YokOHAMA MATHEMATICAL
JourNAL VoL. 36, 1988

L-TRANSVERSE CONFORMAL AND KILLING FIELDS
ON COMPLETE FOLIATED RIEMANNIAN MANIFOLDS

By
TOSHIHIKO AOKI and SHINSUKE YOROZU

(Recived September 16, 1987; revised April 25, 1988)

0. The study of transverse fields on compact foliated Riemannian manifolds has
been done in [4], [9], and others. In the case of foliations by points, the
results are well-known ones ([8], [17]). Our main aim is to study transverse
fields on complete (non-compact) foliated Riemannian manifolds. To do this,
we have to define the notion of “L2-transverse fields”, that is, transverse fields
with finite global norms. L2-transverse Killing fields are already studyed in
and [22].

In this paper, we discuss L:-transverse conformal and Killing fields on
complete foliated Riemannian manifolds such that the foliation is minimal and
the metric is bundle-like with respect to the foliation.

We shall be in C*-category and deal only with connected and orientable
manifolds without boundary. We use the following convention on the range of
indices: 1<7, j<p and p+1<a, b, ¢, d<p+q. The Einstein summation con-
vention will be used.

- Our results are as follows:

Theorem A. Let (M, gu, F) be a (p+q)-dimensional Riemannian manifold with
an oriented foliation F of codimension q and a complete bundle-like metric gy with
respect to F. Supposet that F is minimal and ¢=3. Let s& V(F) be an Li-transverse
field of F. Then s is a transverse conformal field (t.c.f.) of G if and only if

Aps=pp(s)+ (1——2—) gradpdivps.

Theorem B. Let (M, gy, F) be as Theorem A. Suppose that F is minimal.
Let s&eV(F) be an L*-transverse field of F. Then s is a transverse Killing field
(t.K.f.) of F if and only if '

Aps=pp(s) and divps=0.

Theorem C. Let (M, gu, &) be as Theorem A. Suppose that F is minimal
and q=3. Let s be an L*t.c.f. of . Jf pp is non-positive everywhere on M,
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then s is D-parallel. If pp is non-positive everywhere and negative for at least
one point of M, then s=0,

Theorem D ([22]). Let (M, gu, F) be as Theorem A. Suppose that F is
minimal. Let s be an L*t.K.f. of . If pp is non-positive everywhere on M,
then s is D-parallel. If pp is non-positive everywhere and negative for at least
one point of M, then s=0.

The compact versions of the above results are given in [11].
If se¥(g) is D-parallel, then |s|=gq(s, s)=constant. Thus, by Theorem
D, we have

Theorem E. Let (M, gu, F) be as Theorem A. Suppose that F is minimal
and ¢=3, and pp is non-positive everywhere on M. Let s V(F) be an L-t.c. .
of . If M has infinite volume, then s=0.,

Theorem F. Let (M, gu, F) be as Theorem A. Suppose that F is minimal
and pp is non-positive everywhere on M. Let s V’(&’) be an L*t.K.f. of &. If
M has infinite volume, then s=0.

If & is a foliation by points, Theorem E and Theorem F have been given

in [20].

1. Let (M, gu, 9) be a (p+g)-dimensional Riemannian manifold with a foliation
F of codimension ¢ and a complete bundle-like metric gy with respect to &
([13]). We assume that & is an oriented foliation ([14]). Let V be the Levi-
Civita connection with respect to gy. Then the tangent bundle TM over M
has an integrable subbundle E which is given by 4. The normal bundle Q of
g is defined by Q=TM/E. We have a splitting ¢ of the exact sequence

T
(1.1) 0— E—TM—=Q—0.

o
where ¢(Q) is the orthogonal complement bundle E* of E in TM ([3]). Then
gx induces a metric gg on Q:
(1.2) golt, w)y=gu(a(t), a(u))
for any t, usl'(Q).

In a flat chart U(x? x?) with respect to & ([13]), a local frame {X;, X,}=
{0/0x*, 0/0x*— A}d/0x’} is called the basic adapted frame to & ([9], [12], [16].
Here A} are functions on U with gu(X;, X,)=0. It is trivial that {X;} (resp.
{X.}) spans I'(Ely) (resp. I'(E*|y)). From now on, we omit “|,” for simpli-
city. We set
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gif:gM(Xi) X]')y gab:gM(Xa, Xb)
(1.3) (gM)=(g:i)", (&™)=(gan)"
to=m(Xa).

We remark that ge(ta, to)=gaqo.
A connection D in @ is defined by

Dxt==([X, Y] if Xel'(E) and tel(Q)
with z(Y)=t

Dxt=r(NxY,) if Xel'(E*) and tel'(Q)
with YV,=a(®)

(1.4)

([31). Then we have

Proposition 1.1 ([3]). The connection D in Q is torsion free and metrical
with respect to gq.

Let @* be the dual bundle of Q. The dual connection of D in Q* is
denoted by D*. Q* has the metric induced from gy.

Definition 1.2 ([3]). Let r=g%n(Vx,X;). Then 7 is called the ténsion field
of &. The foliation & is minimal if v=0.

Let V(Z) be the space of all vector fields Y on M satisfying
(1.5) Y, Zlel'(E)

for any Z<I'(E). An element of V(&) is called an infinitesimal automorphism
of & ([4], [10]). We set '
(1.6) V(@ ={telQ)|t==Y), YEV(F)}.

It is trivial that te V(%) satisfies Dyt=0 for any XeI'(E).

Let AT(M) be the space of all »-forms on M. We have the decompositions
of AT(M) and the exterior derivative d with respect to &:

1.7 N(M)= 3 A*HM),
(1.8) d=d’+d"+d"

(6], [13], [16], [18]). Let A"(M) be a subspace of A®"(M) composed of d’-
closed (0, r)-forms, that is, the space of all basic (0, »)-forms on M ([6], [13].
An operator d: A"(M)—AT"Y (M) is defined by d=(—1)P+orH+xg*  where *
denotes the Hodge star operator. Then é has a decomposition: 6=46’+4”+4d".
The operator ¢” is define by
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1.9) 37 = (— 1) P+ + D1k Gk

on A"(M) ([16], [18].
Let Xg be the characteristic form of & given by Rummler ([5], [14]). Then
we have

Proposition 1.3 ([5], [14]). It holds that
dlg (=d"Xa)=(—1)"*"Aas Ak

where k denotes the mean curvature form of F.

The mean curvature form & of & is parallel along the leaves of & if .£xx=0
for any XeI'(E), where Ly denotes the Lie derivative operator with respect
to X ([5]). '

Proposition 1.4 ([5], [14]).
(i) & is minimal if and only if £=0.
(ii) & is parallel along the leaves of F if and only if d’k=0.

An operator *”: A"(M)—A""(M) is defined by

(1.10) *o=*Xs \ Q)

for any ¢=A"(M). Then we have

(1.11) *¢=(—1D"Aa \*"¢

for any ¢=A(M) ([5]). We define an operator 9 : A(M)—A""'(M) by
(1.12) By =(— Lypcrisanrgmar

(51, [15D.

Proposition 1.5 If the mean curvature form k of F is parallel along the
leaves of F, then
5”¢=a£’¢+(_I)Q(ri-l)*”(,c/\ *”¢)
for any ¢ A"(M).

Corollary 1.6 If & is minimal, then

6”¢=5£’¢
for any ¢ A" (M).

Let ¢, > be the local scalar product on I'(Q) or I'(Q*). The local scalar
product may be exteded on I'(Q"1QR2Q*). Let I'y(Q) (resp. I'o(Q*)) be the
space of all sections of @ (resp. Q*) with compact supports. Let <<, >> be
the global scalar product on I'(Q) or I'o(Q*), and |- [|=<<-, ->>/%. The global
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scalar product may be also extended on I'\(QM1QR"2Q*).

On A™(M) and A}M), we have also the local scalar product <, > and the
global scalar product <<, ») that are defined by the natural way.

Let L*Q) (resp. L*Q*)) be the completion of I'o(Q) (resp. I'o(Q*)) with
respec to the global scalar product <<, D).

Definition 1.7 ([19], [21]). An element s L¥Q)N\I'(Q) is called an L2-trans-
verse field of 9. '

If t is an L*-transverse field of &, then the dual f of ¢, thatis #(-)=gq(t, -),
belongs to L*(Q*)NI'(Q*).

Definition 1.8 ([13], [16]). A function f on M is called a foliated function
if Xf=0 for any XeI'(E), that is, d’f=0.

We remark that A°(M) is the space of all foliated functions on M. Let
C=(M) be the space of all functions on M.

Definition 1.9 ([22]). An operator divp: I'(Q)—C=(M) defined by divpt=
g%°go(Dx, t, m(Xy)) is called the transverse divergence operator with respect to D.
We remark that if = V() then divpt is a foliated function on M.

Definition 1.10 ([23]). The transverse gradient gradyf of a function f vwith
respect to D is defined by gradpf=g®*X,(f)n(Xp).
We remark that if f is a foliated function on M then gradpfe V().

Definition 1.11 ([5]). The transverse Lie derivative 6(Y) with respect to
YeV(F) is defined by @ )t==([V, Y,]) for any t=I'(Q) with =Y ,)=t.

- Definition 1.12 ([8], [11]). If XeV(F) satisfies O(X)ge=21-g¢, then
s=n(X) is called a transverse conformal field (t.c.f.) of §. Here 1 is a function
on M.

Proposition 1.13 ([11]). If s==(X)eV () is a t.c.f. of F with B(X)ge=
22-gq, then 2=(1/q)divps is a foliated function on M.

Definition 1.14 ([4], [9]). If X€V(F) satisfies O(X)ge=0, then s==n(X)
is called a transverse Killing field (t.K.f.) of 4.

Let Rp be the curvature of D. The curvature R, of D satisfies #(X)Rp=0
for any XeI'(E), where 7 denotes the interior product ([3]).

Definition 1.15 ([4[). The Ricci operator pp: I'(Q)—I'(Q) of F is defined
by '

pp(t)=g*Rp(a(t), Xa)m(Xs)
for any tel'(Q). _
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Definition 1.16 ([4]). An operator Ap: I'(Q)—I'(Q) is defined by Aps=
—8°{Dx,Dx,5—Dvy 5, st —8{Dx;Dx;s—Dvy, x,s} for any sel'(Q).

We remark that the_original definition of Ap acting on I"(M, Q) is given
by Ap=d¥%dp+dpd} (for the definitions of I"(M, Q), dp and d}, see section 3).

Proposition 1.17 ([11]). If s€V(F) is a t.c.f. of &, then it halds that
2 .
Aps=D, s+ pD(s)+(1———q—) grad,divps.
Proposition 1.18 ([4], [9], [11], [21], [22], [23]). If se P(F) is a t.K. 1.
of &, then it holds that
Aps=D,)s+pp(s) and divps=0.

Let x, be a fixed point of M and p(x) the distance from x, to x&M. We
set

(1.13) BQR2ER)y={xeM|p(x)X2k}
for and £>0. A function g on R satisfies the followingiproperties:
| 0<p(»<1 on R
(1.14) p(n=1 for y=1
#(3)=0 for y=2.
Then we define a family {w,} of Lipschitz continuous functions on M:
(1.15) we(x)=p(p(x)/ k) k=1,2, -

for any xeM. The family {w,} satisfies the following properties:

0w, (x)L1 for any xeM
supp w,CB(2k)
(1.16) wi(x)=1 for any x& B(k)
aiglaw,,=1
ldw,| SCk™! almost everywhere on M

where C is a positive constant independent of & ([1], [2], [6], [18], [19], [20D.

2. Let {X;, X.} be the adapted frame to ¢ and {e¢f, ¢*} the dual frame to
{X;, X,}. Let {t;} be the frame on Q such that n(X,)=t,, and let {f,} be the

dual frame to {t,}, that is, f%(u)=ge(ts, u) for all usI(Q). Since Dxt,=0
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for any XeI'(E), we have that t,= V(). Moreover, we notice that o(t,)=X
and D}t“—O for any XeI'(E).

Let F(Q*) {neF(Q*)ID’j{»n—O for any XEF(E)} By the same way, we
may define the spaces F(A Q*). ‘

We define a map & : I'(Q*)— A"} M) by E(5)=7.e® for any p=7.i°€I'(Q™).
It is trivial that E(f(Q*))=A‘(M ) and 5 preserves the local scalar products
<,> The map £ may be extended to a map: I'(A"Q*)—>AT(M) (say, the
same letter 5). We notice that E(f’(/\’Q*))=A’(M) and Z(f)=f for any
fel(ANQ*)=A"(M)=C=(M). Then we have

AY) Uy, -, u)=¢(a(uy), -+, 0(u,))
for any ¢=A" (M) and u,, -, u,=I'(Q). We define operators d”, *7 and §” by

C A
" — -1 /=i W =1 k7
J =M od’oa * ] o ¥ oM

(2.2)

§r=5-13{5.

Then we have, for nef(Q*),

2.3 d’n(t, u)=(D¥qn)(w)—(D¥u>)n(®)
2.4) 679 =—g™ D%, n)(m(X,)
(2.5) - §"p=0y(E(n)).

The operator §” is the adjoint operator of d” acting on f’(/\’Q*) with respect
to <<, M.

Proposition 2.1 If F is minimal, then

dME@N=—*6"7
for any 77€I~"(Q*).

Proof. We have
d*(E@N=d"(*(E()))

=—*3"(&(n))
=—*3{ (5 (n)) (by [Corollary 1.6)
==y Gy (25).

We remark that J”f=X;(f)f“ and E(d”f)=d”f for any feC=(M).

Proposition 2.2 ([1], [2], [18]). . For any ﬂEf’(Q*), it holds that -
“d”wh®77“g(2k)§C2k_2“’7”§(2k)
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where |- ||Berr=<<", '>>B(2k)=SB <+, ¥

(2R)
In fact, we have

1dwiQ@E M Ben=C*k 2| EMIier  [11 [2ZD
Ild”wk®5(7])li%m>§Hdwk®5(77)ll%m>
||J”wk®77||§czk>=||d”wk®5(77)l|§(zk>
”5(7])”7?(21;):”77”5(“)-
For pel(Q*), we have winel'y(Q*) and
2.6) d"(wip=wid"n+2w,d"wi Ay almost everywhere on M
Q2.7 5”(w§1))=wié"’r;—;”(Zwkd”wk/\?"”n almost everywhere on M.

Hereafter, we omit the term of “almost everywhere on M” for simplicity.

We remark that, for any s LXQ)N\V(F) and EeL’(Q*)mf(Q*), WSS
and w,£—¢& as k—oo in the strong sense.
For any sV (), we define an element B,=I'(R*Q*) by

2.8) Byt, w=(6()go), u)"‘%‘(divus)'ge(t, u)
for any t, ucI'(Q). Then we have

Proposition 2.3 ([11], [20]). It holds that
Bs(t; u)zBs(u) t); gabBS(ta’ tb)=0,
g“st(Dan, tb)=<Bs: Bs>,

2% D% B,)ts, s>=<—ADs+pD<s)+(1—%) gradpdivps, 5.
Where <B,, Bs>=gabngBs(ta, tc)'Bs(tb; td)-
Proposition 2.4 ([11], [17]). If B,=0, then s is a t.c.f. of &.

The above propositions are proved by the direct calculation.
We set

2.9) =B, )
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- for any t=7'(Q). Then we have nef’(Q*) and
(2.10) 5" (win)=wis" n—%"Qw,d"w, AN¥"p)
=—wig®™ (D%, B,)ts, s)—wig®*By(Dx,s, t»)
—¥1Qu,d" wy NF ).

Let § be the dual of se¥(F), thatis, 3(t)=gq(s, ¢) for any tI'(Q). Then
seI'(Q*). We set

(2.11) BD(S)=—ADS+pD(S)+(1—'§—) gradpdiVDs.

If 4 is minimal, then, by Stokes’ theorem and [Proposition 2.1, we have

(2.12) - o={ de@winy=—{ .
Then we have

Proposition 2.5 ([20]). Suppose that F is minimal. Let s€V(F) and § the
dual of s. Then

KwyBp(s), WaS>Dpcary+<Kw, By, wrBDdser
+4Kd"w, X3, Wi B>>perry=0.

Proof of Let seV(F) be an Li-transverse field of F and
satisfy

ADs=pD(s)+(l—%) gradpdivps.

Thus we have By(s)=0. By Propositions 2.2 and 2.5, we have
1w Byl Bezrs
=—4d" @8, wiB:)Ypar
<418"w, @ acensllws Bl scars

. 1
=2{4)d"w,R®3 ”%(2):)+_4_”ka8”§(2):)}

1
éscz'k'2”s”%(zk)'l'—z"”kas”%(zn-

Thus we have
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1
| we Bl 3ar><8C?- k2| sl Bcar>-
2

When k—oo, we have |B,|*=0. Theerefore, we have B,=0. By
24, sis at.c.f. of §. The converse is [Proposition 1.17,

If we set divps=0, then Theorem B is proved.

3. Let Q7(M, Q) (resp. Qz(M, Q)) be the space of all Q-valued r-forms (resp.
Q-valued r-forms with compact support) on M ([3], [4], [21]). On QiM, Q),

we may introduce a global scalar product <<, »> ([4], [2I]). Let dp be the
exterior differential operator: Q7(M, Q)—Q27*'(M, Q), and an operator

d}: "M, Q)—-27Y(M, Q) is also defined ([3], [4])). We note that d} is the
adjoint operator of d, with respect to <<, »> ([21]). It is trivial that

(i) an element of I'(Q) is regarded as an element of Q°M, Q), that is,
there exists an identification: I'(Q)—£2°(M, Q),

(ii) the bundle map n: TM—Q is an element of I''(M, Q),

(iii) the identiﬁcation: (@), <<, DX (%M, Q), <, »>) is isometric,
(iv) dps(X)=Dys for any s=I'(Q) and Xel'(TM).

Proposition 3.1 ([4], [21]). - For seV(F), it holds that
Aps=d}dps.

For any seV(%), we have wisel,(Q) and

3.1y dp(wis)=widps+2w,dw Qs
[21]). We have
3.2) , [d"we| S dw,|

so that, by (1.16),

Proposition 3.2 ([1], [2], [21], [22]). For any s V(%) it holds that

d” wp@slBzer<C*2~?| sl Zcerr.

Proposition 3.3 ([23]). For any seV(g), it holds that
KAps, wis>Ppar>
=wDs, waDs)>par+2KwiDs, d"wirQs>>scr
In fact, we have )
<KAps, wisPDrae>
={Ds, D(wis)>> s (see [23]
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=§B<2k)gang(DXas: Dy (wis)dM

and
Dxy(wis)=2ws - Xo(wa)s+wiDy,s

=2ws-d"wa(Xp)s+wiDy,s.

Now, by the Schwarz inequality and [Proposition 3.2, we have -

3.3 [2{wDs, d"wrQs>Dpcansl

1
S5 lweDsll3er+2C2R 2|8 Zears

for any seV(g).
Since, for any se¥(9),

(3.4 div(wia(s))=divp(wis)— go(wis, 1),
we have

Proposition 3.4 Suppose that F is minimal. Then

[, divo(wis)dM=0
for any seV(a).
Moreover, for any seV(F), we have
(3.5) divp((widivps)s)
=2go((w, divps)s, gradpw,)+ go(wis, grad,divys)+(w, divps)?

@€22], [23).

Proof of Let s€V(F) be an L-t.c.f. of &, thatis, s satisfies

2 . :
ADs=pD(s)+(1——(}—) gradpdivps.
Then we have
(3.6) {KAps, WESDDBeaky

=pal), wis)ncan+(1= 2 K<grads divss, wisHPsarn

Since & is minimal, [Proposition 3.4 and imply
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(3.7 Kgradpdivps, wisd>dscr>

=—SB(M2gQ((w,, divps)s, gradpws)dM
—S (s divpsyd M.
B(2k)

By the Schwarz inequality for the local scalar product ¢, >, we have

|2go((w,divps)s, gradpw,)|
=|2{(w divps)s, gradpw,) |
Z2|(wsdivps)s| - |gradp w,|

<2CE | (w,divps)s| (by (1.16) and (3.2))
=2|w,divps|-|CE™!-s]|

g—;—(w,, divps)*+2|Ck-!-s|?

=-é—(w,,divDS)2+202k'2<S, .

Thus we have

(3.8)

Caay

2go((w, divps)s, gradpw,)d M

B(2k)
1
2
By [Proposition 3.3 and 3.4, [3.3), [3.6), (3.7) and_ (3.8), we have

KwiDs, weDs)»)pczr>
=< po(s), WES)D By —2KwDs, d”w QDD pcr>

S (e diVps)d M+2C2k 25| Bess
B(2k)

IA

2 .
—(1—?)S8(2 k)ng((wk divps)s, gradpw)dM

—(1—-2—)SB(2k)(wk divps)td M

SKpo(s), wisddpaw+ 12w Ds, d”"w,QS>Dpcr!
2

1-=

+( q)

—(1—%)&3(“)(% divps)?d M

SB(“)ng((wk divps)s, gradpw,)d M

1
=po(s), w£s>>B(2k)+—2—” Wi Ds|Beary+2C2R72||S|| Beers
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7 (1= 2] 0 0 Vo M4 21— 2)C sl
—(1—%)&3(”)(% divps)dM

=L pp(s), w§s>>8(2k)+%” Wi Dsl B>

2
+2(2—2)Ck lslBan

1/, 2 o
—-2—(1—?)§B(Qk)(w,,dw,,s) M.
Thus we have

1 2
3.9) 7”ka5”§(21¢>§_<<1013(3), w%3>>3<2k)+2(2—;‘)czk—2“3“123(“)
1 2 . .
-—7(1—?)53(“)(10,, divps)tdM.
Since 2 2——2—)C“k‘2||s|l§<2k>—>0 as k—co and pp is non-positive everywhere on
M, we have
limsup{(( (), wisd) +2(2—-2—)C2k‘2|]s||2
1St Pp\S), WkS,)BC2R) 7 BG2k)

32, mamorase o

Thus, as k—oo, we have that Oéé—lleHng. Therefore, we have Ds=0, that
is, s is D-parallel.

If pp is non-positive everywhere and negative for at least one point of M,
then implies, as k—oo, that < py(s), s)>=0. Therefore, we have s=0.

If we set divps=0, then Theorem D is proved.

Remark; Recently the authors were informed that part of our results
were also proved by S. Nishikawa and Ph. Tondeur [Transversal infinitesimal
automorphisms of harmonic foliations on complete manifolds, Preprint].
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