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ABSTRACT. We show that Brownian motion conditioned to be positive and
tied-down is Brownian excursion. For a random walk defined by weakly de-

pendent random variables, a conditional limit theorem is proved under some
conditions on the path.

1. Introduction. Our purpose in this paper is to investigate relationship
between Brownian motion and Brownian excursion.
Let {W(t): t=0} be a standard Brownian motion. Let

ng(x)=Qns) texp(—x?/2s), Ni(a, b)=Sin,(x)dx, and
g, x, y)=n(y—x)—n,(y+x).

Brownian excursion, Wi={W3{(t): 0<t<1} is a continuous, nonhomogeneous
Markov process. The transition density is given by

2y*exp(—y*/2t(1—t))

PIWi)€dy]1=p30, 0, t, y)=—"—g "sq ™ pyoim— 47
for 0<t<1; for 0<s<it<1 and x, y>0,
PlWiit)edy | Wi(s)=x]1=p3(s, x, t, y)dy
—gt—s, %, NIL—s)/(1—p} LRV /AL0)

x exp(—x2/2(1—s)) :

Let {W*({®): 0<t<1} be Brownian meander.

According to Durret-Iglehart-Miller [2] we introduce some notation, for
0=t=1, let m@t)=inf{W(s); 0=<s=<t} and M(t)=sup{W(s); 0<s=<t}. Furthermore
let C=C[0,1] be the space of continuous functions on [0, 1] and C be the
topological ¢-field of C induced by the supremum metric d( , ). For a random
function Y in (C, C) let Q@ be the probability measure of Y on (C, C) and Q4
the probability measure restricted by a Borel set A=C with Q(A4)>0 which is
defined by Q(A)=Q(A)/Q(A) for A= ANC. Then we can define a random
function Y|4 with the probability measure Q4 as the restriction of Y to Y -}(A).
We now define the following conditioned random function of (C, C), for any ¢>0,
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W.=W | {m1)>—e, W(1)<e}.

This process is Markov by virtue of Lemma (1.5) in [2]

2. Convergence of conditioned Brownian motion to Brownian excursion.
In this section we prove the following.

Theorem (2.1). W.=W{ as ¢—0.

Proof. We first show that the finite dimensional distributions converge.
Since W. and W¢ are Markov, it suffices to show that the probability transition
densities converge. For 0<t<1 and y>0, we have

50,0, ¢, »)=PIWM)dy | m(1)>—e, W(1)<e]

- PIW)Eedy, m(t)>—e]P'[m(l—t)>—¢, W1—1)<e]
- P[m(1)>—e, W()<e]

g, e, y+s)S:g(1—-t, y+e, ute)dudy

[ g, & urerdu
Using L’Hospital’s rule twice on the ratio above gives

2y® exp(—y/26(1—1) _
Qrt(l—1)%)? =540, 0, t, ).

lim §,(0, 0, ¢, ¥)=

For 0<s<t<l and x, y>0

be(s, x, t, »)dy=PIW()edy | W(s)=x]
={P[W(s)edx, m(s)>—e]P*[mt—s)>—e, Wit—s)=dy]
X PYV[m(l—t)>—¢e, Wl—t)>e]}/{P[W(s)edx, m(s)>—e]
XP*[m(l—s)>—e, W(l—s)<e]}

glt—s, x+e, y+s)gs_sg(l—t, y+e, ute)dudy

S;g(l—S, x+e, u+te)du

Divide numerator and denominator by &® and use the same application of 1’Hos-
pital’s rule as in above we get

liff}ﬁc(S, x,t, Y)=piCs, x,t, ¥),

which implies the convergence of the finite dimensional distributions.
The tightness of W, can be shown by a slight modification of the proof of
(4.1) in [2]. -
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3. Conditioned limit theorem for weakly dependent random variables.
Let {X;, i€Z} be a sequence of strictly stationary random variables. Let & m
denote the o-field generated by random variables X;, i=m, m+1, -, n. Suppose
that the sequence {X,, i=Z} satisfies the strong mixing condition, that is

a(n)=  sup | PLANB]—P[AJP[B]|—0 as n—oo.

4e9°,, BeF

If the following limit exists, ¢®=lim n"E{ g X¢}2>0, then define a random ele-
ment Y, on C[0, 1] by

(nt)X,/(an*?), for t<[0, 1/n]
V)= 23X/ @+ (nt—) Xyua/an'), for te(b/n, (h+1)/n],
k=1, -, n—1.

Let P, be the distribution of {Ya@), 0=<t<1} and Q the Wiener measure on

(C, €). The Prokhorov-Lévy metric e(, ) onthe space of probability measures
on (C, C) is defined by

P(R, P)=inf{e>0; R[B]<e+P[y; d(x, y)<e, x=B],
P[B]<e+R[y; d(x, y)<e, x=B] for all Bec},
where R and P are probability measures on c, o).

S. Kanagawa ([3] page 104) proved the following :

Theorem (1 [3] page 104). Let {Xi, i€Z} be a sequence of Strictly station-
ary random variables with EX,=0 and E | Xi|"<oo for some r>2. Suppose that

the sequence {X,, i€ Z} satisfies the strong mixing condition with coefficient a(n)
and that there exists s with 2<s<r such that

3.1) é (@)D < oo,

If s<4, then for any 0<s(s—2)/{4(s—1)(s+1)}, we have
O(Pr, Q)=0(n"%, as n—oco.

If r>4 and (3.1) holds for some s with 4<s<r, then for any k<(s—4)/30(s+1),
we have

P(Pr, Q)=o0(n=%'5-*%)  gs p—soo.
Define m,,=0isrt1;f1 Ya(t) and put Yo =(Yn|mp>en, Ya(l)<en), n=1, where {ea, n=1}

1S a sequence of positive constants.

Now we prove the following theorem.
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Theorem (3.1). Under the assumption of Theorem 1 ([3] page 104) Y,=2W¢,
n—co provided {e,, n=1} is a sequence of positive numbers such that, in the case
s<4, for every 0<s(s—2)/{4(s—1)(s+1)}, (n%2)=0() as n—roo,

and, in the case 4<s<r, for every k<(s—4)/30(s+1), (n¥'"+*¥¢2)=0(1) as n—oco.

Proof. Let A be a set such that P[W{=dA]=0. We are going to show
that '

(3.2) %igloP[ Y.€Al=P[W{eA].
Indeed, we have
PLY,cA]={P[Y,€EA, ma>—¢a, Y()<e,]—P[We A, m(1)>—e,, W()<en]
+P[We A, m(1)>—en, W)<en]}/{Plma>—¢n, Ya(l)<e,]
—PIm(1)> —en, W(D)<en]+Plm(1)>—en, W(1)<e,]}
={I"+P[We A, m(1)>—¢,, W)>e 1} /{1 +P[m(1)> —¢n,
W()<eal}.
By our assumptions and Theorem 1 ([3] page 104)
I{M/et -0, I{M/e4—0, as n—oo,
Furthermore, one can verify that
PIm(1)> —ea, W()<eal/eh—0a/(2n)'?,
and by (2.1) we have
lnigloP[WeA | m(1)>—e,, W(l)<e,]=P[WicsA],

so that we get This fact proves
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