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\S 0. Introduction.

Let $M_{a}$ be a pseudo-Riemannian submanifold of index $\alpha$ in a pseudo-
Riemannian manifold $\tilde{M}_{\beta}$ of index $\beta$ . We denote the metric by $\langle, \rangle$ and the
covariant differentiation of $M_{a}$ by $\nabla$ . In our previous papers [1] and [6], we
defined circles and helices in pseudo-Riemannian manifolds and studied the
submanifolds which satisfy the following conditions:
(A) every circle in $M_{a}$ with \langle X, $ X\rangle$

$=\epsilon_{0}$ and $\langle\nabla_{X}X, \nabla_{X}X\rangle=\epsilon_{1}k^{2}$ is a circle in
$\tilde{M}_{\beta}$ ( $\epsilon_{0}=+1$ or $-1,$ $\epsilon_{1}=+1,$ $-1$ or $0,$ $-2\alpha+2\leqq\epsilon_{0}+\epsilon_{1}\leqq 2n-2\alpha-2$),

(B) every geodesic in $M_{a}$ with \langle X, $ X\rangle$
$=\epsilon_{0}$ is a circle in $\tilde{M}_{\beta}(\epsilon_{0}=+1$ or $-1$ ,

$-\alpha\leqq\epsilon_{0}\leqq n-\alpha)$ ,
(C) every helix in $M_{\alpha}$ with \langle X, $ X\rangle$

$=\epsilon_{0},$ $\langle\nabla_{X}X, \nabla_{X}X\rangle=\epsilon_{1}k^{2}$ and $\langle\nabla_{X}X, \nabla_{X}X\rangle$

$=\epsilon_{0}k^{4}+\epsilon_{2}k^{2}l^{2}$ is a helix in $\tilde{M}_{\beta}(\epsilon_{0},$ $\epsilon_{1}=+1$ or $-1$ , $\epsilon_{g}=+1$ , $-1$ or $0$,
$-2\alpha+3\leqq\epsilon_{0}+\epsilon_{1}+\epsilon_{2}\leqq 2n-2\alpha-3)$ ,

where $k$ and $l$ are positive constants, $X$ is the unit tangent vector field of the
curve and $\nabla_{X}$ is the covariant derivative along the curve. For the case of
Riemannian or Lorentzian submanifolds, these conditions have been treated in
many papers (see [3], [4], [7] and [9]).

In this paper, we study the submanifolds which satisfy the following con-
ditions:
(D) every circle in $M_{a}$ with \langle X, $ X\rangle$

$=\epsilon_{0}$ and $\langle\nabla_{X}X, \nabla_{X}X\rangle=\epsilon_{1}k^{g}$ is a helix in
$\tilde{M}_{\beta}$ ( $\epsilon_{0}=+1$ or $-1,$ $\epsilon_{1}=+1,$ $-1$ or $0,$ $-2a+3\leqq\epsilon_{0}\leqq 2n-2a-3$),

(E) every geodesic in $M_{a}$ with \langle X, $ X\rangle$
$=\epsilon_{0}$ is a helix in $\tilde{M}_{\beta}(\epsilon_{0}=+1$ or $-1$ ,

$-\alpha\leqq\epsilon_{0}\leqq n-a)$ .
Nakagawa [5] has investigated isotropic Riemannian submanifolds which satisfy
(E). Instead, we deal with pseudo-Riemannian hypersurfaces which satisfy (E).

The author would like to express his hearty thanks to Professor S. Yama-
guchi for his constant ecouragement and various advice. He also wish to
thank Professor N. Abe for his helpful suggestions.
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\S 1. Prelimiuaries.

Let $V_{\alpha}$ be an n-dimensional real vector space equipped with an inner
product $\langle, \rangle$ of index $\alpha$ . A nonzero vector $x$ of $V_{\alpha}$ is said to be null if
$\langle x, x\rangle=0$ and unit if $\langle x, x\rangle=+1$ or $-1$ . Our main tools in this paper are the
following lemmas of linear algebra [1]:

Lemma 1.1. For any r-linear maPping $T$ on $V_{a}$ to a real vector space $W$ and
$\epsilon_{0}=+1$ or $-1(-\alpha\leqq\epsilon_{0}\leqq n-\alpha)$ , the following conditions are equivalent;

(a) $T(x, \cdots , x)=0$ for any $x\in V_{\alpha}$ such that $\langle x, x\rangle=\epsilon_{0}$ ,

(b) $T(x, \cdots , x)=0$ for any $x\in V_{a}$ .

Lemma 1.2. For any 2r-linear maPping $T$ on $V_{a}$ to a real vector space $W$

and $\epsilon_{0}=+1$ or $-1,$ $\epsilon_{1}=+1,$ $-1$ or $0(2-2\alpha\leqq\epsilon_{0}+\epsilon_{1}\leqq 2n-2\alpha-2)$ , the following

conditions are equivalent:

(a) $\Sigma_{\ell=1}^{2r}T(x, \cdots , x, u\ell’ x, \cdots , x)=0$ for any orthogonal vectors $x,$ $u\in V_{a}$ such

that $\langle x, x\rangle=\epsilon_{0}$ and $\langle u, u\rangle=\epsilon_{1}$ ,

(b) there exists $w\in W$ such that $T(x, \cdots , x)=\langle x, x\rangle^{r}w$ for any $x\in V_{a}$ .

Next, we recall the general theory of pseudo-Riemannian submanifold to fix

our notation. Let $M_{a}$ be an n-dimensional pseudo-Riemannian manifold of index
$\alpha(0\leqq\alpha\leqq n)$ isometrically immersed into an m-dimensional pseudo-Riemannian

manifold $\tilde{M}_{\beta}$ of index $\beta$ . Then $M_{\alpha}$ is called a pseudo-Riemannian submanifold of
$\tilde{M}_{\beta}$ . We denote the metrics of $M_{a}$ and $\tilde{M}_{\beta}$ by the symbol $\langle, \rangle$ and the covariant
differentiation of $M_{\alpha}$ (resp. $\tilde{M}_{\beta}$ ) by $\nabla$ (resp. $\tilde{\nabla}$). Gauss’ formula is

$\forall_{X}Y=\nabla_{X}Y+B(X, Y)$ ,

where $X$ and $Y$ are tangent vector fields of $M_{\alpha}$ and $B$ is the second fundamental
form of $M_{\alpha}$ . Weingarten’s formula is

$\tilde{\nabla}_{X}\xi=-A_{\xi}X+\nabla_{X}^{\perp}\xi$ ,

where $X$ (resp. $\xi$) is a tangent (resp. normal) vector field of $M_{a},$ $\nabla^{\perp}$ is the

covariant differentiation with respect to the induced connection in the normal

bundle $N(M_{\alpha})$ and $A_{\xi}$ is the shape operator of $M_{a}$ . We have the following

relation:
$\langle A_{\xi}X, Y\rangle=\langle B(X, Y), \xi\rangle$ .

For the second fundamental form and the shape operator, we define their

covariant derivatives by

$\nabla B(X, Y, Z)=\nabla_{Z}^{\perp}(B(X, Y))-B(\nabla_{Z}X, Y)-B(X, \nabla_{z}Y)$ ,
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$\overline{\nabla}^{2}B(X, Y, Z, W)=\nabla_{W}^{\perp}(FB(X, Y, Z))-\overline{\nabla}B(\nabla_{W}X, Y, Z)$

$-\nabla B(X, \nabla_{W}Y, Z)-\nabla B(X, Y, \nabla_{W}Z)$ ,

$(\nabla_{Y}A)_{\xi}X=\nabla_{Y}(A_{\xi}X)-A_{\nabla_{Y}^{1}\xi}X-A_{\xi}\nabla_{Y}X$ ,

where $X,$ $Y,$ $Z,$ $W$ are tangent vector fields of $M_{a}$ and $\xi$ is a normal vector
field of $M_{\alpha}$ . The mean curvature vector field $H$ of $M_{\alpha}$ is defined by

$H:=(1/n)\Sigma_{\ell=1}^{n}\langle e_{i}, e_{i}\rangle B(e_{\ell}, e_{i})$ ,

where $\{e_{1}, \cdots , e_{n}\}$ is an orthonormal frame of $M_{\alpha}$ . $H$ is said to be parallel
when $\nabla^{\perp}H=0$ holds. If the second fundamental form $B$ satisfies

$B(X, Y)=\langle X, Y\rangle H$

for any tangent vector fields $X,$ $Y$ of $M_{\alpha}$ , then $M_{a}$ is said to be totally umbilic.
A totally umbilical submanifold with the parallel mean curvature vector field is
called an extrinsic sphere. If the second fundamental form vanishes identically
on $M_{\alpha}$ , then $M_{a}$ is said to be totally geodesic.

By using Lemma 1.2, we proved the following lemma in [1]:

Lemma 1.3. If $B(n, n)=0$ holds for any null vector $n$ of $M_{a}(1\leqq\alpha\leqq n-1)$ ,
then $M_{\alpha}$ is totally umbilic.

\S 2. Curves in a pseudo-Riemannian manifold.

Let $c=c(t)$ be a regular curve in a pseudo-Riemannian manifold $M_{\alpha}$ . We
denote the tangent vector field $c^{\prime}(t)$ by the letter $X$. When \langle X, $ X\rangle$ $=+1$ or $-1$ ,
$c$ is called a unit speed curve. In this paper, a unit speed curve $c$ in $M_{\alpha}$ is said
to be a helix if and only if there exist constants $\alpha,$ $\beta$ and vector fields $U,$ $V$ of
constant length along $c$ such that $X,$ $U,$ $V$ are orthogonal and the following
equations hold:

$\nabla_{X}X=U$ , $\nabla_{X}U=\alpha X+V$ , $\nabla_{X}V=\beta U$ ,

where $\nabla_{X}$ is the covariant derivative along $c$ . Especially, if $V=0$ in this
equation, the curve is called a circle. Moreover, if $U=V=0$ in this equation,
the curve is a geodesic. We have the following lemma [6]:

Lemma 2.1. A unit speed curve $c$ in $M_{\alpha}$ is a helix if and only if there exists
a constant $\lambda$ such that

$\nabla_{X}\nabla_{X}\nabla_{X}X=\lambda\nabla_{X}X$ ,
where $X;=c^{\prime}(t)$ .

Let $M_{\alpha}$ be a pseudo-Riemannian submanifold in a pseudo-Riemannian mani-
fold $\tilde{M}_{\beta}$ . By Gauss’ formula we have
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(2.1) $\tilde{\nabla}_{X}X=\nabla_{X}X+B(X, X)$ .
Differentiating with respect to $X$ and using Gauss’ formula and Weingarten’s
formula, we get

$\nabla_{X}\tilde{\nabla}_{X}X=\nabla_{X}\nabla_{X}X-A_{B(X.X)}X+3B(X, \nabla_{X}X)+\nabla B(X, X, X)$ ,

from which we obtain

(2.2) $\tilde{\nabla}_{X}\S_{X}\tilde{\nabla}_{X}X=\nabla_{X}\nabla_{X}\nabla_{X}X-2A_{\overline{\nabla}B(X.X.X)}X-5A_{B(X.\nabla_{X}X)}X$

$-(\nabla_{X}A)_{B(X.X)}X-A_{B(X.X)}\nabla_{X}X$

$-B(X, A_{B(X.X)}X)+4B(X, \nabla_{X}\nabla_{X}X)+3B(\nabla_{X}X, \nabla_{X}X)$

$+5\nabla B(X, \nabla_{X}X, X)+\nabla B(X, X, \nabla_{X}X)+\nabla^{2}B(X, X, X, X)$ .

\S 3. The first main theorem.

Now we state our result concerning the condition (D).

Theorem 3.1. Let $M_{\alpha}$ be a Pseudo-Riemannian submanifold in a Pseudo-
Riemannian manifold $\tilde{M}_{\beta}$ and $\epsilon_{0}=+1$ or $-1(-2\alpha+3\leqq\epsilon_{0}\leqq 2n-2\alpha-3),$ $\epsilon_{1}=+1$ ,
$-1$ or $0$ . For any positive constant $k$ , the following conditions are equivalent:

(a) every circle in $M_{\alpha}$ with \langle X, $ X\rangle$
$=\epsilon_{0}$ and $\langle\nabla_{X}X, \nabla_{X}X\rangle=\epsilon_{1}k^{2}$ is a helix in $\tilde{M}_{\beta}$ ,

(b) $M_{\alpha}$ is an extrinsic sphere.

Proof. Suppose that (a) holds. Let $x$ and $u$ be any mutually orthogonal
nonzero vectors at $P$ such that

$\langle x, x\rangle=\epsilon_{0}$ and $\langle u, u\rangle=\epsilon_{1}$ .
There exists a circle $c$ of $M_{a}$ such that

$c(O)=P$ , $X(p)=x$ and $(\nabla_{X}X)(p)=ku$ ,

where $X:=c^{\prime}(t)$ . By the definition, there exists a constant $\alpha$ such that

$\nabla_{X}\nabla_{X}X=\alpha X$ .
Since $\langle\nabla_{X}X, X\rangle=0,$ $\alpha$ is calculated as

$\alpha=\epsilon_{0}\langle\alpha X, X\rangle(p)=\epsilon_{0}\langle\nabla_{X}\nabla_{X}X, X\rangle(p)$

$=-\epsilon_{0}\langle\nabla_{X}X, \nabla_{X}X\rangle(p)=-\epsilon_{0}\epsilon_{1}k^{2}$ ,

which means that
$\nabla_{X}\nabla_{X}X=-\epsilon_{0}\epsilon_{1}k^{2}X$ .

Substituting this into (2.2), we. have
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(3.1) $\tilde{\nabla}_{X}\tilde{\nabla}_{X}\tilde{\nabla}_{X}X=-\text{\’{e}}_{0}\epsilon_{1}k^{2}\nabla_{X}X-2A_{\overline{\nabla}B(X.X.X)}X-5A_{B(X.\nabla_{X}X)}X$

$-(\nabla_{X}A)_{B(X.X)}X-A_{B(X.X)}\nabla_{X}X$

$-B(X, A_{B(X.X)}X)-4\epsilon_{0}\epsilon_{1}k^{2}B(X, X)+3B(\nabla_{X}X, \nabla_{X}X)$

$+5\nabla B(X, \nabla_{X}X, X)+\nabla B(X, X, \nabla_{X}X)+\nabla^{2}B(X, X, X, X)$ .

On the other hand, since $c$ is a helix in $\tilde{M}_{\beta}$ by the assumption, there exists a
constant $\tilde{\lambda}$ such that

$\tilde{\nabla}_{X}\nabla_{X}\tilde{\nabla}_{X}X=\lambda\nabla_{X}X$ .
The constant $\tilde{\lambda}$ depends on the initial vectors $x,$ $u$ . So we rewrite the above
equation as

$\tilde{\nabla}_{X}\tilde{\nabla}_{X}\tilde{\nabla}_{X}X=\tilde{\lambda}(x, u)\forall_{X}X$ .
If we substitute (2.1) and (3.1) into this equation and take the tangential part
and the normal part at $P$ respectively, then we obtain

(3.2) $\tilde{\lambda}(x, u)ku=-\epsilon_{0}\epsilon_{1}k^{\theta}u-2A_{\overline{\nabla}B(x.x.x)}x-5kA_{B(x.u)}x$

$-(\nabla_{x}A)_{B(x.x)}x-kA_{B(x.x)}u$ ,

(3.3) $\tilde{\lambda}(x, u)B(x, x)=-B(x, A_{B(x.x)}x)-4\epsilon_{0}\epsilon_{1}k^{2}B(x, x)$

$+3k^{2}B(u, u)+5k\nabla B(x, u, x)+k\nabla B(x, x, u)$

$+\nabla^{2}B(x, x, x, x)$ .
Adding (3.2) to the equation obtained by changing $u$ into $-u$ in (3.2), we have

(3.4) $\{-\tilde{\lambda}(x, -u)+\tilde{\lambda}(x, u)\}ku=-4A_{\overline{\nabla}B(x.x.x)}x-2(\nabla_{x}A)_{B(x,x)}x$ ,

By subtracting (3.2) from the equation obtained by changing $u$ into $-u$ in (3.2),

we get

(3.5) $(-\tilde{\lambda}(x, -u)-\tilde{\lambda}(x, u)$ } $u=2\epsilon_{0}\epsilon_{1}k^{2}u+10A_{B(x.u)}x+2A_{B(x.x)}u$ .
Next, subtracting (3.3) from the equation obtained by changing $u$ into $-u$ in
(3.3), we have

(3.6) $\{\tilde{\lambda}(x, -u)-\tilde{\lambda}(x, u)\}B(x, x)=-10k\nabla B(x, u, x)-2k\nabla B(x, x, u)$ ,

By adding (3.3) to the equation obtained by changing $u$ into $-u$ in (3.3), we get

(3.7) $\{\tilde{\lambda}(x, -u)+\tilde{\lambda}(x, u)\}B(x, x)=-2B(x, A_{B(x.x)}x)-8\epsilon_{0}\epsilon_{1}k^{t}B(x, x)$

$+6k^{2}B(u, u)+2\nabla^{2}B(x, x, x, x)$ .
Let $w$ be any tangent vector of $M_{\alpha}$ at $p$ which is linearly independent of $u$ and
satisfies

$\langle w, w\rangle=\epsilon_{1}$ and $\langle x, w\rangle=0$ .
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Subtracting (3.4) from the equation obtained by changing $u$ into $w$ in (3.4), we
have

$\{-\tilde{\lambda}(x, -w)+\tilde{\lambda}(x, w)\}kw-\{-\tilde{\lambda}(x, -u)+\tilde{\lambda}(x, u)\}ku=0$ ,

from which we have
$\tilde{\lambda}(x, -u)=\overline{\lambda}(x, u)$ .

Thus (3.5), (3.6) and (3.7) are reduced to

(3.8) $\tilde{\lambda}(x, u)u=-\epsilon_{0}\epsilon_{1}k^{2}u-5A_{B(x.u)}x-A_{B(x.x)}u$ ,

(3.9) $5\nabla B(x, u, x)+\nabla B(x, x, u)=0$ ,

(3.10) $\tilde{\lambda}(x, u)B(x, x)=-B(x, A_{B(x.x)}x)-4\epsilon_{0}\epsilon_{1}k^{2}B(x, x)$

$+3k^{2}B(u, u)+\nabla^{2}B(x, x, x, x)$ .

Here, we divide the situation into two cases where $\epsilon_{1}=0$ (Case 1) and
$\epsilon_{1}=+1$ or $-1$ (Case 2).

Case 1. Note that (3.8) and (3.10) hold for any mutually orthogonal nonzero
vectors $x,$ $u\in T_{p}(M_{\alpha})$ with $\langle x, x\rangle=\epsilon_{0}$ and $\langle u, u\rangle=0$ . Subtracting (3.8) from the
equation obtained by changing $u$ into $2u$ in (3.8) and dividing with 2, we can
see that

$\tilde{\lambda}(x, 2u)-\tilde{\lambda}(x, u)=0$ .
On the other hand, if we substract (3.10) from the equation obtained by changing
$u$ into $2u$ in (3.10), then we get

$\{\tilde{\lambda}(x, 2u)-\tilde{\lambda}(x, u)\}B(x, x)=9k^{2}B(u, u)$ .
Consequently, we find that $B(u, u)=0$ . This equation holds for any null vector
$u\in T_{p}(M_{\alpha})$ because there exists $x\in T_{p}(M_{\alpha})$ such that $\langle x, x\rangle=\epsilon_{0}$ and $\langle x, u\rangle=0$ .

Case 2. Taking the inner product with $u$ in (3.8), we have

(3.11) $\tilde{\lambda}(x, u)=-\epsilon_{0}\epsilon_{1}k^{2}-\epsilon_{1}(5\langle B(x, u), B(x, u)\rangle+\langle B(x, x), B(u, u)\rangle)$ ,

which, together with (3.8), yields that

$(5\langle B(x, u), B(x, u)\rangle+\langle B(x, x), B(u, u)\rangle)u$

$=\langle u, u\rangle(5A_{B(x.u)}x+A_{B(x.x)}u)$ .
By Lemma 1.1, this equation holds for any $u\in T_{p}(M_{a})$ which is orthogonal to $x$ .
Especially, for any null vector $n\in T_{p}(M_{\alpha})$ such that $\langle x, n\rangle=0$ , we have

(3.12) $5\langle B(x, n), B(x, n)\rangle+\langle B(x, x), B(n, n)\rangle=0$ .
On the other hand, by making use of (3.10) and (3.11), we get
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$\epsilon_{1}(5\langle B(x, u), B(x, u)\rangle+\langle B(x, x), B(u, u)\rangle)B(x, x)$

$-\epsilon_{1}\langle u, u\rangle B(x, A_{B(x.x)}x)+3k^{2}B(u, u)$

$-3\epsilon_{0}\langle u, u\rangle k^{2}B(x, x)+\epsilon_{1}\langle u, u\rangle\nabla^{2}B(x, x, x, x)=0$ .

Since this equation also holds for any $u\in T_{p}(M_{\alpha})$ such that $\langle x, u\rangle=0$ by means
of Lemma 1.1, we have

$\epsilon_{1}(5\langle B(x, n), B(x, n)\rangle+\langle B(x, x), B(n, n)\rangle)B(x, x)+3kB(n, n)=0$ ,

for any null vector $n\in T_{p}(M_{\alpha})$ such that $\langle x, u\rangle=0$ , which, together with (3.12),

means that $B(n, n)=0$ . This equation holds for any null vector $n\in T_{p}(M_{\alpha})$

because there exists $x\in T_{p}(M_{a})$ such that $\langle x, x\rangle=\epsilon_{0}$ and $\langle x, n\rangle=0$ . Consequently,
we get $B(n, n)=0$ for both cases. By Lemma 1.3, we see that $M_{a}$ is totally

umbilic. So we have $B(x, y)=\langle x, y\rangle H$ for any $x,$ $y\in T_{p}(M_{a})$ , from which we
get $\nabla B(x, y, z)=\langle x, y\rangle\nabla_{l}^{\perp}H$ for any $x,$ $y,$ $z\in T_{p}(M_{\alpha})$ , which implies that (3.9) is
reduced to $\nabla_{u}^{\perp}H=0$ . Note that this equation holds for any $u\in T_{p}(M_{\alpha})$ such that
$\langle u, u\rangle=\epsilon_{1}$ . Let $y\in T_{p}(M_{\alpha})$ be a vector which is orthogonal to $x$ and satisfies
$\langle y, y\rangle=\epsilon_{1}-\epsilon_{0}$ . Since $\langle x+y, x+y\rangle=\langle x-y, x-y\rangle=\epsilon_{1}$ , we have

$\nabla_{x+}^{\perp}{}_{y}H=\nabla_{x-}^{\perp}{}_{y}H=0$ ,

from which we get $\nabla_{x}^{\perp}H=0$ . Applying Lemma 1.1 to this equation, we have
$\nabla^{\perp}H=0$ and see that $M_{\alpha}$ is an extrinsic sphere.

Conversely, if $M_{\alpha}$ is an extrinsic sphere, every circle in $M_{a}$ with \langle X, $ X\rangle$
$=\epsilon_{0}$

and $\langle\nabla_{X}X, \nabla_{X}X\rangle=\epsilon_{1}k^{2}$ is a circle in $\tilde{M}_{\beta}$ (see [1]). Since a circle is a kind of a
helix, we can say that (b) implies (a). Q. E. D.

\S 4. The second main theorem.

We prove the following theorem concerning the condition (E):

Theorem 4.1. Let $M_{\alpha}$ be a pseudo-Rjemannian hypersurface in a pseudo-
Riemannian manifold $\tilde{M}_{\beta}$ and $\epsilon_{0}=+1$ or $-1(-\alpha\leqq\epsilon_{0}\leqq n-\alpha)$ . Then the following
conditions are equivalent:

(a) every geodesic in $M_{a}$ with \langle X, $ X\rangle$
$=\epsilon_{0}$ is a helix in $\tilde{M}_{\beta}$ ,

(b) $\nabla B=0$ .

Proof. For a geodesic, (2.1) and (2.2) are reduced to

(4.1) $\S_{X}X=B(X, X)$ ,

(4.2) $\tilde{\nabla}_{X}\tilde{\nabla}_{X}\tilde{\nabla}_{X}X=-2A_{\overline{\nabla}B(X.X.X)}X-(\nabla_{X}A)_{B(X.X)}X$

$-B(X, A_{B(X.X)}X)+\nabla^{t}B(X, X, X, X)$



144 Y. NAKANISHI

because $\nabla_{X}X=0$ . Assume that (a) holds. Let $x\in T_{p}(M_{\alpha})$ be any vector with
$\langle x, x\rangle=\epsilon_{0}$ . There exists a geodesic $c$ of $M_{\alpha}$ such that

$c(O)=p$ and $X(p)=x$ ,

where $X:=c^{\prime}(t)$ . Since $c$ is a helix in $\tilde{M}_{\beta}$ by the assumption, there exists a
constant $\tilde{\lambda}$ such that

$\theta_{X}\tilde{\nabla}_{X}\theta_{X}X=\tilde{\lambda}\tilde{\nabla}_{X}X$ .

Substituting (4.1) and (4.2) into this equation and taking the tangential part, we
obtain

(4.3) $2A_{\overline{\nabla}(X.X.X)}X+(\nabla_{X}A)_{B(X,X)}X=0$ .
If we take the inner product with $X$, then we have

(4.4) $\langle 5B(X, X, X), B(X, X)\rangle=0$ ,

from which we find
$X(\langle B(X, X), B(X, X)\rangle)=0$ ,

which means that $\langle B(X, X), B(X, X)\rangle$ is constant along $c$ . If $\langle B(X, X), B(X, X)\rangle$

is nonzero, $B(X, X)$ is nonzero at any point of $c$ , so that (4.4) implies
$5B(X, X, X)=0$ , because $M_{\alpha}$ is a hypersurface. When $\langle B(X, X), B(X, X)\rangle=0$ ,

we have $B(X, X)=0$ . Thus we get $\nabla B(X, X, X)=0$ for both cases. Taking

the value at $p$ , we have

(4.5) $\nabla B(x, x, x)=0$ .
Let $y$ be any vector of $T_{p}(M_{\alpha})$ . Applying Lemma 1.1 to the above equation,
we get

$\nabla B(y, y, y)=0$ .
Changing $y$ into $x+y$ , we have

$0=\nabla B(x+y, x+y, x+y)$

$=\nabla B(x, x, y)+2\nabla B(x, y, x)+\nabla B(y, y, x)+2\nabla B(y, x, y)$ ,

Adding this equation to the equation obtained by changing $y$ into $-y$ in this
equation, we get

(4.6) $\nabla B(y, y, x)+2\nabla B(y, x, y)=0$ .
On the other hand, we have $(\nabla_{x}A)_{B(x.x)}x=0$ by (4.3) and (4.5). Making use of
Lemma 1.1, we obtain $(\nabla_{y}A)_{B(y.y)}y=0$ . Taking the inner product with $x$ , we
have $\langle\nabla B(y, x, y), B(y, y)\rangle=0$ . Combining this equation with (4.6), we get
$\langle\nabla B(y, y, x), B(y, y)\rangle=0$ . Now we extend the vector $y$ to the parallel local
vector field $Y$ along $c$ . Since the above equation holds at any point of $M_{\alpha}$ , we
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have

(4.7) $\langle\nabla B(Y, Y, X), B(Y, Y)\rangle=0$ ,

from which we find
$X(\langle B(Y, Y), B(Y, Y)\rangle)=0$ ,

which means that $\langle B(Y, Y), B(Y, Y)\rangle$ is constant along $c$ . If $\langle B(Y, Y), B(Y, Y)\rangle$

is nonzero, $B(Y, Y)$ is nonzero at any point of $c$ , so that (4.7) implies
$\nabla B(Y, Y, X)=0$ , because $M_{\alpha}$ is a hypersurface. When $\langle B(Y, Y), B(Y, Y)\rangle=0$ ,

we have $B(Y, Y)=0$ . Thus we get $\nabla B(Y, Y, X)=0$ for both cases. Taking
the values at $p$ , we get $\nabla B(y, y, x)=0$ . Let $v,$ $w$ be any vectors of $T_{p}(M_{a})$ .
Applying Lemma 1.1 to the above equation, we get $\nabla B(y, y, w)=0$ . Changing
$y$ into $y+v$ , we have

$0=\nabla B(y+v, y+v, w)=2\nabla B(y, v, w)$ ,

which means that $\nabla B=0$ holds.
Conversely, suppose that (b) holds. Let $c$ be any geodesic in $M_{\alpha}$ with

\langle X, $ X\rangle$
$=\epsilon_{0}$ where $X;=c^{\prime}(t)$ . Since $\nabla B=0,$ $\langle B(X, X), B(X, X)\rangle$ is constant along

$c$ . If $\langle B(X, X), B(X, X)\rangle=0$ , we have $B(X, X)=0$ and find $\tilde{\nabla}_{X}X=0$ by (4.1),

which means that $c$ is a geodesic in $\tilde{M}_{\beta}$ . Next, we suppose $\langle B(X, X), B(X, X)\rangle$

is a nonzero constant. Since $M_{\alpha}$ is a hypersurface, there exists a scalar field $\tilde{\lambda}$

along $c$ such that

(4.8) $B(X, A_{B(X.X)}X)=-\tilde{\lambda}B(X, X)$ .
By taking the inner product with $B(X, X)$ , we find that $\tilde{\lambda}$ is equal to

$-\langle B(X, X), B(X, A_{B(X.X)}X)\rangle/\langle B(X, X), B(X, X)\rangle$ ,

which is constant along $c$ because of $\nabla B=0$ . On the other hand, (4.1), (4.2),

(4.8) and $\nabla B=0$ imply

$\tilde{\nabla}_{X}\tilde{\nabla}_{X}\tilde{\nabla}_{X}X=-B(X, A_{B(X.X)}X)=\tilde{\lambda}B(X, X)=\tilde{\lambda}\tilde{\nabla}_{X}X$ .
Consequently, it follows that $c$ is a helix in $\tilde{M}_{\beta}$ from Lemma 2.1. Q. E. D.
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