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Abstract. In this note, we study (not necessarily ergodic) integrable systems
on von Neumann algebras. As a generalization of A. Amann [1, Capter II,
Theorem 2], we show that a W*.dynamical system (%, G, ) is integrable
if and only if there is a normal covariant embedding of L*(G) into (H, G, a).

Let (M, G, a) be a W*-dynamical system with a von Neumann algebra .,
a locally compact group G and a o-weakly continious action @« on #. The
notion of integrable actions were introduced and studied by A. Connes and M.
Takesaki in [2]. In [5], Y. Nakagami showed a characterization of integrable
actions when the fixed point algebra .M* is properly infinite. Further, if G is
separable abelian and if (K, G, a) is ergodic, then D. De Schreye in showed -
that (M, G, a) is integrable if and only if there are unitary eigenoperators.
Recently, if (%, G, @) is ergodic, where G is not necessarily abelian, then A.
Amann in [I] showed that (%, G, a) is integrable if and only if there is a
normal covariant embedding of L*(G) into (%M, G, a). Our aim in this note is
to show a characterization of not necessarily ergodic integrable systems (Theo-
rem 1).

Let (M, G, @) be a W*-dynamical system. Let g, be the set of all x&.x

such that there is some y&. ¥ with y:Saas(x*x)dp(s), where p is the left Haar

measure on G. Then (M, G, @) is called an integrable system whenever p,=
the linear span of {y*x; x, y&q.} is g-weakly dense in M. Further, a unital
positive linear mapping ¢: L°(G)— M is called a covariant embedding of L~(G)
into (M, G, a) whenever ¢(Ad (A))f)=a,(¢(f)), for each g&G and feL>(G),
where 4 is the left regular representation of G. If ¢ is a normal mapping from
L>(G) to M, then ¢ is called a normal covariant embedding. A covariant em-
bedding ¢ is called a covariant representation whenever ¢(fg)=¢(f)¢(g) for each
S, g€ L=(G).
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Let (M, G, a) be a W*-dynamical system. Amann showed that an ergodic
W*.dynanical system is integrable if and only if there exists a normal covariant
embedding of L=(G) into (M, G, a) ([1, Chapter 1I, Theorem 2]). We attempt
the generalization of this result thank to the duality theorem of crossed products
(cf. [4, Theorem 3.1]). Then we have the following theorem.

Theorem 1. Let (M, G, a) be a W*-dynamical system with a separable locally
compact group G. Then (M, G, a) is integrable if and only if there is a normal
convariant embedding of L=(G) into (M, G, a).

Proof. Suppose that there is a normal covariant embedding of L*(G) into
(H, G, @). Take ke L=(G). such that Sak(g)A(g")dp(g)<+oo, where p is the

left Haar meassure on G and 4 is the modular function of G. Let ¢ be a
normal covariant embedding of L>(G) into (M, G, @) and take an arbitrary
element ¢ of My Then

[ Hanoendu@={ ¢ ¢(Ad RRpg) - o-ooovomee (#)
Since ¢ is normal, ¢-¢ is a normal functional on L=(G). Since the predual of
L=(G) is isomorphic to LY(G), we identify “normal functional” ¢e¢ with “Lr-
function” ¢e¢. Then we have

@ =( | @-xnAad @k Rdphdme)
={ | @ooxmrendpine)
=[ | @-oxmeedu@dnn
=(] @ omaum)(] redue)
=(oo)| F@Agdp(g)

=[ @agndp <+

Hence ’this implies that ¢(k)epf. We can take a net {£:}ie: in L=(G)+ such
that

gakc(g)d(g"l)d#(g)<+°o and k,11 (¢-weak in L=(G)).
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Then ¢(k;)=pt and ¢(k;) converges to 1 with respect to o-weak topology on
M from the normality of ¢. Hence this means that p, has a o-weakly appro-
ximate identity. Hence (%M, G, a) is integrable (cf. [6, 11.5]).

Conversely, suppose that (%#, G, a) is integrable. Let F. be a type I.-
factor. We define the W*-dynamical system (#H, G, @) by

HA=MQF ., a=a@id

By [2, Chapter 3, Lemma 2.10], ({#, G, @) is also integrable and the fixed point
algebra F*=.H*®F. is properly infinite. Hence by [5, Theorem 4.1], there
is a projection p in (HRQQB(L¥G)))*®44¢H guch that

{AQB(LXG)), a®id} = { AQB(LYG)), aQAd (D)},

From the duality theorem ([4, Theorem 3.1]), there is a projection ¢ in HXzG
such that

{FARQB(LYG)), aRid} ={MXzG)X3G, 3}q .............. )

So, there is a *-isomorphism 7 : L*(G)—(M X zG)X 3G such that
(A Q)NH=a,x(f) (fFELXG), g€0)

Let @ be a reductlon of (M XzG)X3G by g. Since g€ A XzG=(HXzG) X5 G)"
we have (Doa (d)qoq) Let J be a *-isomorphism in (b). We define a normal
covariant embedding ¢ of L=(G) into (HRQB(L¥G)), G, aRVid) by ¢=]J-D-x.
Let p, be a minimal projection in F., let p, be a minimal projection in B(L*G))
and let ¥ be a reduction of HARQB(L*G)) by 1Qp,Q@p.. Then, for any x&
ARQB(L¥G)) and g=G, we have U(HARQB(LYG))=H and ¥(a,RQid)(x))=
a (T (x)) (cf. [7, Chapter IV, Theorem 1.9]). Put ¢=¥-¢. Then it is clear to
prove that ¢ is a desired normal covariant embedding. This completes the
proof.

Next, we suppose that ¥ is a o-finite von Neumann algebra and that G is
a separable locally compact abelian group. Then De Schreye in investigated
that, if (%M, G, a) is ergodic, the existence of unitary eigenoperators u,, reG
is equivarent to a being an integrable action of G. In the following proposition,
we consider the result when (#, G, a) is not necessarily ergodic.

Proposition 2. Let (M, G, a) be a W*-dynamical system with a o-finite von
Neumann algebra M, a separable locally compact abelian group G. If, for any
=G, there is a non-zero unitary operation u, in M such that a(u,)=<r, g>u,
(geG), then (M, G, a) is integrable.
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Proof. By the same arguments in [1, Chapter III, Theorem 6], there is a
normal covariant embedding of L*(G) into (M, G, a). Hence by [Theorem 1,
(M, G, a) is integrable. This completes the proof.

However, the converse is not true without ergodicity. That, we have the
following counterexample.

Example 3. Let T be a unit circle, thatis, T={z=C; |z|=1}. For ze T,
we define a 2X2-unitary matrix u, by

b
U,= .
0 z

Then z—u, is a unitary representation of T on M,C). Since T is compact,
the W*.dynamical system (My(C), T, Ad (w)) is integrable. On the other hand,
it is clear to prove that there is no integer n (#0, £1) such that there exists
a nonzero element x< M,(C) satisfying u,xu¥=<{z, ndx=z"x for any zT.
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