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1. Introduction. For a random vector (X,Y) in R? with finite expectation
E|Y|, the regression function m(x)=EX |X=x), xR, of Y on X exists and
is (g#-almost surely in x) uniquely defined in view of the equation

m(X)=EY | X)
where R*® is the 2-dimensional Euclidean space and g is the distribution of X.
Let {(X;, Y;)} be independent random observations each of which has the
same distributions as (X, Y).
Stute (1984) considered a smoothed nearest neighborhood estimate

F(xo) F(Xi)) (1.1)

Ma(X0)=(na,)"! 2 vk (

of m(x,) and obtained the central limit theorem of m,(x,) for g-almost all x,=R.
In this paper, we show that Stute’s result (1984) remains true for some
weakly dependent observations if E|Y |?*°<co for some §>0.

2. Main results. Let {(X,,Y,), n=0, +1, +2, ---} be a strictly stationary
sequence of random vectors in the plane with distribution function (d. f.) H(x, y).
We consider the following two conditions:
(I) {(X,, Y,)} satisfies the *-mixing condition, i.e.,
_ P(AB)—P(A)P(B) - .
2.1 P(n)= sup P(AB) 0 as n—ooo;

aeH ,, BEHG

(D) {(Xa., Y,)} satisfies the ¢-mixing condition, i.e.,

0 as n—co.

2.2) ¢(n)= sup

AeH) , BeHG

l P(AB)—P(A)P(B)
P(A)

Here, % denotes the ¢-algebra generated by (X, Y), -+, (Xb, Y3) (a<Z0h).
Let H, denote the (bivariate) empirical d.f. of the sample {(X,,Y,), -,
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(X, Y,)} and F, the empirical d.f. of {X,, -+, X,}. Let K be a twice con-
tinuously differentiable kernel function vanishing outside some bounded interval.
We assume without loss of generality that K vanishes outside (—1, 1). Further,
let {a,} be any bandsequence such that a, | 0.

We consider the following nearest neighbor estimator of m(x,):

Fa(x0)—Fn(X1) )

n

ma(x)=(nan) 33 ¥ K(

=‘151S3’K( Fn(xo);Fn(Xt) )H,,(dx, dy).

n

2.3)

Now, we state our main results, which are extensions of Stute’s result
(1984).

Theorem 1. Let {(Xi, Y} be a strictly stationary *-mixing sequence of
random vectors satisfying the following conditions;

(i) each X has a continuous d. f. F and

(ii) there exists a positive number 06 for which E 1Y ,|?*<c0 and

S(n+1gHi(n)<oo. Let
@2.4) ot=Var (v, X,=x0)|_ K*wdu>0.
Suppose na%—oo. Then, we have

(2.5) (@) *{ma(x0)— Mn(%0)} £> N, o?)

for p-almost all x,& R where

2.6) maeo=az |y K (TS Vg, ay).

Theorem 2. Let {(Xa., Y.)} be a strictly stationary ¢-mixing sequence of
random vectors satisfying the following conditions;

(i) each X, has a continuous d. f. F and

(i) there exists a positive number & for which E|Y|**<co and

él (n+1)g/4(n)<oo.
Suppose nad—oo. Suppose further that

[S{y—m(xo)}K( F((x°);F(x1) )

X {Ha(dx, dy)—H(dx, dy)}]z

2.7 agi=lim

n—»o0

exists and is positive. Then, thz conclusion of Thearem 1 holds.
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Next, let .
meF " u)=EY,|F(X)=u).

Corollary. Let K be a twice continuously differentiable kernel function such
that K(u)=0 for |ul=1, SK(u)du=1 and SuK(u)du=0. Suppose the conditions

in Theorem 2 hold. Suppose further meF-* is twice continuously differentiable in
a neighborhood of x, (0<F(x,)<1) and na%—0. Then

2.8) (nan) (Ma(x0)—m(xo)) —>0 as n—oo

holds. Hence, we have

D
2.9) (an)"*{mq(x)—m(x0)} —> N(0, a3).

3. Auxiliary results. Let {&} be a strictly stationary ¢-mixing sequence of
d-dimensional random vectors.
Let 7,<i,< --- <i, be arbitrary integers and put

P{P(EDXE*P)=P((Ge,,  , £)EEPIP (G0 1 G IEEH)
3.1 (G=1, -, k).
PEES)=P (s, -+ » §1)EEP).

where E¢ is a Borel set in R*¢. The following lemma is a special case of
Lemma 1 in Yoshihara (1976) since a ¢-mixing sequence is an absolutely regular
sequence.

Lemma 3.1. Let h(x,, -+, x1) be a Borel function such that
3.2) - [ (ihces, -, zolwaposM 0sjsk=D)
for some 6>0. Then

\S.Sh(xl’ ., xk)dPék)—S"'Sh(xl; e, xk)dP}k)

__€_4M”“+‘”‘B"’“+‘”(z'j+1—z'j) .

3.3

Next, let {X,,} be a strictly stationary ¢-mixing sequence, and put
(3.4 a(x)=n"{F.(x)—F(x)}, x€R

which denotes the empirical process pertaining to X, «-+, Xa-
In the following, we often use the well-known inequalities.

Lemma 3.2. Let {&:} be *-mixing with mixing coefficient (k). Let 7 be
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ME -measurable and let { be ML,.-measurable. I f Elnp|l<coand E|{| <oo, then
(3.5) |E§n—ESEn| <¢(n)E|E|E|q|.
(See, for example, Samur (1984)).

Lemma 3.3. Let {&} be ¢-mixing with mixing coefficient &(k). Let 5 be
Mo-measurable and let { be Myi.-measurable. If E|p|"<oco, E|L|*<co and
r-i4s-t=1 (r, s>0), then

(3.6) | E§n—ESEn| <2{g(n)} '"{E|q|T} /" {E|L|*} e,
(See, for example, Billingsley (1968)).

Lemma 3.4. Suppose {§:} is a strictly stationary @-mixing sequence of zero-
mean random variables such that M;=E|&;|**? for some & (>0) and

= 3 (h+1PR)  (BO)=1).
Then
2+4J
gcoM,;n”“’/”

3.7 B| 3¢
(See, Corollary 2.1 in Utev (1984)).

Next, let {X,} be a strictly stationary ¢-mixing sequence of random vari-
ables and put

(3.8) an(x)=n"*{F.(x)—x}, 0=x=1,

which denotes the uniform empirical process pertaining to Xj, --- , Xn. In the
following, we often use the well-known representation

an(x)=0a,(F(x)), XER

of @, in terms of a uniform empirical process as,.
' From now on, we shall agree to denote by the letter ¢, with or without
subscript, some quantity bounded in absolute value.

Lemma 3.5. Let {X,} be a strictly stationary ¢-mixing sequence of random

variables. If i}l ne'’*(n)<co, then

3.9 P(_ sup |&(F(x)—a&u(s)|Zay)<ca

$sF(x)ss+Ciap

for all n sufficiently large.
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Proof. In Sen (1971) it was proved that for every ¢ (0<e<1), if
t—s>en~!, then for all n

E|a,(t)——aa(s)|*sce™'(t—s).

Hence, by the method of the proof of (22.20) in Billingsley (1968) we have

(1.10) P( sup |@t)—ai(s)|Zaay/)<ce*A™*az*(mp)’.
8sStss+mp
Thus, putting mp=C,a,, we have from (3.10). O

Lemma 3..6 Let €>0 be given arbitrarily. Then, there is a constant C, sich
that, up to an event of probability less than or equal to &, we have

3.11) |F(xo)—F(x)| =C1an
whenever ‘
(3.12) | Fa(xo)—Fn(x)|Za,.

Poof. Since by Theorem 22.1 in Billingsley (1968) (cf. Sen (1971))

D
sup V7 | Fa(x)—F(x)] —> sup 1Z()]  (n—co),

z:0sF(z)s1

so for an arbitrary number ¢>0 there exists some finite number C such that
for all n sufficiently large

where
An(C)-—"{ sup) 1|Fn(x)—F(x)l§Cn“/2}.

z2:0sF(x)s
Because of [(3.12), on the set A,(C) we have that

| F(x0)—F(x)| £ | F(x0)—Fn(x0)| 4 | Fa(xo)— Fn(x)| + | Fa(x)—F(x)|
<a,+2Cn"'*<Cia,

for some C,<co, and the proof is completed. O

4. Lemmas. In this and the following section, we always assume that condi-
tions of [Theorem 2 are satisfied. We note first that if K is twice differentiable,
then by Taylor’s expansion we have

Ma(Xo)= a;‘SyK(L‘));E—(—x—)*)Hn(dx, dy)

e Fued—Fa— FGeo+ Fob K (FE= ) i, dy)
4.1) Qn -
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K"(4)

+ 65 Y1 Pu(x0) = Fa)— F(x+ FOP-—"5 L Ho(dx, d3)

=I,+1,+1,; (say),

where A is some number between a;'{F,(x,)—F(x)} and az'{F(x,)— F(x)}
Lemma 4.1. (na,)*I*->0 in probability as n—oo.

Proof. Since K vanishes outside (—1, 1), the above expansion of ,(x,)
holds true with integration restricted to those x for which |F,(x)—F(x)| <aa.
Let b,=(nad)"%. Then, by and 3.7

P( sup (naz’)' | Fa(x0)— Fa(x)—F(x0)+F(x)| 2ba)

z: | F(xg)-F(x)1sCiapn

=P( sup | &n(F(x0))—an(F(x))| 2bna’®)

z: | F(xg)-F(x)1sCrapn

Scbpt=c(nad)??

On the other hand, as {Y;} is strictly stationary and ¢-mixing, and
E|Y;|***< 0, so by the pointwise ergodic theorem for stationary sequences -

4.2) limsup( || Ha(dx, dy)<co  as.
Hence, the assertion of the lemma follows from and the fact that K”

is bounded, upon observing that ¢>0 was arbitrary and naj—oco. O
Next, to show that (na,)!*l, is asymptotically equivalent to

—awyrazme | (FE DY b o P,

define {Z,, n=1} by

4.3 Zn=n~ 0”3’22{Yi —m(X)Han(xo)— an(Xs)}K(F(XO) F<Xt))

Lemma 4.2. Z,—0 in probability as n— oo,

Proof. We rewrite Z, as follows;

( F(x0)—F(Xy) ) |

’

@4 Zy=n"a 5 SUY —m(X)}g(X;; 1o, XOK'

where v

4.5) 8(Xj; %0, X)={I(X;<x0)—F(x0)} —{I(X;< Xs)—F(Xi)}
and

(4.6) | I(y<x)=I (oo, x(P)—F ().
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We note that if {()?i, Y, i=1,2, -+, n} are i.i.d. random vectors with
d.f. H(x, y), then

4.7 E{Yi—mX)1X}=0 a.s.
and
(4.8) E{gX;; xo, ZD1X}=0 a.s.
Put
@9 Gl 32 %o, 2I=(r—mle)glae; xo, wk/(-E=EE))

and let P(xil, Yip oty Xy, yik) be the d.f. of (Xil’ Yil' Loy, Xik’ Yik)' Then it
is obvious that

(4.10) [ota, 305 %0, 20dPx)=0
and
@.11) Sc«xn 923 %o, 1)dP(x1, 31)=0.

For brevity, let
(4.12) 0G; N=G((Xi, Yo); %oy Xp).

To prove lim EZ2=0, we consider the following quantity;

n-+c0

(4.13) n*alEZ2 = E 12-: EOG; D+2% = EOG; j)0G; f)

i=115j,<jesn

+2 2 3 SNE6G,; j2)6Gs; i»)
159,<tlgsn f1=1 j3=1
=42 ]:+2 s, (say).
Since K’ and g are bouded and

E|Y(—m(X)|*"<cE|Y;|**<oo,
so

(4.14) E6%; j)=c for all i, 5.
Thus, we have
(4.15) | il Scnt.
Next, if i<j, and j,—i>j,—7,, then by and
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|E{0G; 700G ; 12}
= IX SG((-’C{; Y05 %o, x3)G((x1, ¥4); %o, X3)dP (x4, ¥, %3,)dP(x5,)

+egH D, — 1)
S HI(j,— 7).
Hence, we have
(4.16) > |EOG; jOG; 7))

121<f1<jesn

< c 2/C24+0)( 5 7 Scnz.
_1si<jlz<jgsn ¢ (]z ]1)._.

Similarly, we have

-' . -. . 2/(2 6) -—- 2
4.17) ISM%GMIE{o(z,11)0(2,Jz)}lécmh%‘:dsnsb W(j—j=cn
and

Se 7 e g 2/C2+8)(; __
@18) 3 IE(0G; 006 N ISe | 3 g (—isent,
Further, by [4.15) |
4.19) { 2 + X HE{0G; j)0G; j)} | <cn?

15i=71<fpsn  15j1<jp=isn
Thus, from (4.16)-(4.19) we obtain
(4.20) | Jel Scn.

It remains to prove |J;|<cn®. We use the method of the proof of Lemma
2 in Yoshihara (1976)

By Lemma 31, [(4.10) and we have the following inequalities:
If 1§2.1<Z.2§j1<].2§n and ].g—‘].lgz‘z_‘il, then

(4.21) |E{8G,; j1)00,; j} | S+ (f,—7))

and similarly, if 1<7,<7{,<7,<j.<n and 7,—¢;=7,—j;, then
(4.22) |E{6G:; )00 j)} | Scg®/ 4P (i,—i).
Thus, from [4.21) and [(4.2Z) we obtain

E{0G,; j)0G:; j2)}

15t1<i2$j1<j25n
(4.23) ={ > + > HEGG; 71035 7o)
1811<t9371<fesn 151<ip571<j2sn
i3—-112Jj2—J1 i2—11572-J1

gcnz ,,é_l (k+1)¢2’<“‘”(k)§cn".
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(i) Similarly, we have

E{0G.; j00G:; 1)}

1211<f1S19<josn

(4.24) ={ > + P HEOG:; 70)0G:; 7o)
15i1<j1s19<josn 151 sn
Ji—i1&Jj2~12 b

<cn?

= ’

1“1<h§jg’<tzsn | E6G:; ].1)0(1.2; 72|
) =t 2 + 2 HEBG,; j1)0Gs; 52l

1511</1<ja<tosn 1511<i1<ja<iosn
RIS R R S

<cn?

’

| S VE6G; 7)0G; )]

151y, /180 ig=1

(4.26) <3 3 1E6G:; )00 i)

+2_ 3 3 |E0G:; 1)0G; )]

154, <jysn 1=

| écn’(l—}— él ¢2/<2+"’(k))§cn2

n

(4.27) 2 2 E0G; j00G,; ) scn :é; G D (k)<cn.

151y, josn 11=1

Hence, from (4.24)-(4.26) we have

4.28) | Js| Scnt.
Now, from [4.15), (4. 20),,K1 28) and the fact that na%—oo we have
lim EZ%=0, which completes the proof. O

Next, consider the function
“.29) e, 9)=mK (TN T ()= om0}
with corresponding “von Mises” statistic
To=n{k(z, yFu(dy)—FANHFudR)—F(dx)]
=[x, Dandpan(ds).

Then, using the method of the proof of Lemma 2 in Yoshihara and noting
S (B+1)2@'4(k)<oo, we have



64 K. YOSHIHARA
ET:=0(1) as n—oo,
which implies
a;3/2gk(x, an(dy){Fu(dx)—F(dx)} —> 0 in probability

since nad—oo.
Thus, we obtain that (na)'/?I, is asymptotically equivalent to

430 gz an(ro—ano (BT pa).

Lemma 4.3. If conditions of Theorem 2 hold, then

@30 L=az | me)—mizdllanzo—an@I K (T piax) — 0

in probability
for p-almost all x,< R.

Proof. In the proof of Lemma 3 in Stute (1984), it was proved that
F-Y(F(x,))=x, fo p-almost all x, and that

tim(" |m(F-(s—uan)—m(F-(s)| | K'(w)| du=0

for p-almost all s, say, for all s€ A4, if F is continuous. Hence
p{xe: F(x)E A, FY(F(x0)=x,})=1.
Let F(x,)€A and put

en(ro={a [} Im(P=(u)—m(zo) | K /(FELZLY | ) ™

Then, by we have that for any £>0

P(I,>¢)
<P(az’” sup | n(F(x0))—an(u)]

u: |F(zg)-ulsay
XS:Im(F—l(u))—m(xo)l ’K,(_F(x;i_—-u

<P( sup | &n(F(20))—@n(u)| Zen(x0)az?)

u: |F(zg)-ulsan

scep'(x)=0(1)

)\du>e)

as n—oo. Hence, (4.31) is obtained. O

Lemma 4.4. (na,)'*l, is asymptotically equivalent to
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(4.32) —a;,lﬂm(xo)gK(F—("—‘ﬁaIﬁ@)an(dx).
Proof. From Lemma 43 it follows that (na,)!/?I, is asymptotically equiva-
lent to
ax ()| [an(xo—an(o 1K (T2 N pa )
=—a;w%m(x,,)ga,,(x)K'(E(—xi)a_FJ)F(dx)
- a;sﬂm(xo)gK(&O)T—E(‘ﬁ)an(d x) s
which completes the proof. O

5. Proofs. Let

Waimaz Y = mixok(LEO D)

(5.1)

_a—l/zE{(Y m(xo))K( F(xO) F(Xi) )}

@=1, -+, n).

Then, it is clear that W,,, ---, W,. are identically distributed and satisfy the
¢-mixing condition with
S(k+1)g (k)< co.

Lemma 5.1. For any &’ (0<8'<1)

+68°
ni ch@+d2g=82

(5.2)
Proof. By Lemma 33

k 249!
E]tzlwni <chOHDIE|W, |2

Since K vanishes outside (—1, 1) and is bounded, so for all n sufficiently
large we have »

 F(x)—F(x)\ |2+
K(———a——————) H(dx, dy)

E\W .l éca;‘“""’”S | y—m(xq)| 2+

2+9'

Bl FG) ¥ g

_ca—(2+6')/2gh( ){K(

sca—wg B(F Y (F (xg)— )| K ()| > du
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where

h(x)=E{|Y,—m(x)|**?| X=x}.
Thus, is obtained. d
Proof of According to [Lemma 4.4, to prove [Theorem 2 it remains
to show

63 L=(—2)"[ty-motk(FE=EDY b ax, dy)—Hdx, dy)
D
—> N(0, a3).

Let p=[n?*?], g=[n'*] and k=[n/(p+q)] where [s] denotes the largest integer
7 such that j<s. Put
. G=-13(P+)+p W ‘—1 b
= e War G, R,
jp+ed

C= > Wae (=1, -, k),

1=j-1D(P+P+P+1

n
Ck+l= Z Wni.
I=R(Z+P+1

We rewrite I; as follows:

T = §;—> 0 in probability.

So, by Lemma 18. 4.1 in Ibragimov and Linnik (1971) to show (5.3) it suffices
to prove

1 & DN ,
Tn—gﬂf_') ©, a3).

Since {7;} is ¢-mixing with 3 (54+1)’¢'/*(j)<eo, so

| B{exe z't:/% > nj)}—[E{exp it }]k’__{ckqi(q):o(l)

Jj=1

(cf. Lemma 2 in Billingsley (1968) page 171).
Hence, to show (5.3), it is enough to prove
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(5.4) [E{exp ztj; )}] —> gt%2

By Lemma 5.1 and the definition of p

|t|z+6

e Y Sy

2+o(|t] 2+"n‘<2+5’/"a;5/2) .

t2
" 2n

So, using the facts that na%—oo and

. kEn:
llm—ﬁ’—=o§,
n—co n
we have Thus, the proof is completed. O

Proof of [Theorem 1. Since any *-mixing sequence is ¢-mixing, so by
to prove it is enough to show

lim —E( 3\ Wae) =Var (¥, X:xo)gl_ll{z(u)duzo?.

n—co N

Now, we evaluate

E(ZWni)—_—é} EW%i+2 3 EW,.W,;.

1si<jsn
By Lemma 3.4 and the fact that EW,;=0, we have

|EW oW sl Scdp(|i—jDE|W as | E [Waj .
As

EW il seaz [l y—meeol |K(EEZED) g, )

gea:{zg’_l|m<F-*<F<xo>—uan>>—m<xo>| | K ()] du
<cay?
for all n sufficiently large, so using the fact that 3¢(k)<co

'%E' éwm ‘_Ewe,|<

On the other hand, by the method of the proof of

EW?, —> Var(YlX—xo)S K¥w)du.
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Henc, we have

A 1 n 2 1
lim —E( 2 WM) =Var(Y| X=xo)s_lK2(u)du .

n-oo N

Thus, the proof of is completed. O

Proof of The proof is identical to that of in Stute

(1984) and so is omitted.
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