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Abstract Analogues of Freidlin and Wentzell’s estimates for diffusion pro-
cesses and the functional law of the iterated logarithm are obtained for a
class of stochastic processes represented by multiple Wiener integrals with
respect to two parameter Wiener processes, which arise as the limit- processes
of sequences of normalized symmetric statistics.

1. Introduction and results. Let A=h(u,, ---, u,) be a square integrable sym-
metric function on [0, 1]™ and assume that h is canoni¢al, i.e., it satisfies the
condition

S:h(u" Uz, ***y Um)dUu;=0 for all wu,, -+, uns[0, 1].

Let {X;} be a sequence of independent identically distributed random variables
uniformly distributed over [0,1]. Consider the following random sequence of
normalized symmetric statistics
Yat)y=n-m2 P h(th, ey, Xim)’ 0t=1,
18t <fp SEnt]

in D[0, 1], the space of right continuous functions on [0, 1] having left limits
with Skorohod’s J; topology. A. Mandelbaum and M.S. Taqqu showed that
the random sequence {Y,(#)} converges weakly in D[O0, 1] to the following pro-
cess X: - ‘ v

x@y={ - (-] [hus, ) udli) - LW (@, dv) W (dm, dvmds
[0,137 [0,1]7 ost<l,
where the right hand side is an m-ple Wiener integral Aj&_ith respect to a two
parameter Wiener process {W(u, v), 0<u, v<1} and 1,(-) is the indicator func-
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tion of [0,¢]. X has continuous paths a.s. and note also that it can be writ-
ten as

xt)={ - (s, -, unWidu) - Wdun),  0stsl,
ro, 137
with W (u)=W(u, t).

The purpose of this note is firstly to prove certain large deviations results,
i.e., asymptotic estimates of Freidlin-Wentzell type, for the above process X,
and secondly to remark that the functional law of the iterated logarithm for X
can be derived by the same arguments.

Let Cxy=C([0, 1]; R") be the space of R¥-valued continuous functions x on
[0, 1] vanishing at the origin, with the norm ||Jc||g=osstt1£)1 | x(t)] and the metric

d(-, ), where |-| stands for the Euclidean norm in R¥. Let B=B(@)=(B:({),
1<i<N), 0<t<1, be an N-dimensional standard Brownian motion with B(0)=0,
and let Hy denote the reproducing kernel Hilbert space (RKHS) associated with
B, i. e., the Hilbert space consisting of absolutely continuous function ¢ on [0, 1]
such that ¢(0)=0 and its derivative ¢ is square integrable. Its norm |¢||, is

!/
given by ”SD"H=”§.D”2=(S:|¢|2)1  Hyisa subspace of Cy and the sets K,=

{p=Hy: |@llu<r}, »>0, are compact in Cy.
Define a mapping A from L?[0, 1J®H, (the tensor product of L2[0, 1] and
RKHS H,) to C, by

Af(t)=S Sh(ul, o, Un)f(Ua, 1) o fUm, )duy - dun,,  0<t<1

fo,13m
for f= L*[0, 1]QH,, and let G denote the class of functions
G={g=Af, f L0, 11QH)} .
Let |I-ll be the norm of L2[0,1]®H, which is given, e.g., by [Ifll2=
1r1, @ 2
Sogo(‘a}' f(u, t)) dudt. Define

D(g)=inf{l|fll: g=Af, f€ L0, 11QH,} for g&G,
and
G.={g=Af; lfllsr}, r>0.

The main result of this note is the following

Theorem 1. (i) For any g=G and for any 9, 8’ >0, there is a number a,
=a,(0, 8', D(g)) such that

P(| X/a—gllc<d)zexp [—(a*™/2)(D*g)+d")]

for all aza,, and
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(i) for any 8, &, r>0, there is a number a,=ax0, 0', r) such that
P(d(X/a, G,)>d)<exp[—(a*™/2)(r"—d")]
for all a=a,.

In the proof of Theorem 1 we need the following Freidlin-Wentzell type
estimates for N-dimensional Brownian motion B.

Theorem A (i) For any o=Hy and for any 8, 8>0, there is a number
a,=a,(0, 8, |¢|lg) such that
P(|B/a—¢llc<8=zexp [—(a*/2)([lol & +d")]

for all aza, and
(i) for any 8, &', >0, there is a number a,=axd, &', r) such that

P(d(B/a, K,)>d8<exp[—(a®/2)(r*—3d"))

for all a=a,.

Theorem A is a special case of general result on Gaussian processes, and
we shall use the following easy consequences of Theorem A (see [2]).
Let F be a continuous mapping from Cy to C,, homogeneous with degree
>0, i.e., satisfying the condition F(c-)=c?F(-) for any ¢>0.
Theorem B (i) For any ¢<Hy and for any 9, 0'>0,
P(|F(B)/a—F(p)llc<d)=exp [—(a*?/2)(ll¢ll & +0")]

for all sufficiently large a, and
(i) for any 9, &', r>0,

P(d(F(B)/a, F(K,))>d8)<exp [—(a*?/2)(r*—0d")]
for all sufficiently large a.
Theorem C
lim (1/a*/%) log P(|F(B)llo>a)=—b2,

where
b*=inf{lloll% : | F(@)lc>1}

=sup{r*: sup (| F(p)lc: pEK)<1}.

The arguments used in the proof of Theorem 1, combined with Strassen’s
law of the iterated logarithm for Brownian motion, yield also the following
functional iterated logarithm law for the process X.

Theorem 2. Define the random sequence {Z,} in C, by
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Za(t)=X(nt)/2n log,n)™'*,  0<t<1, n=3,

where log,=log log. Then, with probability 1, {Z,} is relatively compact and the
set of its limit points coincides with G,.

Remark. The above theorem is an improvement of a recent result of H.
Dehling [1], in the sense that a moment condition on 4 is weakened. However,
it should be noted that Dehling proves more generally the functional law of
the iterated logarithm for {Y,()}. The methods of proofs are different.

2. Proof of Theorem 1.

Let {e;, =0} be a complete orthonormal sequence (CONS) in L®*[0, 1] with
e,=1. Then {e;(u)) - ei (Um), 1, -+, in=0} is a CONS in L%[0, 1]™) and
he L¥[0, 1]™), symmetric and canonical, can be expanded as

h(uy, -+ um)=__ 2 Cipuapls,(Us) - e (Un),  Cipi, ER.

lsil, ",fm
For N=1 let

1...im

hN(uU "'v; um)=1st1.--2.imszvCtl""imeil(ul) o ?im(um),

and define the process Xy={Xy(), 0<t<1} by

Xn(t)y={ - (rata, o, wadW )+ Wildu ).
[o,13m
Then we have
Lemma 1.
P(| X—Xnllc>2)= C exp(—Myz*™)

for all sufficiently large z>0, where C is a finite constant and the ;bqsz'tz've constant
My can be made arbitrarily large by taking N large.

Proof. The lemma follows from a result of Plikusas on multiple Wiener
integrals and Lemmas 6.2 and 6.3 of [4]. Indeed it is enough to note that the
exponential bound obtained by Plikusas holds also for multiple Wiener integrals
~ with respect to two parameter Wiener processes and that, putting Zy=X— Xy,
we have

E|Zy({t+s)—Zxy®)|*SCx-s  for 0=5t<t+s<1,
with a ﬁnité constant Cx and -
IEIZxv@®|*lc=m! lh—hxlE,
where |-||; is the norm of L2([0, 1]™).
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Now

XeW=_ 3 erean] o fenw) e, uaWidu) - Wiidun

ls‘.u.’
o, 13™m

and, since {e;} is orthonormal, each term of the right hand side can be written
as a product of Hermite polynomials, i.e.,

[ fenn - copumWidus) - Wotdun

Lo, 11m

=Hy,( [} e W idw) = Hy, ([} er, W dw),

if there are p, ¢, (-), -, p- eq.(-) among e;(-), -, e:,(+) with py+ --- +p,=m,
0<p1, -+, pr, where Hy(-) is the p-th Hermite polynomial with leading coeffi-
cient 1. Note also that

B=({, exwWidu), -+, { ewtuW (du)

is an N-dimensional Brownian motion.
Define a mapping Ty from Cy to C, by
TN(x)(‘)zxstl,-f?‘zmsNC‘i"""‘xvgll(’) o xPr(v),  for x=(xy, -, xm)ECy.

Then

Xv®)~Tu(B)t)= EmsNc‘r"‘m{HP:(S;eqi(“)W‘(d“))f'"Hpr(S:ew(u)wt(du))

15847
_(S: eql(u)Wt(du))m .o (S:eqr(u)Wz(du))pf} )

i.e., Xy—TxN(B) is a finite linear combination of polynomials of degree =m—2.
Applymg [Theorem| C to each term, we obtain

Lemma 2. For any 0>0 we have _
P(1/a)| Xy— TN(B)!|G>5)SC' -exp[—C"a%m" 2’]

for suﬁiczently large a, where C’ and C” are ﬁmte constants.

Since Ty is clearly continuous and homogeneous with degree m, we get

from [Theorem B

Lemma 3. (i) For any o=Hy and for any 8, &'>0,

P(|Tn(B)/a—T w(p)lc<d)zexp [—(a™/2)(llpll & +8")]
for sufficiently large a, and
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(ii) for any 9, 9', r>0,
- P(d(T y(B)/a, T y(K,;))>0)<exp[—(a*™/2)(r*—0")]

for sufficiently large a.

Let {¢;, =0} be a CONS in H,. Then {e«p,, i, j=0} is a CONS in L*[0, 1]
®H,, and any f<L%[0, 1JQH, can be expanded as f(u, t)=¢ jﬁoc”ei(u)gbj(t) with
i;"‘,oac,.j|z<oo, Put goi(t):g cipst). Then g, H, for all i20,

fu, = Sedwepdt) and lIfIt= Hledilods= Sl
Now, let g=AfeG with f= L*[0, 1J®H, and define

gv®=\ -+ (haCus, oo, wdf s, ) o o, O - .

Lo, 11m

By Schwarz’s inequality,

|80~ gw®1 SIh— il (], £, du)™

=lh—hyls(Se®)™,

and so

[ o m/2

le—gwlle=hh—hula( Dledls)

[ m/2
<lh—hyls( Zlpd)
=lh—hxlle-IfI™

Note that

grit)= _ 2 Ct,---tms Setl(ul) v @i (Um) sy 1) o (U, AUy -+ dthm

184y, TimsN )
= e B ({0010 D) - ([ e, 0dw)

= > Cipi gy @i,(8) o+ @i, ()

1543, tm SN

= 2 Cipig(@g ()P (g ()P

1sig, Simsy

=Tn(p)t), where ¢=(pi, -, pn)EHy,
and also that, for any given ¢=(¢p,, -, on)E Hy, if we put f(u, t)=:21 e (u)ps(t),
then feL?[0, 11QH,, lIfll=l¢llx and Af=T x(¢). ’
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From the above we immediately obtain the following

Lemma 4 (i) For any g=AfeG with feL*0, 1JQH, and for any >0,
there is an element gy of the form gy=T y(¢) with o< Hy, ll@lla=ZIIfll such that

lg—gnllc<8 for all sufficiently large N.
(i) Twy(K.)CG, for all r>0, N=1.

Proof of (i) Let geG, 8, >0 be given, and assume that g
is of the form g=Af, f=L*0, 1JQH;. Choose N large enough that |g—gnlc

<é8/4 with gy=Tn(p), p=Hy (Lemma 4 (i)), and Mxy>4/8)*™(IfII*+6") (cf.
Lemma 1). Then, by Lemmas 1, 2 and 3(i),

P(| X/a—gllc<0) 2 P(| T n(B)/ a—T x(¢)llc<6/4)
—P(| X—Xyllc>ad/4)
—P(| Xy—T n(B)llc>ad/4)
=zexp [—(a®™/2)|lpll 7 +6"/3)]
—C-exp[—Mn(ad/4)*™]
—C’-exp[—C"a®™"?]
for all sufficiently large a. Noting that ||¢||z<|Ifll, we thus obtain
P(| X/a—gllc<d)zexp [—(a*™/2)(I flI*+25"/3)]
for all sufficiently large a, and the assertion follows from the definition of D(g).
Proof of Theorem 1 (ii) Given 4, d’, »>0, choose N large enough that
My>3/8)¥™(r*—ad’) (cf. Lemma 1). Then, by Lemmas 1, 2, 3(ii) and 4(ii),
Pd(X/a, G,)>0)=P(d(X/a, T y(K,))>0)
SP(d(T~(B)/a, Tw(K,)>d/3)
+ P X—Xnllc>ad/3)+P(| Xy—T n(B)llc>ad/3)
<exp[—(a¥™/2)(r*—d'/2)] '
+C-exp[—M,(ad/3)*™]+C’'-exp[—C”a?/™"?]
<exp[—(a®™/2)(r*—d")]

for all sufficiently large a. This completes the proof of Theorem 1.

3. Proof of Theorem 2.
It follows from Lemmas 1 and 2 that

P(|X—T n(B)|c>z)<exp[—Mz*™]
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for all sufficiently large z and N, where M is any given positive constant. Note
also that both processes X(-) and T y(B)(-) are self-similar with parameter m/2,
i.e., X(c-) and c™?®X(-), and also T n(B)¢:) and ¢™*T y(B)(-), have the same
finite dimensional distributions for any ¢>0. Using these facts and the first
Borel-Cantelli lemma, we get by the standard argument

Lemma 5. For any £>0, with probability 1
limﬁsup | Z y—T n(B)(nt)/(2n log,n)™ *[c<e

for sufficiently large N.

Note that
T w(B)(nt)/(2n log:n)™*=T n(B,)1),

where B,(t)=B(nt)/(2n log,n)'/%. Thus, by Strassen’s law of the iterated logarithm
for B and the continuous mapping theorem, we have

Lemma 6. For any N=1, with probability 1 the random sequence {T x(Bx),
n=3} in C, is relatively compact and the set of its limit points is T y(K))=
{Tx(p); pEK,}.

follows from Lemmas 4, 5 and 6.

References

[1] Dehling, H.: The functional law of the iterated logarithm for von-Mises-functionals
and multiple Wiener integrals. Preprint, 1984 (revised 1987).

[2] Kallianpur, G. and Qodaira, H.: Freidlin-Wentzell type estimates for abstract
Wiener spaces. Sankhya, Ser. A, 40 (1978), 116-137.

[3] Mandelbaum, A. and Taqqu, M.S.: Invariance principle for symmetric statistics.
Ann. Statistics, 12 (1984), 483-496.

[4] Mori, T. and Oodaira, H.: The law of the iterated logarithm for self-similar
processes represented by multiple Wiener integrals. Probab. Th. Rel. Fields, T1
(1986), 367-391.

[5] Piikusas, A.: Some properties of the multiple It6 integral (in Russian). Liet.
Mat. Rink., 21 (1981), 163-173.

Department of Mathematics
Yokohama City University
22-2 Seto, Kanazawa-ku,
Yokohama 236 Japan

Department of Applied Mathematics
Yokohama National University

156 Tokiwadai, Hodogaya-ku
Yokohama 240 Japan




	1. Introduction
	Theorem 1. ...
	Theorem A ...
	Theorem $B$ ...
	Theorem $C$$\lim_{a\rightarrow\infty}(1/\alpha^{2/p})$ ...
	Theorem 2. ...

	2. Proof of Theorem 1.
	3. Proof of Theorem 2.
	References

