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1. Introduction and statement of main theorem.

Our aim here is to characterise the Riemannian Hermitian Symmetric space
SO(2n)/U(n) by means of a particular parallel tensor field T of type (1, 3) and
the Weingarten map on geodesic spheres. This continues earlier analogous
results on Grassmannians [1], [4], [5] which, in turn, extended the characterisa-
tion of spaces of constant curvature and spaces of constant holomorphic sectional
curvature due to L. Vanhecke and T.]J. Willmore [7]

The tangent space at any point meS0(2n)/U(n) can be identified with the
vector space S(n) of all complex skew-symmetric matrices of order n considered
as a real vector space with inner product

1.1) 2(X, Y)=—;—re tr X7 .

This is Hermitian with respect to the complex structure J corresponding to
multiplication by i=+/—1, and an invariant Kaehler metric g is then defined on
SO(2n)/U(n). We remark that U(n) acts on S(n) as a group of congruences.

The corresponding Riemannian curvature tensor at m is represented by its
action on S(n) by

(1.2) RX,Y)Z=XY'Z+ZV'X-YX‘'Z—ZX'Y .

For the non-compact dual SO*(2n)/U(n) the curvature tensor is just the nega-
tive of the above expression and it is sufficient to consider only the compact

case. Of course the metric g can be replaced by any metric homothetic to it
without affecting R.

The tensor T of type (1, 3) defined at m by
(1.3) TX,Y, Z2)=XY‘'Z+2ZYV'X

is invariant by U(n) and so extends to a parallel tensor field on SO@2n)/U(n)
alsd denoted by T. We define endomorphisms Ty and T'F of the tangent
space at m by

TxyZ=T(X,Y,Z) and T§Z=T(X, Z,Y).
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Also, for any tangent vector X at m we may regard the (1, 1) tensor JT xyx,
defined by JTxxY =J(TxxY), as a derivation on the tensor algebra at m. Then
it is easily verified that 7' has the following properties at m and hence on
S0@2n)/U(n):

P.: T(X,Y, 2)=T(Z,Y, X);
P.: JT(X,Y, Z)=T(JX,Y, Z)=—T(X, JY, Z);
Py: (1) JTxxg=0, (il) JTxxT=0;
P.: () tr Txx=4(n—1)g(X, X),
(i) tr (T$)=16 (g(X, X)*—4g(T(X, X, X), X).

We remark that the coefficients of g in P, could be simplified by writing
4g in place of g but the present choice is preferred because of later work.
Particular use will be made of unit vectors at m satisfying 7(X, X, X)=2X.
These are characterised by the following lemma which is easily proved using
elementary matrix methods. '

Lemma 1.1. Let X be any complex pXq matrix of rank r>0 and write
a=(1/r)tr XXt. Then XX'X=aX, for some acC, if and onlyif XX* hasa as
its only non-zero eigenvalue; in this case a=a and is an r-fold eigenvalue of
XX¢t. In particular suppose X is skew-symmetric. Then XX:X=(1/2)tr (XXX
if and only if X has rank 2 or, equivalently, if and only zf X=(ab;— a,bt)
where 2ab=0.

Now choose a geodesic 7 through m with unit tangent vector field N such
that T(N, N, N)=2N on 7. This relation holds if and only if it is satisfied at
m, and clearly such vectors exist at m because of the above lemma. Then

from
(1.4) ' R(JN, N)N=2JN.

We show that this relation imposes a condition on geodesic spheres. First we
make some remarks on the notation used in the remainder of this section. For
a spherical normal neighbourhood B of a point m on a Riemannian manifold
we denote by N the unit vector field on B\{m} which is tangential to geodesic
rays from m. Then we define A=—VN. For any geodesic sphere S in B
with centre m the restriction of A to tangent vectors to S is just the Wein-
garten map on S with respect to N as unit normal vector field. We call A the
spherical Weingarten map and note also that AN=0. Furthermore, if 7 is a
geodesic in B through m then on y\{m} the curvature tensor R satisfies

(1.5) "+ - R(N, X)N=A*X-(NxA)X
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for any vector field X along 7. These results are well known (see for ex-
ample.)
Next we require the following result again from [I].

Lemma 1.2. Let m be a point in a Riemannian locally symmetric space M
of dimension >2. Then m has a normal neighbourhood B such that, for each
unit vector Nm &My, and corresponding geodesic 7, the parallel translate of an
eigenspace of the linear map R(Nn—)N, along 7t is contained in an eigenspace
of the spherical Weingarten map A.

As an immediate consequence of this lemma and we have the following.

Proposition 1.3. Let meS0O2n)/U(n) and choose a normal neighbourhood
B of m as in Lemma 1.2. Then the spherical Weingarten map A satisfies the
relation
Ps: AJN=f]JN

for some real-valued function f on B\{m} and for N satisfying T(N, N, N)=2N
and of unit length.

We remark that, from the definition of A, f is smooth along y\{m} for
any geodesic 7 in B through m.
Our main theorem can now be stated.

Theorem 1.4. Let M be a non-flat complete simply connected Kaehler mani-
fold of dimension n(n—1)>2 with metric g and complex structure J, and let T
be a parallel tensor field of type (1, 3) on M satisfying P,—P,. Suppose each
mEM has a normal neighbourhood B on which Py is satisfied. Then M is homo-
thetic to the Riemannian symmetric space SO(2n)/U(n) or its non-compact dual.

2. A characterisation of 7.

The proof of the main theorem depends largely on a characterisation of the
tangent space structure at a point of SO(2n)/U(n) as described earlier. For
this purpose, we require the following result.

Proposition 2.1. Let A be a real vector space of dimension n(n—1)>2 with
complex structure J and Hermitian inner product {,», and let T be a tensor of
type (1, 3) on A satisfying Py—P, with {,) replacing g. Then there is a complex
linear isomorphism of A onto the real vector space S(n) of all complex skew-
symmetric matrices such that, wunder identification, JX=iX, T(XYZ)=
XY!'X+ZYtX and <X, X>=1/2tr XX.
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The proof of the proposition requires several lemmas all relating to 4 under
the above assumptions. First, we derive some consequences of property P,.

Lemma 2.2. (i) Forall XeA, T xx and T¥ are self-adjoint endomorphisms;
(ii) forall X,Y,Z,U, Ve,

2.1) T(X,Y, 2), Uy=T(Y, X,U), Z)=<T(Z,U, X), Y
and

2.2) TxT(Z,U, V)=T(TxZ,U, V)=T(Z, TyxU, V)+T(Z,U, TxrV).

Proof. (i) For T yxx, this is an immediate consequence of P, and Ps(i).
For T% the self-adjoint property follows using (ii).
(ii) Use (i) and linearisation in T xx to obtain

TxyZ+TyxZ, U>=(Z, TxyU+TyxU>,
then replace Y, Z by JY, JZ and use P, to get
<TXYZ—TYXZ, U>=<Z, TYXU"‘TXYU> .

Addition gives (T xyZ, Uy=<(Z, TyxU), as required and the last part of
follows using P;. This also proves the self-adjoint property of T4. Next, from
Py(ii) and P,,

TxxTWU,V,W)=TTxxU, V,W)—TWU, TxxV,W)+TU, V, TxxW),
and linearisation gives
TxyTWU, V,W)+TpxTWU, V,W)=T(T xxU, V, W)+T(TyxU, V, W)
—TWU, TxyV,W)—TU, TyxV, W)
+TWU, V, TeyW)+TU, V, TyxW).
Replace X by /X and use P; to get
TxyTWU, V,W)—=TyxTWU, V, W)=T(T xyU, V, W)=T(TyxU, V, W)
+TWU, TxyV, W)—TWU, TyxV, W)
+TWU, V, TxyW)—TU, V, TyxW).

Then addition gives (2.2) which completes the proof.
We require some further general properties of T.

Lemma 2.3. (i) For X,Y,Z,WeA
2.3) TY,X, T(Z, X, Z)=TY, T(X, Z, X), 2),
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(2.4) T% Y =T¥Y+T(T(X, X, X), X,Y),

(2.5) XY, TX, Z, X)=T(X, Z, TX, Y, X))=T(X, TY, X, Z), X),

(2.6) TiTxx=TxxT%,

2.7) T(TX,Y, X), Z, T X, W, X))=T(X, T(Y, T(X, Z, X), W), X).
(ii) if X+0 then T(X, X, X)+0.

Proof. (i) Equations [2.3) and [2.4) follow by considering Tzx7(Z, X, Y)
and TyxT(X, X, X) then applying (2.2). Again, (2.5) follows by applying (2.2)
to TxyT(X, Z, X)—TxzT(X, Y, X), and is a special case of (2.5).

To prove we use (2.2) and (2.5) to obtain '

T(T(X, Y, X), Z, FX, W, X))=2T(T(T(X, Y, X), Z, X), W, X)
—T(X, T(Z, TX, Y, X), W), X)
=2T(T(X, TY, X, Z2), X), W, X)
—-T(X, T(Z, T(X,Y, X), W), X)
=2T(X, T(TY, X, Z), X, W), X)
—T(X, T(Z, T(X, Y, X),W), X).
Now follows from this equation by noting that linearisation of Z in
implies
2T(TY, X, Z), X, W)=T(Z, T(X, Y, X), \)+T¥, T(X, Z, X), W).
(ii) Suppose X#0 and T(X, X, X)=0. Then implies 2T%x=T%".

Also, writing Z=X in (2.5) gives TxxT%=0, so 2T4% x=T%xT%’=0. Since
Txx is self-adjoint, we have T xx=0 which contradicts P,(i) and proves (ii).

From now on, for any non-zero X4 we write im T x=Ax, and im T%
=A% ; also, for A= R we write A% (resp. AF) for the corresponding eigenspace
of Txx (resp. T%) with the convention that A%={0} (resp. AF={0}) if 2 is not
an eigenvalue.

Lemma 2.4. Suppose X is a unit vector such that T(X, X, X)=2X for some
ASR. Then the eigenspaces of Txx and T% are A, AY?, A%, and AT, A¥, A%,
respectively, where AF=A%YPDAY:, AF=]JAZ; and A5 =AFPAX,=AX. Moreover,
for some integer k>1, A=4/k, dim A% =Fk(k—1) and dim A¥*=2k(n—k), with the
convention that A¥*={0} when k=n.

Proof. If T(X, X, Z)=60Z then and (2.5) imply
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20 Z=T¥Z+10Z,
, 0TEZ=1T3Z.
Consequently,
91— TEZ=0—0=0 or 5,
9=2— TP Z=0Z — TEZ=11Z,

and the relations between eigenspaces of T xy and T% follow immediately where
we must allow for the possibility that A%={0} or A¥*={0}, and note, in parti-
cular, that A%=JAF because of P,. Next, suppose dim A4 =r and dim A¥*=s.

Then from P,,
r1+s—';—=4(n—1) ,

ri’=16—42.
Elimination of 1 gives

2r¥s 14 JOTE

n—1

from which 1+4r=(2k—1)* for some positive integer k, so r=~k(k—1), s=
2k(n—k), and A=4/k as required.

The next lemma proves the existence of a vector X as above. We first
remark that a subspace A of A will be called J(resp. T)-invariant if JX (resp.
T(X,Y, Z) belong to A whenever X,Y, Z€A.

Lemma 2.5. (i) If XA and YEAX then A¥CA*.

(i) If A is a non-zero subspace of A whichis J and T-invariant there exists
a unit vector YEA such that T(Y,Y,Y)=2Y for some 2R and A¥*NA is
generated by {Y, JY}. Moreover, if A¥XCA for each X< A then there exists a
unit vector YE A such that TY,Y, Y)=Y; in particular, such a vector Y exists
in A.

Proof. () If Y=T(X,W, X) and Z=T(Y, V,Y) then, from Z=
(X, TW, T(X, V, X), W), X)e4*.

(ii) Choose a non-zero vector XA such that dim (A¥NA)<dim (42N A)
for all non-zero Z<A. Note that dim (A¥NA)>0 since, by (ii) of
T(X, X, X)#0. Choose any Y & A* NA which is non-zero. Then by (i), A¥NA
=AXAA so TY is a non-singular endomorphism of AXNA. Let TyyZ =0Z and
TyyW=¢W where Z, W are non-zero vectors in AXNA. Then using (2.2),
TyeT(Z, W, Z)=20—@)T(Z, W, Z) so 260—¢ is an eigenvalue of Tyy|A¥NA,
noting that T(Z,W, Z)#0. If follows that the eigenvalues of Tyy are un-
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bounded unless Tyy| A¥NA is just a multiple of the identity map I. Thus there
is a real valued function f on A¥NA such that if Z is any non-zero vector in
AXNA then Tzz|AXNA=f(ZXZ, Z>I and shows f=2A for some A=R.
Next we prove that dim A¥NA=2. For all Y, Z, We AXN A,

TY, W, Z)+TW,Y, Z)=2XY, W>Z
hence

TY,W,)=2KY, W)Y —XY, Y W.

Now suppose Y is a unit vector orthogonal to W and JW, noting that A¥NA
is J-invariant. Then

so T(Y, W, Y)=0 which is impossible unless W=0. Thus 4¥NA is generated
by {Y,JY} and T{Y,Y,Y)=2Y. In particular, when AYCA we see that
dim A*=2 so, from Lemma 24, T(Y,Y, Y)=2Y. Finally, by choosing A=/
we see that this relation must hold for some unit vector Y4 and the proof
is complete.

From now on we denote by D the subset of vectors X in A satisfying
T(X, X, X)=2{X, X>X.

Corollary 2.6. (i) For any XA let 6 be an eigenvalue of Txx. Then A%
is J and T-invariant.

(i) Suppose X is a unit vector such that T(X, X, X)=21X for some A=R.
Then for each Y € A%, T AL)=T¥(A%*)={0}.

(iii) For X as in (ii), AAND+{0} and A%ND+{0}.

Proof. (i) A% is J and T-invariant because of P, and (2.2).

(i) f ZeA% where 6=2 or 2/2 then from (2.2), T(X, X, T(Y, Z, Y)=
—0T(Y,Z,Y) so T(Y, Z, Y)=0 since Txx has only 1, /2 as non-zero eigen-
values. ‘ ‘

(iii) By Lemma 2.4, A4%=A%X and AXN\D+{0} because of
Again, suppose Y€ A4%. Since A has a direct sum decomposition into the 0, 2,
A/2 eigenspaces of T yx we see from (i) and (ii) that A%N\D+{0}.

Lemma 2.7. Let X be a unit vector in D. Then
() TX,U, Vedx for all U, Ve and T xyw=Twx=0 for all W A% ;
(i) T(X,Y, Z2)=<Y, Z>X+JY, Z)]X for all Y, Z<c A%.

Proof. (i) For U, Ve,
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T(X: U’ V):'TVUT(X: X; X)

=2T(T(V’ U: X): X! X)_T(X: T(U’ V: X)’ X)
so T(X, U, V)eAdyx. Then for We A%,
KTW, X, U), Vp=<XT(X, W, V), U>=<T(X, U, V), W>=0

and (i) follows. ’ )
(ii) This follows by noting that, from (2.2), T(X, Y, Z)e A% and then tak-
ing inner products.

Lemma 2.8. Suppose X, X, are unit vectors in D such that X,= A%, ; write
X=1//2XX1+X:) and A=Ay NAY,.

() AX=AX1DAX:PDA and dim A¥=12.

(i) TEUACA and T%} restricts to an orthogonal bijection of A of order 2.

(i) If YEAND is non-zero then T}WY)eAyND, dim AYNA=2 and
dim A}NA=4.

(iv) There exist unit vectors Y., Y, AND such that Y.edy,. Write Y,=
—T(Xy, Y, Xo), Yi=T(X,, Y1, X;). Then A has an orthonormal basis

(Y,Y, Y, Yo, JY 1, JY o, JY s, JY 0}
of vectors in D. '
v) If Xy is a unit vector in A% NA%,ND then ACA%,; if YEA then
AyC Az, Uy,

Proof. (i) From (i) of Lemma 2.7, T(X, X, X)=X. Also,
shows that A¥=A% with dim 4¥=12. Now if Z& A then

ZT(X; X, Z)':T(Xl: X1, Z)+T(X2, Xz, Z)

and the direct sum decomposition follows by considering the components of Z
in A%, A%, and noting that these subspaces are invariant by T x,x,.
(i) shows that T¥yA)cA. Next, if ZEA then

0=T2x,T(X:, X, Xo)=—T(Xy, T(Xs, Z, X1), Xo)
+T(le Xl: T(Zr XZ: Xz))

so T¥WT$1Z)=Z. The restriction of T to A is seen to be orthogonal by
taking inner products.

(iii) if Y is a unit vector in AND then from (2.2) and
Tyx,T(X., ¥, X=X, and T(X,, Y, T(X,, Y, X)=0 since T(X, Y, X4
Then by considering T x,yT(Xs, T(X,,Y, X), T(X,,Y, X)) we obtain T(X., Y, Xs)
=D. Next we note that X,cA} and AY+*2=A%X where Z=T(X,, Y, Xa). It
follows that dim (AgNA%)=dim (4% ,NA%)=2 and dim (4}NA%)=dim (Ax,N4%)
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=8; the last part of (iii) is then an easy consequence.

(iv) From [Lemma 2.5, there exists a unit vector Y, A such that, for some
AR, T(Y,, Y, Y))=2Y, and dim (A*NA)=2. Now T(Y,, Y,, X))=X, so from
A=1 or 2. If 2=1 then dim A¥'=12 and, from (i) of
A¥1=AX which contradicts dim (A¥*N\A)=2, dim A>2. Thus 2=2 and Y,eD
as required. Since dim A}N\A=4, the same proof shows the existence of a unit
vector Y,= A} NAND. The orthonormal basis is now obtained using (ii) and
(iii).

(v) Clearly Tx,x,(A)CA so suppose ZEA is non-zero and Ty, x,Z=Z.
Then T(X., X, T(X:, Z, Xo))=—T(X,, Z, X,) which implies T(X;, Z, X:)=0;
but this is impossible from (ii) so ACA%,. Next if Y€ A then Y=T(X,, U, Xp
for some U= A so for each Z= A

TYY,Y, Z)=T(T(X,,U, X,),Y, Z)
=T(X, U, T(X,, Y, Z)-T(X,, TU, X,,Y), Z)
+T(X,, Y, T(X,, U, Z)).
Thus fre-. i, of Ayc A% \J A%, and the proof is complete.

we remark that the minus sign in the definition of Y, is chosen for con-
venience lster,

Lemma 2.9. There exists an orthonormal set of vectors {U,, U, -, Ux}CD
where m=[n/2] such that T(U;, U;, U,)=238%{U;.

Proof. Suppose, for some p, {U,, -+, U,} is an orthonormal set of vectors
in D satisfying T(U,, U;, U,)=28'0U;. Such a set exists when p=1. Write
X=Q1/+/P)U+Us+ - +U,). Then T(X, X, X)=1/p)X. If p<[n/2] then
from dim A% =(n—2p)n—2p—1)>0, so from (iii) of there
exists a unit vector Upn&€A%ND. Thus 0=T(X, X, Ups)= 3 TWUs, Uy, Ups)

which dmplies T(U, Uy, Ups)=0 for i=l, ---, p since each Tyy, is positive
semi-definite. Clearly U,., is orthogonal to each U, and the lemma follows
using Lemma 2.7 and induction on p.

We now use {U,, .-, Un} to obtain vectors in D which form an orthonormal

basis for énag (Ag,NAY).

Lemma 2.10. For i=2, -, m, each Ay NA,, has an orthonormal basis
{eass Jeap: 1<a<2 and 2i—1<B<2i} of vectors in D such that for 1<a, B<2,
2<i<m, 2<74, k, 1<2m,
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(1) ez9a=TU,, 1321-1, Uy), €226-:1=—TU,, €14, Us);
(ii) T(eas, €ar, €ar)=€asOr1+e€adse ;

(iii) T(eas, ear, epr)=ep; if a#P;

(iv) T(eas, esr, X)=0 for all XA if a+ B and j+kE.

Proof. (i) First apply with U,, U, replacing X, X, and e,
replacing Y,. If m=2 define ¢,,=Y,, ¢,s=Y; and ¢,,=Y, as in the same lemma.
Next assume m>2. Then

T‘lsexs(AllflmAllfi)CAzlzlﬂA[‘,t for 1=3, -, m *
and the relation
TGISGIST(UI: X} Ut)=T(U1} X) Ui)—T(Ul, T(e13; €13, X)!, Ui)

shows that TY: restricts to a bijection of A} NAyNA:,, onto Af NAY,NAS,,.
Hence dim (4§,NA44 N AL )=4 and, by a proof similar to that for (iv) of Lemma
2.8, there exists a unit vector e,y EA4FNAFNALND. Define e;q=
TWU,, e131-1, Uy) for i=2, ---, m and note that e, & Af,NAFNAL ,NA, ,,_,ND
and is a unit vector.

Now for i>3 choose a unit vector Y €A} NA§,NA}, orthogonal to {e; -1,
Jeisi-1}. Since Ay NAy,NAL, is J and T-invariant it follows by taking inner
products with e, 4., that {Y, JY}CD. Since {e; s, Jess:)C A5, We see that
YeAl and then A} NAy,NAL,CD. Next, for ¢, >3 suppose X A} N4},

€1 2¢-1
N4, and Y edy, N4y N4, are unit vectors with ¥ orthogonal to {X, JX]}.

€13
If T(X, X, Y)=0 then from T(X, e, Y)#0. But T(X, e, V)=
={0} so T(X, X, Y)+0. Since Txy restricts to an endomorphism of A N4,
N4}, it follows that T(X, X, Y)=Y. Next we note that Ay NAgNAL N4},
has dimension 2 and choose a unit vector e;, in this subspace. It follows that
e A:,,N\D and ey=—T(U,, ey, U4, ,N\D. For any unit vector XeAj N
Ay N4, i>3, we have XeD. If T(X, X, e,)=0 then T(ew, exs, X)=0. But
T(e1s eis, X)=Agi={0} and it follows as before that, necessarily, T(X, X, e.,)
=e,,. Finally, defining e;s=T(e1s, €ss, €26), it follows that e, 4} ,, also e,
A3, N4, so is a unit vector by Then, as an immediate consequence
of the above relations, we see that if 1>3 and X, Yedj N4 NAL, are unit
vectors with Y orthogonal to span{X, JX} then T(X, X, Y)=Y. Similarly, for
the same Y and for X&span{eis, e, Jeis, Jei,} we again have T(X, X, Y)=Y.
Next, for i=3, -+, m, define e; ;;=T(e1s, €23, €2 2s)E AF N\ Ay, N AL ,ND and e; z-,
=—TU,, ey u, U)sAyNAy,NA ,ND. Thenit is immediate from
that for =2, ---, m the set {e.s, Jeap:1<a<2 and 2i—1<B<2/}.forms an
orthonormal basis for A} ,NA4},. Also (i) is satisfied by definition. . .

(ii) As shown above, T'(ey, ey, e1;)=ey; for ¢, j>2 and i#;. The relations
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T(eys, €11, €2;)=0 for i#j and then T(es, €s, ey5)=e,; for i, j>2 and i#; follow
easily. Consequently, (i) follows from (ii) of Lemma 2.7.

(iii) Clearly this is true when j=£k so assume j# k. There are several
cases to consider. Thus
T(e 21-1, €125-1, €2 2j-1)

=—T(e; 2t-1, & 2j-1s TWU,, T(ess, €2, TU,, e125-1, Uj)): U,'l)

=T(ezs, €13, €12i-1)
=T¢23613T(U1, TWU;, e12:-1, Us), Us)
=—TU,, (T(e1s, s, T(U,, e1324-1, U,), Uy)

=@22i{-1.
Again ‘
T(e121-1, €12, €2 2})=T(T(U1, es 21, U1), T(e1s, €3, €5 25); €2 25)

=—T(TU,, T(e1s, ez, €2 2t)s Ut), €225 €2 25)
=T(es 2¢-1, €2 24, €2 2j)
—€22i-1.

The same method of proof shows that T(e; s, €15, €s5)=€s ¢ for j#2i. The re-
maining four cases follow by taking inner products and (iv) is proved.

(iv) As a consequence of (ii) and (iii) T'(e.j, i, 2;)=0 if i#j. Then (iv)
follows from (i) of -

For some positive integer »<n let A={e;;: 1<i<j<r} be an orthonormal
subset of A, define &;;=—¢;; for 1<i<j<r and write A=¢gy: 1<i<j<r). We
call such a subset A regular if the following three relations hold for all vectors
in AUA: '

R,: T(e¢j, &x1, X)=0 for all Xe A if i, j, k, [ are distinct;
R,: T(éij; iy €11)=€1;0k1+ €101 ;
vRs: T(slh &7y eij)=su, if 71! and ]#k;

We write JA={Je;;: e;;€ A} and call AUJA a regular basis if it is a basis and
A is regular. A

Next, for i=1, 2 define ¢;; as in and e,,=U,; also write e;;=
—ey; for i=1,2 and j=1, .-, 2m. Then define

eij;T(eli: €12, ezj)

for‘ 2<i<2m and 2<j;<2m, noting the consistency when =2, and write B=
{ei;: 1<i<j<2m}. Finally, define e=(1/~/m)U,, + --- +Un); thus e is a unit
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vector satisfying T(e, ¢, ¢)=(2/m)e and dim A*=2m(2m—1) from

Proof of Proposition 2.1. We first prove that A admits a regular basis
CUJC by showing that BUJB, for n even, or a suitable extension of B\UJB,
for n odd, forms such a basis. The proof is completed by considering the ac-
tion of T on CUC.

To prove that B is regular we begin by showing that B is orthonormal
with e ;=—ey; for 1<i, j<2m and that U;=es;_+: for i=1, ---, 2m. Thus, for
2<i, 7, k, I1<2m,

(e, ery=<T(e1, 1z, €2y), T(e1s, €12, €21)>
={T (e, €11, T(e1s, €12, €31)), €257
=08;1{Ca1, €2;>—0ulCor, €27
=08¢10;.—0:05% .

Also, for 2<i<j, e;;€ A%, so from ei; is a unit vector. This
proves the orthogonality of B and the relation ¢;;=—e;;. In particular, e;;=0
for i=1, -+, 2m. Next, for i>1,

esi-12=T(C121-1, €12, €2 21)

T T(U;, @1 2¢-1, Uy,

=L gi-1e19
=U;
as required.
Next we prove the relations

2.8) TUy;, ezs-1 g,-,Uj)=e,‘¢ 25y Ty, €si-125 Uj)=—02185-1.
We may assume :>1. Then
0=Teypes 81T Wi, €120-1, U)
=—TW;, esi-12j-1, Up)+T Uy, 1211, €125 -

Now e;5;€ 48, so by considering <T(Uy, e12:-1, €125), €202 and using Lemma
2.8 it follows that T(Us, €1s4-1, €125)=€s: 2; Which proves the first part of 2.8);
the second part is proved similarly. We now prove B regular by considering
R:, R:, R,.

R,: This is immediate using R, above, (i) of and (v) of Lemma
2.8.

R,: We first note as a consequence of Lemma 2.8 and 2.9 that A° is the
orthogonal direct sum of subspaces A%, and Ay,NAy,, i#J, for 7, j=1,2, -+, m.
Then, from Bc A¢. Now, for 1<i<j<m and X&BnNA§,NA}, the ortho-
normal set {Us, -, Oy, -, Uy, -+, Un, X, TWU,, X, U,)} satisfies the same rela-
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tions as those of {U,, -, U,} in Lemma 2.9. Hence dim (44N A4%)=dim (44,NA4%
=dim @ (44, 45,)=8(m~1) and it follows using R, that if ¢;,€ B then A}, N\A°

is generated by
{elm) jelﬁ: I=17 or j}\{eij: €;i, ]eu; ]‘ﬂ}'

This result together with (ii) of gives R,
R,: Suppose 2<i, I<2m and 2<j, £<2m. Then it is easy to verify that
€181k, QUEBUB’ and Z.$l, ]¢k

= T(ezs, €ss, e12)=euy

= (T(esy, €1, €11), e2:>=1

== T(esy, €15, €1a)=¢22

= T(ew, €13, T(esj, €1, €12))=04s
= T(ess, €1, er1a)=¢€ss .

The same method also establishes that for ;=1 and R, is then proved.

Finally, we note from Lemma 2.8 that each A},N4}, i+j, has an ortho-
normal basis {e.s, Jeap: 2i—1<a<2i and 2j—1<B<2;5}. It then follows im-
mediately from the proof of R, that

BUJB={GU, je”: 1£1<]£2m}

is an orthonormal basis for A° hence for A if n=2m. Next we assume that,
in Proposition 2.1, n=2m+1 where m>1. We wish to extend the above basis
for A° to a basis for 4. In using the previous notation we will often replace
@s:i-1¢¢ by the less cumbersome U,.

First we show that A!/™= él(/l:/ mNAg,). Thus, it is clear that since each

Ty, is positive semi-definite then, for 1<i, j<m and i+, (Ay™nAg ) As,
Now A=A°@AY™ since A° and AY™ are orthonormal and dim A°*=2m(2m—1),
dim 4}/™=4m. Also for each U, dim A} ,=4(2m—1) and dim (4°"\ 4} )=8(m—1)
hence dim (4:/"NA4},)=4. The required direct sum decomposition follows im-
mediately and is clearly orthogonal. Next we show that AY™N\A},CD for each
i and AYV™=AXP(A¥xNAY™) for each unit vector Xediy™nAy,. Clearly, it is
sufficient to consider the case when i=1. Thus for each unit vector X< Ai/™
N4}, we have TEA9)={0} since A2={0}, also T¥A44,)={0} for i#1 since
XeAp,. Hence A¥CAY™NA} and from (ii) of Cemma 2.5, AXN\D=+ {0}, so we
may assume X€D. Again, if YeAi/™N4}, and is orthogonal to X and JX
then it follows by taking inner products of 7(Y, Y, Y) with X and JX that
YeD. Hence, since Y= A4} we see that AYm™NAy,cD. Now for i#1 Txx
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restricts to an endomorphism of A} NA}, and for each Yedj N4y,
TXXT(UI’ Y’ U2)=T(U1, Y, Ui)—T(Ul; T(X, X’ Y); Ui)

which together with implies dim (AyNA4j,NA4s)=4. Hence
dim (AxNAj NA%)= 4(m-—-1)+2 4m 2. Also XA, for i+1 so from (v) of
_ A‘f\AUICA" We now have dim Ax—Sm-—4 and dim (4°N\A%)=
4m—2. Hence dim (AV™NA%)=4m—2 from which AYm=AXPAxNAY™) as
required.

In order to obtain a regular basis for 4 we first assume n>5 and choose a
unit vector e;,&AY™NAY,. Then AjNAy,NA;,CD and has dimension 4.
Choose unit vectors eis, en& Ay NAy,NA}L,, with e, orthogonal to {eis, Jeis};
thus e, e4},. Now if 3<i<m then Aj NA,NAL ,CAL .. For let XedpN
Ay,NAL, be a unit vector. Then XeD and if Xe43,, we have T(X, ewein)
#0; but T(X, e, e1,)E A7t=1{0} and it follows that Xe 4} , as required. Then
define ey, ¢u, and e; 5, EA5,NAS NALy,, € 2e=TU,s, 1241, UNE A}, as before.
Finally, by considering T(e:s €:n, ¢1) We see that e, &4;; and the previous
proof can now be applied to obtain the sets B, B as above. Next define e;n=
T(ess, €15, €1z). Clearly e;,eAy"NA}, and is ‘a unit vector orthogonal to
{€in, Jein}. Define eny=—ein, €re=—6sn, €nn=0, e1a=T(eus, €12, €zs) aNd ens=
T(e1n, €12, €21) for 3<i<2m. We now show that relations R, R;, R, above ex-
tend to include vectors e;; where i=n or j=n. As the method of proof is
unchanged we give only brief details. Clearly the set A={e;;:1<i< j<n} is
orthonormal, and by considering the inner product {e:», es:> We see that e,;=
—ei,. Define A={ey:1<i<j<n} as before. Now (v) of Lemma 2.8 shows
that if i, j, k, n are distinct then T(ey;, exn, X)=T(esn, €1 X)—-O for all Xe 4.
Thus R, is established for ANA. Next we note that e;,< 4}, hence it follows
from Lemma 2.7 that R, extends to all e;;& ANA. Finally for R, the relation
T(ear, €an, €pn)=¢eps is easily proved when 1<a, B<2 and a#B. From this it
follows that T(ear, €sr, €an)=€an since T(ear, €, €ga)Espan {ean, Jean} and
{T(ear,eprspn), €an>=1. Similarly, we obtain T'(e;;, Cass Can)=@in, T(Cay, €15, Cin)
=e,, and finally T(e:;, ex;, ern)=e:n for all vectors AUA where i#k and i, 5, k
<n. Also, by taking inner products, as before, we have T(eij, €in, exn)=ess
which proves the extension of R; to AUA. The remaining case corresponding
to n=3 follows trivially by choosing unit vectors e, essE Ay, With e,y ortho-
gonal to {e:s, Jeis}. Next, we note that in all cases Je;; and e¢;n are orthogonal,
for

1
{Jeij e;m>=—§<T(e“, Jeis ei)y €im>
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1
:—E<T(eij, Cim, eij)’ ]eii>
=0.

Thus A is the required extension of B so we have proved that if dim A=
n=3 then A contains a regular basis, we write this as CUJC={ey,, Je:;: 1<i<
7<n} for all n>3.

To obtain the required isomorphism we defined an inner product <, >’ on
S(n) by <X, X)'=1/2tr XX and choose an orthonormal basis C'={ej, tejr:
1<j<k<n} for S(n) where ejs=(a,e)=(0p;0,6—08,;0,:). Also define ef;=—e)s
for j<k. Let ¢: A—S(n) be the isomorphism defined by oles)=ejr, ¢(Jess)
=iejs, thus ¢ preserve inner products and is a complex linear isomorphism with
respect to the complex structures J and 7 on 4 and S(n) respectively. Define
the tensor 7" of type (1, 3) on S(n) by T'(X,Y, Z)=XY:Z+ZY!X. Then, as
in §1, P, B, P, P, are satisfied by T’. Also the relations R,, R., R, are
satisfied by 7’ and the basis C’UC’ where 5'={e;,: 1<j<k<n}. It is also
clear from these relations that ¢T(U, V, W)=T"(U’, V', W’) for any basis vectors
U, V, WeC with images U’, V', W C’. This completes the proof of Proposi-
tion 2.1.

3. Proof of main theorem

We first prove two lemmas for which we use the notation and the regular
basis C\UJC from the proof of [Proposition 2.1.

Lemma 3.1. Let R be a tensor of type (1, 3) on A with the symmetry pro-
perties of a Riemannian curvature temsor and satisfying {(R(JX, INZ, Wy=
(R(X, Y)Z, W) on A, where we use the notation from [3] for R. Suppose for
each XD and YA orthogonal to X, <R(X, JX)X, JY>=0. Then the holo-
morphic sectional curvature determined by R is constant on D\{0}.

Proof. Write K(X) for the holomorphic sectional curvature for any non-
zero vector XeA4. Let 2CD be a J-invariant subspace of 4 of dimension
>3 and let X, Y be orthogonal unit vectors in 2. Then, by hypothesis,
(R(X+Y), (X+Y)X+Y), (X—Y)»=0 and it follows easily that K(X)=K(Y).
Next, if X, Y are arbitrary unit vectors in 2 choose a unit vector Z=Q ortho-
gonal to X and Y to obtain K(X)=K(Z)=K(Y). Thus K is constant on 02\{0}.
Next, from Lemma 1.1 and the isomorphism ¢: 4—S(n),

D={_ > (a;+b;])cs+dr])ejs: a; by, ¢y, dreR).

1<j<k<n
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Hence if X=lsj<2“n (aj+b;J)cr+di])e; then Xespan{X;, JX;: j=1, -+, n—1}
(?‘D where ijjg_.;n(ck—{-dk])e,, ) K(X)=K(§2(C»+dk])eu)- Again,
g}l(c;.+dk])e,,,espan{e1k, Jeir: k=2, ---, n}CD so K(X)=K(e,) which proves
K is constant on D\{0}.

Lemma 3.2. With R defined as in the previous lemma, suppose R(X, JX)X
=0 and R(X, Y)T=0 for all X,Y<D. Then R=0 on A.

Proof. We first show that if 2 is any J-invariant subspace of A contained
in D then

@3.1) R(Q, H2=0,
Thus, by linearising the equation R(X, JX)X=0 we obtain
R(X, JX)Y +2R(X, JY)X=0

for all X, Y=Q. This together with the Bianchi identity and the J-invariance
of Q implies R(X,Y)X=0. On replacing X by X+Z in this equation,
follows. In particular, for each j=1, ---, n we write 2,=span{e,;, Je;;:i=1, -, n}.
Clearly £, is a J-invariant subspace of 4 contained in D so

(3.2) : R(Q,, 2)82,=0.
Next, the condition R(X, Y)T=0 implies that for any U€D and X, Yed,
R(X,Y)YU=R(X, Y)T(U, U, U)
=2T(R(X, Y)U, U, U)+TWU, R(X, Y)U, U)

so from Lemma 2.7. R(X, Y) U< Ay;. Hence, as a consequence of R,, R., R,

(3.3) R(X, V)e,c+2,.
Then it follows from (3.2) and (3.3) that on cu’l,
3.4) R(eis, err)ei;=R(eq;, Jeri)ess

=R(eq;, er)enn=0.

We next prove that each R(£;, 4)2;=0 by first noting that the vectors e;+
e:x, €ps+epx generate a subspace of A contained in D. Hence from (3.1) and
(3.4)

0=R(es;+eir, epstepr)ejteir)
=R(eu; eps)en+R(eir, epr)e;.

From (3.2), (3.3) and (3.4) R(e”, e,,j)eu,EA.f\A} and R(e”., e,,.)e;,EA;/\A,}
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where A}, A} denote orthogonal complements of A, A,. Hence
(3.5) Re;s, epj)en=0.
By applying the same proof to J(e;;+eix) and e,;+e,, we obtain
3.6) : R(ey;, Jeps)ern=0.
Again, if 7, j, p, k are distinct then implies that for all X, Y e,
CR(ess, epr) X, Y>=CR(Y, X)eps, eis)
=0.
Thus for 7, 7, p, k distinct,
3.7) . . R(ey, eps)=0
and similarly,
3.8) Riess» Jea)=0.

Then as a consequence of [3.2), [3.5), [3.6), [3.7) and [3.8) each R(2,, 4)2,=0.
Also, the Bianchi identity shows that R(2,, 2:)4=0, and this equation together
with and proves that R(X, Y)Z=0 forall X,Y, Z=C. Since C is a
basis then R=0 on A as required.

Proof of [Theorem 1.4. Under the conditions of the theorem, suppose the
unit vector Nn &M, satisfies T(Nm, Ny, Nn)=2N,, and let N be the unit tangent
field to geodesic 7 through m with initial tangent vector N,. Then T(N, N, N)
=2N along 7 and, from P;, AJN=f]N along 7\{m}. From this and it
follows immediately that if Y is any parallel vector field along 7 orthogonal to
N then g(R(N, JN)N, JY)=0 on y~{m} and hence at m by continuity.

Now consider M, as the vector space A in Proposition 2.1. The tensor T
at m satisfies P,—P, and, as just shown, for each XD and Y orthogonal to
X, g(R(X, JX)X, JY)=0. Hence, from the holomorphic sectional
curvature on D\{0} is constant, say ¢, and then for all unit vectors XD,
R(X, JX)X=—cJX. Next it is clear from [Proposition 2.1 and equatlon
that a second curvature tensor R’ is defined on M, by

(3.9 R(X,Y)Z=T(X,Y, Z)-T({Y, X, Z)

and R’ also satisfies the conditions of with respect to the given
complex structure J on M restricted to M,. Moreover, from R'(X, JIX)X
=—2JX for any unit vector XD,

The tensor R—(c/2)R’ then satisfies the conditions of and
where we note that R(X, Y)T=0 since T is parallel on M and
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R'(X, Y)T=0 is the corresponding property on SO(2n)/U(n). Thus from Lemmal
3.2,

(3.10) R= % R’

on M,. Also the Ricci tensor S’ corresponding to R’ and the metric g at m
is a multiple of g as can be seen either by direct computation or by noting
that SO(2n)/U(n) is an Einstein space. Since m is arbitrary then, defining R’

on M by [3.9), we see that on M
(3.11) R=FR'’

for some function F. Similarly, S’ extends to a parallel tensor field on M which
is a multiple of g. Hence, from (M, g) is an Einstein space and F=c/2
on M. Then YR=FVYR'=0 so (M, g) is a symmetric space where we assume,
as in the theorem, that (M, g) is complete, simply connected and non-flat, that
is ¢+#0.

It remains only to obtain for a metric 7 on M homothetic to g. Define
g=lc/2|g and T(X, Y, Z)=|c/2|T(X,Y, Z) on M. Then P,—P; are satisfied
by 2 and T. Thus the conditions of the theorem still apply and since the cur-
vature tensor corresponding to Z is still R, we have
(3.12) R(X, Y)Z=l—§T(T(X, Y, 2)-T, X, Z))
for all vector fields X,Y, Z on M. Now assume ¢>0. Then it is immediate
from [Proposition 2.1 and equations [(I.1), (1.2) and [(3.12) that the tangent spaces
to SO(2n)/U(n) and M are related by a linear isomorphism which preserves
inner products and the curvature tensors. Hence SO(2n)/U(n) and M are iso-
metric since each is complete and simply connected [3]. When ¢<0 we have
the corresponding result for the non-compact dual and the proof is complete.
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