n C$ or of type $A_0 \sim B$ of $H_n C$.

Let M be a real hypersurface of type $A_1 \sim B$ of $P_n C$ or of type $A_0 \sim B$ of $H_n C$. By the characterization theorems of the η -parallel shape operator due to Kimura and Maeda [8] and Suh [14], the shape operator A is η -parallel. Since the subspace ξ^{\perp} is A-invariant, it follows from (1.12) and (1.13) that P is η -parallel and hence so is the Ricci tensor S. Accordingly, the Ricci tensor of M is cyclic- η -parallel.

In order to prove the theorem, it suffices to show that the real hypersurface of type C, D or E can not occur. Let M be a real hypersurface of type C, D or E. Suppose that the Ricci tensor S is cyclic- η -parallel. By the classification theorem due to Takagi [15], M has mutually distinct five constant principal curvatures, say $\alpha = \sqrt{c} \cot 2\theta$, $0 < \theta < \pi/4$, $\lambda_1 = \sqrt{c}/2 \cot \theta$, $\mu_1 = -\sqrt{c}/2 \tan \theta$, $\lambda_2 = \sqrt{c}/2 \cot (\theta - \pi/4)$ and $\mu_2 = -\sqrt{c}/2 \tan (\theta - \pi/4)$. Thus we have for any $X \in A(\lambda)$, $Y \in A(\mu)$ and $Z \in A(\sigma)$

(2.6)
$$\mathfrak{S}\nabla P(X, Y, Z) = \{2(\lambda + \mu + \sigma) - 3h\}g(\nabla_x A(Y), Z) = 0$$

by (1.15), because h is constant.

Suppose that $\mu \neq \sigma$. There exists a 1-parameter family of real hypersurfaces $M(\theta)$ of type C, D or E of P_nC and $2(\lambda + \mu + \sigma) - 3h$ and $g(\nabla_X A(Y), Z)$ are both smooth functions. Moreover, there is a unique value θ_0 for each of type C, D or E and such that $\{2(\lambda + \mu + \sigma) - 3h\}(\theta_0) = 0$, because of $h = p\alpha - cq/\alpha$, where $0 < \alpha < \infty$ and, p = n - 2, 4 or 8 and q = 2, 4 or 6, according as M is of type C, D or E. This means that $g(\nabla_X A(Y), Z) = 0$ except for θ_0 and hence $g(\nabla_X A(Y), Z) = 0$ for any $Y \in A(\mu)$, $Y \in A(\sigma)$, $\mu \neq \sigma$. Since it is trivial by (1.16) that $g(\nabla_X A(Y), Z) = 0$ for any $Y, Z \in A(\mu)$, the shape operator A must be η -parallel.

This completes the proof.

Let M be a real hypersurface of M(c), $c \neq 0$, whose Ricci tensor is cyclicparallel and whose structure vector is principal. Then it is already shown by authors [9] that all principal curvatures are constant. Accordingly, we can

J.-H. KWON and H. NAKAGAWA

apply our theorem to this situation, which means that the real hypersurfaces of type C, D and E can not occur. Theorem 5.3 in [9] together with this fact shows that the following theorem holds.

Theorem 2.2. Let M be a complete and connected real hypersurface of P_nC . If the Ricci tensor is cyclic-parallel and if the structure vector is principal, then M is congruent to one of $M_0(2n-1, t)$, M(2n-1, m, t) and M(2n-1, 1/(3n-2)).

Remark 2.1. For the definition of the above hypersurfaces, refer to cf. the authors [9]. It is seen in Cecil and Ryan [2] that the hypersurface $M_0(2n-1,t)$ is a tube of radius $r=\cos^{-1}(t/(t+1))^{1/2}$ over a totally geodesic $P_{n-1}C$, which is of type A_1 . The hypersurface M(2n-1, m, t) is a tube of radius $r=\cos^{-1}(t/(t+1))^{1/2}$ over a totally geodesic P_mC , 0 < m < n-1, which is of type A_2 . The hypersurface of M(2n-1, t) is a tube of radius $r=(1/2)\cos^{-1}t$ over a complex quadric Q_{n-1} , which is of type B,

3. A complex hyperbolic space.

In this section, we are concerned with real hypersurfaces of a complex hyperbolic space H_nC . Some properties about real hypersurfaces of H_nC are already investigated by Montiel [11], Montiel and Romero [12] and so on. In particular, it is proved in [12] that a complete and connected real hypersurface of H_nC is congruent to $M_{p,q}(t)$ or M_n if it satisfies $A\phi - \phi A = 0$. These hypersurfaces are explained in the next paragraph. We shall here investigate whether or not Theorem 2.2 holds in the case of H_nC .

In order to investigate real hypersurfaces of H_nC with cyclic-parallel Ricci tensors, some standard examples of real hypersurfaces of H_nC whose Ricci tensors are cyclic-parallel are given. In a complex Euclidean space C^{n+1} with the standard basis, let F be a Hermitian form F defined by

$$F(z, w) = -z_0 \overline{w}_0 + \sum_{k=1}^n z_k \overline{w}_k,$$

where $z=(z_0, \dots, z_n)$ and $w=(w_0, \dots, w_n)$ are in C^{n+1} . Then (C^{n+1}, F) is a Minkowski space, which is simply denoted by C_1^{n+1} . A scalar product given by F(z, w) is a semi-Riemannian metric of index 2 in C_1^{n+1} . Let H_1^{2n+1} be a real hypersurface of C_1^{n+1} defined by

$$H_1^{2n+1} = \{ z \in C_1^{n+1} : F(z, z) = -1 \},\$$

and let G be a semi-Riemannian metric of H_1^{2n+1} induced from the complex Lorentz metric Re F of C_1^{n+1} . Then (H_1^{2n+1}, G) is the Lorentz manifold of constant curvature -1, which is called an *anti-de Sitter space*. For any point z of H_1^{2n+1} the tangent space $T_z H_1^{2n+1}$ can be identified with $\{w \in C_1^{nn+1} : \operatorname{Re} F(z, w)\}$

52

=0}. Let T'_{z} be an orthogonal complement of the vector iz in $T_{z}H_{1}^{2n+1}$. When the anti-de Sitter space H_{1}^{2n+1} is considered as a principal fiber bundle over $H_{n}C$ with the structure group S^{1} and the projection π , there is a connection such that T'_{z} is the horizontal subspace at z which is invariant under the S^{1} -action. The metric g of constant holomorphic sectional curvature -4 is given by $g_{p}(X, Y) = \operatorname{Re} F_{z}(X^{*}, Y^{*})$ for any tangent vectors X and Y in $T_{p}(H_{n}C)$, where z is any point of H_{1}^{2n+1} with $\pi(z) = p$ and, X^{*} and Y^{*} are vectors in T'_{z} such that $d\pi X^{*} = X$ and $d\pi Y^{*} = Y$. On the other hand, a complex structure $J: w \to iw$ in T'_{z} is compatible with the action of S^{1} and induces the almost complex structure J on $H_{n}C$ such that $d\pi \circ i = J \circ d\pi$. Thus $H_{n}C$ is a complex hyperbolic space with constant holomorphic space $H_{n}C$ with the projection $\pi: H_{1}^{2n+1} \to$ $H_{n}C$, which is a semi-Riemannian submersion with the fundamental tensor Jand time-like totally geodesic fibres.

Now, for given integers p and q with p+q=n-1 and $t \in \mathbb{R}$ with 0 < t < 1, a Lorentz hypersurface $N_{p,q}(t)$ of H_1^{2n+1} is defined by

$$N_{p,q}(t) = \{(z_0, \dots, z_n) \in H_1^{2n+1} : r(-|z_0|^2 + \sum_{j=1}^p |z_j|^2) = -\sum_{j=p+1}^n |z_j|^2\}$$

and a Lorentz hypersurface N_n of H_1^{2n+1} is given by

$$N_n = \{(z_0, \cdots, z_n) \in H_1^{2n+1} : |z_0 - z_1|^2 = 1\}.$$

Lastly, for any fixed $t \in \mathbb{R}$ with t > 1, let N(t) be a real hypersurface of H_nC defined by

$$N(t) = \{(z_0, \dots, z_n) \in H_1^{2n+1} \subset C^{n+1} : |-z_0^2 + \sum_{j=1}^n z_j^2|^2 = t\}.$$

Then it is seen that $N_{p,q}(t)$, N_n and N(t) are all isoparametric hypersurface of H_1^{2n+1} .

For a real hypersurface M of H_nC it is known that we can construct a real hypersurface N of H_1^{2n+1} which is a principal S^1 -bundle over M with totally geodesic fibres and the projection π . Moreover, the projection is compatible with the Hopf fibration $\pi: H_1^{2n+1} \rightarrow H_nC$, that is, the diagram

is commutative (i' and i being the respective immersions). Then $M_{p,q}(t) = \pi(N_{p,q}(t))$ is a real hypersurface of H_nC , which is a tube of radius r over a totally geodesic submanifold H_pC imbedded in H_nC , where $\sqrt{t} = \tanh r$. It is said to be of type A_1 or A_2 , according as p=0, n-1 or 0 and it is

seen by the authors [9] that these Ricci tensors are cyclic-parallel. $M_n = \pi(N_n)$ and $M(t) = \pi(N(t))$ $(n \ge 3)$ are examples of real hypersurfaces of $H_n C$. The former is totally η -umbilical with principal curvatures 1 and 2, which is said to be of type A_0 . The real hypersurface M_n of type A_0 has also cyclic-parallel Ricci tensor, which is also called a *Montiel tube*. The latter M(t) is a tube of radius r over a totally real n-dimensional submanifold $H_n R$ of $H_n C$, where t = $\cosh^2 2r$, which is said to be of type B.

Theorem 3.1. Let M be a complete and connected real hypersurface of H_nC . If the Ricci tensor is cyclic-parallel and if the structure vector is principal, then M is congruent to one of M_n , $M_{2n-1,0}(t)$, $M_{0,2n-1}(t)$ or $M_{p,q}(t)$, 0 < p, q < n-1.

Proof. Let M be a real hypersurface of H_nC . Assume that ξ is principal and the Ricci tensor is cyclic-parallel. Then it is in [9, Theorem 3.2] that all principal curvatures are constant. So h is constant and M is locally congruent to one of real hypersurfaces of type A_0 , A_1 , A_2 or B by Theorem. It is essentially due to Berndt [1]. In order to prove Theorem 3.1, it suffices to show that the ease of type B can not occur, because it is seen in [9] that M_n and $M_{p,q}(t)$ have cyclic-parallel Ricci tensors. Let M be a real hypersurface of type B of H_nC . Suppose that the Ricci tensor is cyclic-parallel. Since α is constant by Ki and Suh [4], the equation (3.3) in [9] means that $\Im VS'(X, U, \xi)$ =0 for any X, Y in ξ^{\perp} is equivalent to

$$2\alpha(A^2\phi-\phi A^2)-k(A\phi-\phi A)=0, \qquad k=(3h\alpha-2c-2\alpha^2).$$

Because of $\alpha^2 + c \neq 0$, it is reduced to

$$(\lambda-\mu)\{\alpha(\lambda+\mu)-k\}=0,$$

where $\alpha = \sqrt{-c} \tanh r$, $\lambda = \sqrt{-c/2} \coth r$ and $\mu = \sqrt{-c/2} \tanh r$. Accordingly, $\lambda \neq \mu$ and $\lambda + \mu = -c/\alpha$, and hence it follows from the above equation that $h = 2\alpha/3$. On the other hand, since the multiplicities of λ and μ are equal in the real hypersurface of type B, the constant h is given by $h = \alpha + (n-1)(\lambda + \mu)$. Thus we get $\alpha^2 - 3c(n-1) = 0$, a contradiction.

This completes the proof.

References

- [1] J. Berndt: Real hypersurfaces with constant principal curvature in complex hyperbolic space, J. reine angew. Math., 395 (1989), 132-141.
- [2] T.E. Cecil and P.J. Ryan: Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269(1982), 481-499.
- [3] U-H. Ki, H. Nakagawa and Y.-J. Suh: Real hypersurfaces with harmonic Weyl tensor of a complex space form, to appear in Hiroshima Math. J.

- [4] U-H. Ki and Y.-J. Suh: On real hypersurfaces of a complex space form, to appear in Okayama Math. J.
- [5] M. Kimura: Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 296(1986), 137-149.
- [6] M. Kimura: Sectional curvatures of holomorphic planes on a real hypersurface in $P^n(C)$, Math. Ann., 27(1987), 487-497.
- [7] M. Kimura: Some real hypersurfaces of a complex space, Saitama Math. J., 5 (1987), 1-7.
- [8] M. Kimura and S. Maeda: On real hypersurfaces of a complex projective space, to appear in Math. Z.
- [9] J.-H. Kwon and H. Nakagawa: Real hypersurfaces with cyclic parallel Ricci tensor of a complex space form, Hokkaido J. Math., 17 (1988), 355-371.
- [10] Y. Maeda: On real hypersurfaces of a complex projective space, J. Math. Soc. Japan, 28(1976), 529-540.
- S. Montiel: Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan, 37 (1985), 515-535.
- [12] S. Montiel and A. Romero: On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata, 20(1986), 245-261.
- [13] M. Okumura: On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 212(1975), 355-364.
- [14] Y.-J. Suh: On real hypersurfaces of a complex space form with η -parallel Ricci tensor, to appear in Tsukuba J. Math..
- [15] R. Takagi: Real hypersurfaces in a complex projective space, Osaka J. Math., 10 (1975), 495-506.
- [16] R. Takagi: Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan, 27(1975), 43-53, 507-516.

Taegu	University
Taegu,	705-033
Korea	

University of Tsukuba Ibaraki, 305 Japan