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Introduction.

James space J[11, 12] is the first example of a non-reflexive Banach space
isomorphic with its bidual J**. Andrew and Green have studied J as a
Banach algebra. James and Lindenstrauss proved that every separable
Banach space Z can be realized as the quotient space of the bidual E** by E
for a suitable Banach space E. Bellenot [2] defined and studied the J-sum of
Banach spaces and obtained similar results which have the advantage that if Z
is a concrete example then so is E. The purpose of this paper is to define and
study J(X,), the J-sum of a sequence (X,) of Banach algebras and apply them
to obtain Banach algebra versions of such results. We use the theory of de-
compositions in Banach spaces [19, 20] and also orthogonal bases developed by
Husain and others [6, 7, 8, 9].

1. Notation, Terminology and Basic Theory of Schauder Decompositions of
Banach Algebras.

For the basic theory of Banach algebras we refer to [3] and for that of
bases and decompositions in Banach spaces to [18, 19, 20] rather than going to
original sources. As in [19, 20] for a subset S of a Banach space X, [S]
denotes the closed linear span of S in X and we say that X is topologically
spanned by S if [S]=X. All our spaces will be over the field R of real
numbers.

Let (E, |-]]) be a Banach algbra, E* its dual space and E** its bidual i.e.
the second dual space of E. E** can be made into a Banach algebra under
the Arens product and the canonical map ¢—& is an isometric monomorphism
of E into E** Let L(E) and B(E) be the algebras of linear mappings and
bounded linear operators on E to itself.

For a locolly convex algebra E, let @5 be the space of (non zero, continu-
ous) multiplicative linear functionals (in short, mlf’s) on E with the weak*
topology given by basic neighbourhoods of the type
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V(g; S; e)={¢pcPs: |¢(»)—d(»)| <e for all yeS}

where S is a finite subset of E, e>0 and ¢=®p.

We now come to the basic theory of orthogonal Schauder decompositions
in Banach algebras most of which follows in a natural way from the theory
of Schauder decompositions in Banach spaces as presented in [19,20]. T.
Husain and others are developing a detailed theory of orthogonal decom-
positions in topological algebras but we shall confine our attention to the follow-
ing independent development of ours which is to be used in the next section.

(1.1) Let <G,> be a sequence of non-zero closed subalgebras of E such
that for n, meN, the set of natural numbers, we have G, -G,={0} for n#m
i.e. G,’s are mutually orthogonal. Let D(G,)= 1"%6,; be the algebra of sequ-

nc

ences <{y,> with y,€G, for each nN under pointwise operations. It is
commutative if and only if each G, is so. For y=<(y,>€D(G,) and jEN let
p{y.>=y; and let y» be the sequence given by (y?),=y, for n<s and
(9),=0 for n>;. Then y“’—y in the topology 7, of pointwise convergence
on D(G,).

Let Dy(G)={{y.>ED(Gr): y.,=0 for all but a finite number of n’s},

Co(Gn)={<yn>ED(Gn). Yn —> 0 in E}

and D.(G,)={{y.>ED(G,): {y»y is bounded in E}. Then D.(G,.) endowed with
the norm ||[<¥,>ll-=sup|/y.|l is a Banach algebra and C.(G,) is a closed ideal in

it. Also Dy(G,) is a dense ideal in (Co(G.,), ||-]~) as well as in (D(G,), T,).

For y=(y>=D(C) let Iyl=sup] 31 7,
By I11. 15.2 [20] the space Dy(Ga)={<y.>E D(G4): X y» converges

in E} endowed with the norm ||-|| is a Banach space and also by Discussion
on p. 500 [20], the space Dy(Gr)={y=<{y.>=D(G,): |y]| <o} endowed with the
norm ||-|| is a Banach space.

Let y=<{y.>=D(G,). Then

(i) Irl-=2]yl,

(ii) y=Di(G,) if and only if (¥} is a Cauchy sequence in (Di(G,), |-}
if and only if [|y‘?—y||—0 and

(iii) yeD,(G,) if and only if <y*?> is a bounded sequence in (Dy(G,, |-

Consequently D¢(G,) is a dense subspace of (D,(G,), ||-Il) and D(G,)C
Dy(G,)CDG,). Further if for each n, S, is a dense subset of G, containing
0 then Dy(S,)={{y.>ED|(G,): y,€S, for each n} is dense in D,(G,).

It is an easy consequence of mutual orthogonality of G,’s that Dy(G,) and
Dy(G,) are algebras, D,(G,) is an ideal in D,(G,) and |-| is submultiplicative
Therefore, (D(G,), |-1) and (Dy«(G,), ||-]) are Banach algebras and D,(G,) is a
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closed ideal in (Dy(G,), |-]D.

So we can talk of right (left) multipliers on D(G,) to itself and Di(G,) to
itself and D}(G,) to D4(G,) (j, k=1, 2, c0; (§, k)#(c0, 1), (o0, 2)).

As noted in the proof (3) of I11.15.1 [20], the sequence <F,> of
subspaces of D,(G,) defined by F":,QVHJ' where H;={0} for j+#n and H,=G,

is a Schauder decomposition of D,(G,) which is also monotone ([20], Definition
I11.15.13). The fact that D,(G,) is dense in (Dy(G), |I-]) follows from this
observation as well.

If <G,> is a Schauder decomposition of E with <v,> as the associated
sequence of co-ordinate projections then (G,> can be thought of as an algebraic
Schauder decomposition of E in the sense that y,’s are homomorphisms.

Further, using III. 15.3 D,(G,) is isomorphic to E by the

mapping <y,,>—>;21 y; and |- and |||-]]] are equivalent in E, where |||x]|||=
I<vax>ll.  Clearly [|-[I=|ll-ll on G, for each n. If |-|=|||-|l, then »=
sup _élv,- =1. Thus [v]|=1 and |v,||<2 for each n. Since v, is a projection,
n J=

lvill=1, and, therefore, |v,||=1. Consequently <G,> is monotone. From now
onwards we assume that (G,) is monotone.

For each =, let v} be the adjoint of v, defined on E* to E* and v** the
adjoint of v} defined on E** to E**, Further for n, mcN we have YpVm=
OnmVn, VEVE=0,mv¥ and v¥*u¥*=45,,v¥* By Theorem 6.1 of [4] each v¥* is a
homomorphism. The following proposition gives a little more.

(1.2) Let m, neN. Then
@) for @, QS E**, (WE*@)WE*D)=0,nVEX($¢),
(b)  (VR*E**)(WE¥E**)C0nmyk* E**:

Proof. It is enough to prove (a).
Let feFE*. Since for x, y=E

(”nx)(ymy)=5nm(ynx)(”ny)zanmvn(xy),
we have that
vE(f(nx)=0,m(v¥f)x  for each x in E.
So

(WHOERD) N x)=P(E(f(vax))

=¢‘(5nm(V’ﬁf)x)=5nm(¢(V’ﬁf))(x) for each x in E.
Therefore,

QTN D)) =0 m$(POES))
=0 m(VAH( PPN ).

Hence
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(VAP RP)=0nm3* ().

By Proposition| III. 15.6(c) [20], the map 7 on E** defined by r(¢) Qui*gy is a
norm-decreasing map of E** onto the Banach space
| <o}

equipped with the norm ||<¢n>||=sup” > ¢,”. By 1. 15.13 [20], = is
n J=

an isomorphism (or equivalently r is one-one) if and only if <G.) is shrinking
and in that case monotonicity of <G,> and [Proposition] III. 15.6(b) [20] give that
t is an isometry: Moreover, by [Proposition| III. 15. 7(b)- [207, for each n, v¥*(E**)
can be identified with G¥** via the linear map v¥*(@)—2. 4 given by
3., s(f1G)=0¥*¢)f)=¢(kf). It can be easily shown that 2, 4(f|Ga)=
(**) /)G (3], p. 50) for ¢ in E** and f in E* So using (1.2)
above we have that 3, 42, y=2n 44 Therefore, vF*(E**) and G7* can be
identified as Banach algebras as well via the same map. Thus we have the
following

Dy(Gn)=Dow*EX={(gn>: pn v

(1.3) Theorem. If {G,> is a monotone shrinking decomposition of E then
E** can be identified with Dy(G,) as a Banach algebra. If, in addition, each G,
is reflexive then E** can be ident: fied with Dy(Gn).

We note some simple properties of D,(G,) and Dy(G,) which have to be
often used in sequel. We shall write D,, D, D, D;, D and C, in place of
DG, (D(Gr), T), (DG, I-1), (Do(Gr), 1), (Da(Ga), |1 llw) 20d (Co(Gn), |- llex)
respectively.

(1.4) Remarks. (i): <{y.>€D is an idempotent (a right identity, a left
identity, the identity) in D if and only if for each n, y» is an idempotent (a
right identity, a left identity, the identity) in G.

(ii) <y.)> is an idempotent in D, if and only if {y.>eD, and for each
n, ¥, is an idempotent in G,. In particular, D; has no right or left identity.

(iii) If <y,>ED is such that for each n, y, is (a right, a left, the) identity
in G, then <y¥) is a (right, left, two-sided) approximate identity for D, which
is further bounded if and only if <y,) is in D,.

(iv) D, has a right identity implies that D, has a bounded sequential right
approximate identity. In view of (1.3) above this may be thought of
as a little improvement in this particular case of the well known result ([3],
p. 146 and [5]) which says that if the bidual of a Banach algebra A has a
right identity then A has a bounded right approximate identity. It is note-
worthy that the bidual of a commutative Banach algebra need note be commuta-
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tive ([5]) but Theorem 1.3 above gives that E** is commutative if FE is
commutative and each G, is reflexive.

(1.5) Proposition. The spaces Pc,, Pp and Pp, of multiplicative linear
functionals on Co,, D and D, with their respective weak* topologies respectively
can all be identified with the disjoint topological sum of Dg,’s via

\Afbat fEDs,).

Proof. Since D,(G,) is the linear span of F’s and F;F,Cd;,F;, the set of
multiplicative linear functionals on D,(G,) can be identified with {fep;: f is a
multiplicative linear functional on G;, jeN}.

Let E denote Co, D or D,.

Since for each 7, p, is continuous on E onto G, and D(G,) is dense in E
we have the desired identification set theoretically.

We shall now show that the expression on the right is a disjoint topo-
logical sum: ’

Let ¢=f-p; for some fediaj, some jEN. There exists x,EG; such that

f(x;)#0. Let 0<e§-l-f(7le. Let x=<0n;x;>». Then x&Dy(G,) and for n+7j,

for all g€g,, g°pa(x)=0 so that [(gep.)x)—(fp;Xx)|=]|f(x;)|=2e.

This shows that each @g,°p; is open in @r Since the sets Pg,op; are
mutually disjoint and their union is @ we have that each D, p; is also closed
in @;. The fact that the topology induced on D, p; by that of Pg is same as
that induced by that of @g ; follows from the observation that for a nonempty
finite subset S of E, >0 and ¢=f-p; with f& P,

| V($, S, )P 0s=V (S, b°S, &)< b.
(1.6) Given a <T,.>enng(Gn), we can define a linear mapping T=B(T,>)

on D to itself by T(Kx,))=<Ta.x,>, T leaves each F, and therefore, D,
invariant; further, it is a right (left) multiplier ([14], [16]) if and only if each
T, is so. In case T,=B(G,) for each n, T is the only linear mapping which
is continuous on D=(ID(G,), t,) and coincides with T, on G, (identified with
F,). In case T|Dy(G,) is continuous on (D«(G,), |-|) we have that TD,CD,
and T|D, is continuous on D, with ||T|D,||=||T|D«(G,)|. Since D(G,) is
dense in D,, this further gives that TD,CD, and T|D, is the only continuous
extension of T|Dy(G,) to D,. -

On the other hand if T is a linear mapping on D to itself leaving each F,
invariant, the restriction of T to F, induces a T, L(G,), and if T is continu-
ous on D to itself then T, B(G,) for each n; we shall write <T,>=6(T). In
case each G, has no right (left) divisors of zero, a right (left) multiplier T on
D to itself or on D; to Dy, j, k=1, 2, oo; (5, k)#(c0, 1), (oo, 2) leaves each F,



6 S. KIRAN AND A.l. SINGH

invariant. Further, in this case a right (left) multiplier T on D, to itself is
zero iff T'|D, is zero.

(1.7) Proposition.

(i) If T is a bounded linear operator on D; to D, (j, k=1, 2, o) leaving
each F, invariant them for ecah n, T, is bounded and |T.|Z|T|. Further
TD,CD, if j=k=2.

(ii) Let <T>e H B(G,) and T= ﬁ((Tn>)

@) If Tl is bounded then T defines a bounded linear operator on Do to
itself and ||T|=sup||T.].

) If {IT.l><!l, then T defines a bounded linear operator on D, to itself,
TD,CD; and |T|S2 3, ITl.
- 1 1

(¢) Let 1<=p, g, r<oo be such that $+?=—71;, suppose that <G, is p-Besselian

with constant ¢ and r-Hilbertian with constant C ([20], 1. 15.16). If
I TAll>El, then T defines a bounded linear operator on D, to itself, TD,CD, and

ITI S-S IKT e

Proof. (i) and (ii)(a) follow from the observation that for V1S Gny ha=0,
NFENo, Rag=Yn,
[ Yal=I<R D= <A

For (ii)(c) we first note that —+——1—-1 if r#00 and p=¢g=c0 if r=co

so the result follows after simple computations using IIL. 15.16 [20].
(ii)(b) follows from (ii)(c) since every monotone decomposition is co-Besselian

with constant c=% and 1-Hilbertian with constant C=1.

We shall refine these results in some special cases in the next section.

(1.8) Remarks. If each G, is one-dimensional and G3=G, or, equivalently,
if each G, is spanned by a single x, with x2=x,+#0 then we have an orthog-
onal base <{x,> for E in the sense of ([6], [7], [8] and [9]) (and not of [19].

Many properties and examples of such bases have been given in these
papers. To mention a few E is commutative and semi-simple, and the maximal
ideal space of E consists of coordinate functionals and can thus be identified
with N. Also obviously since E has no right or left divisors of zero i.e. it is
without order and therefore as in ([16], Theorem 1.1.1 or [14]) we have that
every multiplier on E is bounded. Further we note that for each n, L(G.)=
B(G,) can be identified with R via T,eots, Ta(¥a)=ta¥n. T=p(t.)) gives a



THE J-SUM OF BANACH ALGEBRAS AND SOME APPLICATIONS 7

linear mapping of E to itself if and only if the corresponding <¢,> is a multi-
plier sequence of E ([19], Definition 5.1) and in that case by Proposition I.5.4
[19], T is bounded and [<t,)|-<|T|. Let us write <t,>=yx(T). Apart from
drawing obvious analogues of Proposition 1.7 above we can deduce from The-
orem I 16.5 of that if <x,> is unconditional then the Banach algebra I.
of bounded sequences is isomorphic to the algebra of bounded multipliers on E
via 7g.

In general this map 7z is not an isomorphism e.g. in the case of Banach
algebra J, whose multiplier algebra ([2], Theorem 3.1) is J** which is separ-
able and is, therefore, not isomorphic to 1.. We note that the natural basis
of J is not unconditional. On the other hand yz becomes an isometry in case
{xa> is hyperorthogonal in the sense of ([19], Definition II.20.2).

The following variant of Singer’s example ([19], Example II. 20.1) shows
that yz need not be an isometry if the basis is not hyperorthogonal, even if
the basis is unconditional.

(1.9) Example. Let E be as in ([19], Example II. 20.1) the two-dimensional
Banach space of all pairs of scalars x=(&,, &) endowed with norm |x|=
max (|&:], 1§, 1&i+&:1), (x=(&,, &)=E). Then E is an algebra in which |- ||
is not submultiplicative, but ||-||’=2|-|| is submultiplicative. As argued in [19],
the natural basis of E is not hyperorthogonal. Let #;,=1 and t,=—1. Then
[(t:, )l==1. On the other hand for x=(1, —1), ||x|’=2 and ||Tx|’=|(1, 1)|]’'=4
so that |T||=2.

(1.10) Now we suppose that for each 7, G, has an orthogonal basis
{e}:jeM,}, M,=N or M,={j:1<j<k,} for some k,&N. Let A={(n, j):
JEM,, nEN}. For(n, j), (n’, j)EA, e}-e} =8n4.0;5¢?. In view of Proposition
1.5 and (1.8) above, the set of multiplicative linear functionals on D, can be
identified with A4 via

Om. k((jg]{na}‘eﬁ):a,’,” .

As in (1.8) above each multiplier on G, to itself is bounded and the set of
multipliers on G, to itself can be identified via yg, with the set I, of multi-
plier sequences of G, (defined on M, to R). Let I'= I;vl’n. Then I'C

ne
I ( IT R)=RA.
neEN

JEM 5

Using (1.7) and (1.8) above we have:

Proposition. (i) The set of multipliers on D to itself can be identified with
I via T—y(T)=<76,(Tx)>, where {T,>=0(T).
(ii) For a multiplier T on Dj to D,, j, k=1, 2, oo, (J, k)#(c0, 1), (0, 2),
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7(T) considered as a function on A to R is bounded and I7(T)-=IIT|; further y
isYinjective. .
(iii) If @ is a bounded function on A to R and for each n, the basis {e}) of
G. is hyperorthogonal then a gives rise to a multiplier T on D« to itself and
lalle=[Tl.
1.1 1

(1.11) Proposition. Let 1=<p, g, r<co be such that Tt)—+7=—r—. Suppose

that the decomposition {G,> of E is p-Besselian with constant ¢ and r-Hilbertian
with constant C ([20], Theorem I11.15.16). Let a be a function on A to R,
a=<<a?>jeun>nelv-

(@) If for each n, the basis <e}> of Gn. is hyperorthogonal and
IKIK@Z lwpallg< 00, then a gives rise to a bounded multiplier T on D, to itsel f

and ITIS-SIKIKap bl

() Let <pn>, £gn>, {rn>, Cr>, a> be sequences of positive numbers such that

for each n, 1 + 1 = 1 , and 1< Pa, Gn, ¥asoo. If for each n, the basis

pn qn rn
Ke}> of G, is pn-Besselian with constant ¢, and v,-Hilbertian with constant C,

([20], Theorem III. 15.16) and “< Cn @l

Ca
Cn 1<atdslodn

Cn

<o then a gives rise to a

q°

multiplier on D, to itself and [|T||_§—S—“<

In the next section we shall be able to refine these results in a special
example.

2. The J-sum of Banach Algebras.

(2.1) Let <¢X,> be an increasing sequence of closed subalgebras of a Banach
algebra Z with X,#{0}. We introduce an equivalent norm |-]| on Z, if the

need be, so that leyllg—%-llxll-l[ y|| for x, y in Z. We now construct the J-sum

of X,’s on the lines of [2].
Let @ be the set of finite strictly increasing sequences P={p,, ps, ***, Ds}
of non-negative integers. For x=<{x.)>, x,€X, and PE2 let

k-1
Ixl2= 2 1xpi=%pupill*+ 122,17,

where for notational convenience we set x,=0.

Define 2| x H%=}§ggll x|3.
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Then szpllxnlléllxll.z.

So using Schwarz-inequality and the stringent submultiplicativity condition
on [|-| above we have that for x=<x.>, y=<¥2>, xY=Cx2Y>, lx¥ls=lxllsl ¥l
Further, ||-]l; is a norm on the space D(X,)={{x.)>: x, is zero for all but
finitely many n’s} and its completion is called the J-sum of X,’s and is denoted
by J(X.). Thus J(X,) is a Banach algebra. Further (X,) is a monotone
shrinking decomposition for J(X,) if we identify X, with Gn::jl(;%X}’, where
X2=X, and X}={0} for j+#n.

Moreover, J(X,)"'¥={{x:>: [Kxa>[s<oco} and (J(Xa), I-],) and (J(Xa)*'¥,
I-1s) can be looked upon as D,(G,) and D,(G,) respectively. Thus applying
Theorem 1.3 to J(X,) we have

Theorem. If X, is reflexive for each n then J(X,) '™ is isometrically alge-
braically isomorphic with J(X,)**.

In view of ([2], Remark 7, p. 98) we have the following algebraic analogue
of Theorem 1.1 III of [2].

(2.2) Theorem. Let Z and <X,) be as above such that [\ JX,1=Z and each

Xn is reflexive. Then Z is isometrically algebraically isomorphic with J(X.)**/
J(Xa).

Proof. We shall use proof of ([2], Theorem 1.1). Let £2(X,) be the algebra
under pointwise operations of eventually constant sequences {x,> with semi-
norm lellgzlnirn lx.ll. Then ||-||o is submultiplicative and, therefore, ker|-|g

is an ideal in @(X,). Thus |-|¢ induces a submultiplicative norm on
Q/ker |- |l 0.

So 2(X.,), the completion of the space (2/ker ||-|lo, |I-|l2) is a Banach algebra.
We first note that the map 6 in ([2], Theorem 1.1) is in fact the unique con-
tinuous extension ¢, of the quotient map ¢: (&2, ||-|,) to (2/ker|-|le, |l-llg).
Since ¢ is multiplicative, so is ¢,. Consequently its kernel J(X,) is a closed
ideal in J(X,)E¥, Also J(X,)L'¥/](X,) is isometrically isomorphic to 2(X,)
from ([2], Theorem 1.1). But since [\TLJX,;:I:Z, Q(X,) is isometrically algeb-

raically isomorphic with Z and the result follows from the theorem in (2.1)
above.

(2.3) Remarks. (i) In fact as is clear from [Proposition (2.8) to be proved
later that <{x,)—lim x, for <{x,)>& J(X,;)*** is the desired quotient map in the
above theorem.

(ii) It follows immediately from the above theorem that a reflexive Banach
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algebra Z is isometrically algebraically isomorphic with X**/X with X=J(X,),
X.=Z for every n.

Bellenot further deduces from ([2], Theorem 1.1 III) in ([2), Corollary 1.3)
that if Z is a separable Banach space, then there is an X with a shrinking
bimonotone FDD so that X**/X is isometric to Z. This is possible because
every finitely generated normed linear space is finite dimensional and, therefore,
reflexive. But every finitely generated Banach algebra need not be reflexive
as for instance, is the case with C[0, 1]. So we cannot use Theorem 2.2 above
to have an analogue of the above quoted part of ([2], Cor. 1.3).

However, if we assume that Z has an orthogonal basis (z,) then for each
n, X,=[z;: 1<j<n] is a subalgebra of Z and thus there is a Banach algebra
X e.g. J(X,) with an orthogonal basis {¢}: 1<7<n, nEN, (e});=z; and (e}),=0,
k+7} such that Z is isometrically algebraically isomorphic to X**/X. This
can be compared with ([13], Theorem 1) and ([17], Corollary 1). (See for
a survey of such results in Banach spaces.)

(2.4) We dualize the general J-sum of Banach spaces as follows. Let {¥,)
be a sequence of Banach spaces and let for each n, ¢»: Y4+, —Y, be a norm-
decreasing linear mapping. We denote ¢jhj41 - ¢nr by ¢7(j<n) and define
the J-sum, f(Y,.) of Y,’s as follows. For y=<3,>, ¥,.E€Y,, P={p1, -, Dr}EP
let

~

k-1
Iy1B= 2 1y, =5 Yo iuil* T 190,17

Let 2]|yﬂ2=}§161¥||yﬁ}. Then ﬁ]lyﬂ'gsgpnyn]l. Further ||-T| is a norm on @(Y,)

and f(YV,) is defined to be the completion of (#(Y,), |-T). Then <Y,> can be
thought of as a monotone decomposition of /(¥,) (the norm induced on Y, may
not be equal to that of Y, but is equivalent to it) and

JO D= {y=Cy,>: [y <oo}.

An example is provided by taking Y ,=X7%, ¢.=¢% where {(X,, ¢,)> is as in
§1 of [2]. But we shall be concerned with the example: for nEN, Y,=
B(X., Z) and ¢, the restriction map where Z, X, are as in (2.1) above. Y,
may also be thought of as the space of bounded linear mappings T from Z to
itself with domain D(T) equal to X,. We follow the convention that for linear
mappings T and S from Z to itself, T+S is the linear mapping with domain
D(T)ND(S) satisfying (T+S)x=Tx+Sx for x in I(T)ND(S). Then for a
sequence <T,>, T,€Y, we can also write T, ,+T,, instead of T, ,+¢32:T,, for
n<ns.

We note that in the case Z=R=X,=Y, for each n, f(Y,,)z](X,,)=], the
James space J and ](Xn)“M=]~(Yn)“M is the bidual J**,
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(2.5) For X=KXn>, X0 EXn ; P:{ph "ty p,,}EQ’, let

ellp=—212- ana
let
~/7||(XIl|=§ggH|lep-
Then +/2||x|l|=sup|ix.]l. Further |||-]]| is a norm on @(X,), we denote its

completion by Jr(X,) and note that the inclusion map on J(X,) to Jp(X,) is
(defined and is) norm-decreasing. Further, letting

JEH(Xn)={x=<{xa>: |lIx|l|<oo},
inclusion map on J(X,):'¥ to J#™(X,) is norm-decreasing. In the setting of
(2.4) above |||-|ll, J7 and f7¥(Y,) can be also defined in the obvious way. Let
Inv B(J(X,)" ' #)={T <€ B(J(X,)*'*): TX,CX, for each n}
=Inv,; B(J(Xu)*""M)={T <€ B(J(X.)*1¥):
for each n, TX,CX, and T(J(X.)CJ(X.)},
Inv J (V)M ¥ ={T=(T > (Y ):¥: T, X,CX, for each n},

and similarly for other such spaces.

(2.6) Theorem. (i) B: Invf(Y,,)“”—»Inv,,B(j(Xn)“”) is continuous.
(ii) B:InvjE(Y,)—Inv,B(J5*(X,)) is continuous.
(iii) @:Inv B(J(X,)t!¥*)>Inv f MY ) is continuous.
@(iv) @:1Inv B(J§*¥(X,))—Inv f FHM(Y ) is continuous.

Proof. (i): Let(T,,)eInvj(Y,,)“”. Let x=<{x,)=J(X,)t*¥, Then for
each n, y,=T,x,=X,. Let y=<{y,>. For

p<m, _')’p_'ym=Tpxp_memz(Tp—Tm)xp+Tm(xp—xm),
S0,
10— YallSITp—Tall |2+ Twll - | 2 p— % ml

SITp=Tal 1 xls++vZIKT D] 1 25— %l
and

19 al SN T wll 12 ml S/ 2 IKT DT 2wl
Therefore, for any P={p,, *+, pr}EP

k-1
IP1= 2 1Y2,=Yoi0, I+ 155,11°
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< B UTp= T N2l ZIT T 2= 5,1

FIKT a2l 20, 12

k-1 1/2 k-1 ~
<[(B 1T Tou1513) "+ F 2T Phxa— 5,
2T 50, 12) " |

SUKT DTl xlls+4/Z KT DT [ x]l2)?
<WZIKTT 2l 4+20K T 1 21.0)°.
=@+ 2VIKTHT 13
Therefore, |y, S(vZ+DI<Ta>Tlxl;. Hence
IBUT NS W Z+DIKT A>T and BT ) J(Xa)CTJ(Xn)-
(ii) Let i
(Tayelnv JFH(Y,)

and
x=<xn>EJ%IM(Xn)-

Let
Yo=Tpxn, nEN, and y=<{y.>.

For any partition P={py, -+, ps}EP

”y”P —_— il(Tn>'H'P ~ ”x”P
W‘é\/ZTH\XHl-FZ\H(Tn}H VB

So YIS~ ZAKT ST IZU+2IKT >0 llxlll.  Therefore,
NBKT MM (V2 +2IKT

and

BKTw>) J o(Xn)CTJ 7(Xn).

(iii) Let T€lInv B(J(X,)t'¥) and <(T,>=6(T). Then by Proposition]| (1.7(i)
ITISIT|l for each n. Let ¢>0 and P={p,, -, pr}E® be arbitrary. For
1<i<k there exists x, X, such that [x,]I<1; for 1<i<k—1,

“(Tpi_T?iH)xp,;“zg”Tp;"TpiH”Z—% and ||Tp,,xp,,l|2;||Tp,,H2—%- Put x,=0
for n#p;, 1<i<k. Let x=<x,>. Then x&J(X,)*¥ and ||x],<+/(2k). Also
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21T IxN3z20T x5z Tx|?

B-1
= ¢E=1 ||Tp1xpi_Tpi+1xpi+1”2+“Tpkxpknz

_ k-1 T
=% (Tp—T

Pi+1)xpi+TPi+1(xpi— xlii+1)“2+ ”Tpkxpk ”2

k-1 21
= ¢Z=q ('Z_H(Tpi”"TpiH)xpi”z—”Tpiﬂ(xpi_xpiﬂ)nz)‘*””Tpkxpknz
LI | e k-l €
2 5 S(IToTonlP=5) = B 1Tl o=t il +Toul* =
k
= 5 ST Tou IHITp == 5 1Tl 2o oI

So

=25 |I<Tn>||p—e—I|Tl! Ixlz=

|l<Tn>W2‘>-s-—2HTlI2I|xl|3.

8RIT|*z4IT|*|x |13_2_%|1<Tn>ﬁ1"=—6

Thus

Since >0 is arbitrary we have

”<Tn>”P
> % 16|,
”<Tn>h|P <
—7F <4|T|.

Therefore, KT <2V 2T i.e. 16DN<24/ZITI.

(iv) Let T<lnv B(J#¥#(X,)) and {T,.>=6(T).

Let ¢>0 and P={p,, -

Then

sup{| Tl = Tll.

" the proof of (iii) above. Then x< J§™(X,) and [||xll|S+/2. Also
ZIHTJCHFZHT;”P\; ”<Tk>”P ‘Z“IHTHI”M;}I&.
So
20T Nl 11122—1——“<—T;;>i———lIITIH2 2/l xlll2.
Thus
Tz T2lE

13

, D2} EP be arbitrary and let x,,, 1<i<k, x be as in
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Since e<0 is arbitrary, we have
= k .
So

SIITIE= KT Il2.
So

KT D24/ 2T

(2.7) We now give a few basic results for the spaces J(X,) and J(X,)LI¥
which will be used in investigating spaces of multiplicative linear functionals
and multipliers of algebras J(X,) and J(X,)X’¥, We would like to note here
that as far as we know even in the setting of Z a Banach space (as in [2])
these results are new and can be thought of as generalisations of the moti-
vating result of James that J** is the linear span of J/ and the constant
sequence 1. Let r&N. For a teX, let t,,=<{x,> such that x,=t for n>r
and 0 otherwise. For a subset S of X,, let S¢,, and S denote the subspaces
of J(X,)L'¥ given by ,

SrH={tcr>: tES}
and
SMO={{0,.t): teS}.

Then the mapping t—t¢,, on X, onto X,(,, is an isometric algebraic isomor-
phism. For an x=<{(x,), x, in X, and r&N, let x¢,y=%,¢ry, and define "

by x{P=x, for n<r, x{’=x, for n>r. Then x"’=’§<5nkxk>+x<,>. As in
T

the proof of ([2], Theorem 1.1 I] £’—x as j—oo for x& J(X,)L ¥,

(2.8) Proposition. (a) J(X,)"YC{<{x,)>: x,€X, for all n, {x,> convergent
in Z}. ‘
(b) The map A on J(X,) '™ to Z defined by AKx,))=lim x, is a homomorphism
of norm one with range=[UX,].

Proof. (a) Let <x,>=J(X,)L'#, If it is not convergent then there exists
an ¢>0 and a sequence <n;> in N:n;<n,<-- and |xa,, ,—%n,l2¢ for each
j. Let Py={ny, ns, -+, nax}. Then |[{x,>[3,=ke? and therefore [|[{x,>|,=c0
in contradiction to the assumption that <{x,>& J(X)L¥,

(b) It is clearly a homomorphism of norm one. Let t[UX,]. Then there
exists a sequence <{t,> with ¢, X, for all n such that ¢,—t.

We can inductively define a strictly increasing sequence (m;) in N such that

||t,,——-tm[|<—21—j for all n, m=m;.
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Put
x,=0, n<m,,

:‘tmj for mj§n<71’Lj+1 (.7:1: 2’ '")

Then <{x,> is in J(X,)*'™ and lim x,=t.

(2.9) Propostion. If X,=X, for n=r, X,.1.SX, then J(X,)"'™ is the
topological dirvect sum of J(X,.) and X, in the sense that J(X )" ={{yn,+2z>:
<yn>EJ(Xn) and <Zn>EX'r('r)}-

Proof. Let <x,>=J(X,)*'¥., Then by the above proposition there exists
te X, such that x,—t. Let z,=t for n=r and z,=0 for n<r and y,=x,—2a
for all n. Then

Kz D =t S I<x Dl
and
Ky ls =20Kx Dl -

k-1
We note, as in the proof of ([2], Theorem 1.1(I)) that sup. :2_1 % pcr— Xpcienll®

pisn

—0 as n—oco because otherwise J¢>0 and a sequence (P‘™) in @, P™=
{p{™, ps™, -+, piw} such that p{"*=p{" and

n
2 lxpg—x,m,l*<e for each n.

Setting Pi,,=U{p?:1<7<n} we have
n kj—l
2”<x">3212=1 12=1 ”xpfj)—xpi(_j&”z;ns

for each n which is not so.
Also for n, m=7, |yo—Yal=|x,—xn| and [y.ll=I|x.—t| tends to zero as
n—oo, So y™—y in J(X,)L'¥, Therefore, y= J(X,).

(2.10) Proposition. Let for each n, S, be a dense subset of X.. Then the
linear span of {Sr¢ry, SV rEN} is dense in J(X,)'¥. In particular if each
Xn 1s separable, then J(X,):'¥ is separable.

Proof. Let x=<{x,>=]J(X,)*'¥ and ¢0. Then for each j in N there
exists s;ES; such that Hx,—s,l]<—2€j—. Now for jEN, le‘f’—(k§1<5nksk>+

s;<j))|lJ§,§j|ka—skll<s. Since ¥®—x as j—oo we have the desired result.

(2.11) Theorem. (i) ®P,cx,y can be identified with the disjoint topological
sum n\EjN{n}xq)xn via nkejN{mopn: 6.€Px,}.
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(ii) Suppose that Z=[UX,].
Dyx, L% can be identified with the disjoint union gv{gz&nopn:gbneq)xn}

U{@A: ¢= Dz} in which n\éjN{¢nopn: ¢.EDx,} is sequentially dense and for each

N, {@nodpn: @2 EDx,} is an open closed subset.

Proof. (i) The proof follows directly from Proposition 1.5.

(ii) We first note that since for each jEN, p; is continuous on J(X,)*¥
we have that for each jEN and fe@y ;» @=Ff°p; is a multiplicative linear
functional on J(X,)!?¥. Let ¢=@,cx,, such that ¢(a)+0 for some acJ(X,).
Then by Proposition 1.5 ¢|J(Xn)=fp; for some jEN and some fEPyx,.

Now for be J(X,):¥, abe J(X,), so

¢(b)= ¢(db) — f°pf(ab) — f°pj(a)f°p.f(b)
#a)  fopia) fepia)
Thus ¢=f-p; on J(X,)'¥.

We now note that in view of [Proposition| (2.8) above if ¢= @, then ¢ given
by ¢({x.>)=¢(im x,) is an mlf on J(X,)*'¥ which is zero on J(X,). Since
UX, is dense in Z, ¢(t)#0 for some n&N and some t€X,. Then ¢(tn)=
o) #0.

On the other hand if ¢ is an mlf on J(X,)“'¥ which is zero on J(X,),
then we can define for each n=N a homomorphism ¢, : X,—R by @.{t)=¢d(tx)).
Then ¢,=0 or an mlf on X, and, therefore, for each ¢ in X, [@g.(O)I=]¢l.
Let n=m. Since ¢=0 on j(X,) we have for t€Xn, ¢nt)=¢({m))=¢a(t) so
that @, Xn=¢n Let acJ(X,)X"¥ be such that ¢(a)+0. Then 0#¢(a)=
¢(lim g™ =lim H(@*”=lim ¢,(a,) so ¢,+#0 for all n=m for some m&N. Thus
we can define a non-zero homomorphism on UX, to R by ¢({t)=¢.(t) for t€ X,
which extends uniquely to an mlf say ¢ on Z because ¢ is continuous from
[3, § 15, Proposition 3].

Now let x=J(X,)**#. Then by (2.8) limx, exists in Z and
G(x)=lim H(2™)=lm (X ncn>)=lim @n(x,)=lim ¢(x,)=¢(lim x,). Thus as a set
D;ex, k¥ is the disjoint union ngv{sﬁn"i)ni¢ne¢xn}U{¢°13¢E¢z}- Since

=feopsb).

V¢ed52, (| Xn)epn—¢e-A in the weak* topology we conclude that nKGJN{gb,,opn:
$.=Dx,} is sequentially dense in D ,(x,>LIX.

Now consider a ¢y=¢n°p» and a finite subset S of J(X,) ¥, There exists
an a,< X, such that ¢.(an)#0. Put a,=0, n+#m, and let

S$:=SU{<a.>}.
Then for 0<e<|@nlan)l,

Vigo; SUKan}; )={PED scx ot 1¥ 1 [ P(x)—Po(x)| <6, xES,}
:{¢;n°pm: |¢;n.(xm)_¢m(xm)l <, xesl}
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=V(@n; {xm: xES1}; &) pm.

So for each n, {@nepn: P EPx,} is open in P,x, L%, Let us now consider
¢o=¢°2 for some p=@P,. Let meN. Since ¢+0 on Z=[UX,], for some
]>m Ha_,EX,-: ¢(aj)¢0 Put e=|¢(a,-)/2|. Put .

a,=aj for n=j

, : =0, n<j.
Then <a,> J(X,)*¥ and

V(Sbo; {<an>}; e)ﬂ{¢m°pm: ¢m€¢xm}

is empty. Thus ¢, is not a limit point of {¢nepm: ¢nEDPx,,}. Hence {Pnepm:
¢nEDx,} is closed in Dyex, L. Let ¢po=¢2 for some ¢=®P, Then the
family F={V(p,; S; e)\ \EJF¢X,,°j)n :SCJ(X,)H¥, S finite, FCN, F finite,

¢>0} forms a base of neighbourhoods at ¢,. Now let S be any finite subset
of J(X,)'¥, F any finite subset of N. For an arbitrary ¢>0, there is a least

m,EN (depending on ¢ and S both) such that |¢(bj)——¢(limbn)[<§->V<J'_Zm.,
WbeS. Put G, (—G,Fs)—FU{j:j<m,}. Now for j=zm, and ¢,€9Px,
satlsfymg | pbs)— ¢|X,(b,)]< , we have

| §;(b))—(limb,)| <e.

On the other hand if for j=m,, ¢,ea)xj is such that [¢@;°p;(b)— ¢°Z(b)]—
|@i(b))—@(limb,)| <e then | (b;)— (¢|Xj)(bj)l<‘—3—. Put for ¢>0

Wgo; S; Gos 0=V (g3 limS; - DU( ), V($I XKsipji5:0°05)-
Then using the fact that G,,;DG,DG,,,, and above observations we have
W(do; S; Gess; €/2)CV(o; S; 5)\ne\éj‘/2{¢n°pn P 9aEDx,}
Vs S5 N ) G0 Dn: $2E D)

CW(do; S; Gseres 3e/2).
So
W(do; S; Gera; €/2)DV(do; S; 5/3)\"E\bjls{¢n°pn : 9. €Dy, }

Now Ggs is a finite subset and G,;;DG,DF. But V(¢ge; S; /3)\\
Egj/ {Prnobn: $aEDx }EF, s0 Wiho; S; Gn; €/2) is a neighbourhood of ¢,
neGe/3

contained in V(g,; S; s)\n\gF{¢nopn :0,.€Px,}. So {W(pe;S; G..rs;6):
e>0, FCN, F finite, SCJ(X,)*'¥, S finite} is also a neighbourhood base for ¢,.
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(2.12) Remarks. (i) Suppose that X, is an ideal in X,,, for each n and
[UX,]=Z. The technique used in the proof of Theorem 2.11(ii) to extend
fep;on J(Xi) to J(X,)“'¥ can also be used to show that if ¢ is an mlf on an
ideal A of a Banach algebra B with ¢(a)#0 for an acA, then ¢(b)=
$(ab)

3@ gives the unique extension of ¢ to an mlf on B. Thus for a fixed m,

given any ¢.®Px, with ¢n|Xn,_,=0, we can inductively define a unique
sequence {@ndnzm With ¢,€Px_, such that ¢,| X, ;=¢._,’, n>m which in turn
gives an mlf ¢ on the linear span of X, defined by ¢(x)=¢.(x) if x&X,.
Since \UX, is dense in Z this gives us a unique mlf ¢ on Z such that ¢|X,=
Pm.

On the other hand if =@, then since \UU, is dense in Z there is a least
m such that ¢|X,+0 and therefore ¢|X,&®Px,. Thus ¢|X, can be used as
¢ above to give back ¢. Hence @, can be identified with nLEjNQ x, Which as

a set can further be identified with the disjoint union UN{n}X{;bne(Dxn:
ne

¢.=0 on X,_,}. If for some n, X,=X,_, then the set {¢,=Px,: $,=0 on
X.-1} is empty. |

(ii) If for each n, X, has an orthogonal basis {¢}:j=4,}, 4,CN, A,CAzn
and for je4,, ef=e}*, then @y can be identified with A4, and {¢,€Px,:
6.=0 on X,.,} with A, \4,_, where 4,=¢. So P,x,, can be identified
with ngv{n}xAn. For ¢n=0¢m-pn<EP,x, for some meN with @(e])#0,

taking e=|¢g(e]")|/2 and <an>=<5nme§"> we observe that the neighbourhood

V(¢; {<an)}; &) of ¢ is a singleton. This shows that @, in this case has

the discrete topology. @,cx,>L’¥ can be identified with (L{V{ n} X A)J( LJVA,,),
ne ne

where as in (1.10) above for k€ An, @, x(x)=aF and @,(x)=lim a,’,"=2m Om, x(x),
m—oo ~+00
x=<xn>=<jEA ate?>. In fact it is this result which generalizes Proposition 2.7
€A4n

of in the first place. In case each A4, is finite, {el*: k€ Ad,, m&N} forms
an orthogonal basis for J(X,) where el is identified with <{0,nel'> and e} is
placed before e}’ if m<m’ or m=m’ together with k<k’. Further in this
case if for some r X,=X, for all n>r and X,_,S X, (X,={0}) then in view
of (2.9) J(X,)X*¥ also has a basis given by {fi:ke4,.}U
{ef: KeAd,, meN} where for k= A4,, fi=(el),>, the sequence with elements
e} from r'* place onwards and zero elsewhere; clearly, this is not an ortho-
gonal basis.

We now come to multipliers of J(X,) and J(X,)*'¥, As in in
(1.10) above the multipliers on these spaces can be identified with certain spaces
of functions a=<{{a}>jes,’nen. Applying (2.6) above we have the
following result which generalizes Theorem 3.1 of [1].
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(2.13) Theorem. Let a={a}>e,Pnen- If a gives a multiplier on J(X2)
to J(X,)X™ then for each je\U{A,:nEN}, 0, -+, 0, a}s, a}i*t, > is in J**
where n; is the least n such that j€A,. Further if \U{Ad,:nEN} is finite

then this condition is sufficient for a to give a multiplier on J(X,)“'™ to itself.

Proof. Let je\U{4,:nEN} and n, be the least n such that j&4,. Let
x={x,> be given by x,=0, n<n;, x,=e?, n=n; Then x&J(X,)*'¥ and
lxlls=lle}|l. Now let @ give a multiplier T on J(X,):'¥ and write <T,>=
6(T). Then for n;,<n<m, - -

ITa%0— Tz nl?=l(a]—af)e}|?

=|a}—af|®|e?|*
and
' 1Twxal?>=1a}|®e}]®.

Since (Thx,>=TxEJ(X,)!’ we have the desired result. Now let T.e}=
ale} (n€N, jed,) and T=B(KT,)). If U{d,:neN} is finite say having 7
elements then each base is unconditional and, therefore, under an equivalent
norm, for n<m, '
ITo—Tnl*=supla}—aj|*
JEAR

= 2 laj—alt|®.
j€An

Similarly HTnllaéjZA la?|? for all neN. So
€An

KT 3 lasls,
1sjs7r

where am:(O, e O, a;‘f, (X?j*'l, o>
Thus the result follows from Theorem 2.6(1) above. We would like to
thank the referee for his critical remarks, useful comments and suggestions.
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