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§1. Introduction and results.

Let {S»} be a sequence of integer valued random variables and let H,
denote the entropy of S, ([4]):

Hn=—31¢x() log ¢x(3),

where ¢,(7) is the distribution of S,:
gn(1)=P(Sr=1), n>1,

and the base of the logarithm is 2. Suppose gZ=Var S,<co and define A, by
A,=1/21log 2nec2)—H,.

The condition A,—0 can be used to prove the convergence in law of (S,—ES,)
/o. to N(O, 1) ([1], [2], [)). In Linnik proved that this type of condition

holds for sums of independent random variables having bounded densities and
used it for a proof of the central limit theorem. In this paper we restrict
ourselves to sums of i.i.d. integer valued random variables and consider condi-
tion and rate of convergence of A,. Our proof is an application of the local
limit theorem for lattice random variables.

Throughout the rest let S,=X;+ --- +X,, where {X,} is a sequence of
i.i.d. integer valued random variables with finite variance ¢2>0. Let

Pn()=(on**)'@(((—np)/(en'?), n=1
where p=EX, and
¢(x)=(2x) /> exp (—x*/2).
Note that A, can be expressed in terms of ¢, :

An=23¢a(0) log [¢x(®)/ ()],

An integer valued random variable X is called to have a span A>1 if there
exists an integer » such that X—r is an integral multiple of A with probability
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one. If maximal span of X is one, then X is called strongly aperiodic. The
main results we are going to prove are as follows.

Theorem 1. If X, is strongly aperiodic, then A,—0, (n—o0). If X, hasthe
maximal span h>1, then A,—logh, (n—o0).

Theorem 2. If X, is strongly aperiodic and E|X,|*<co, then Ap=o0(n"1/%**),
(n—o0) for every £>0.
§2. Proofs.

Lemma 1.

| $a)—11=0(n™).

Proof. For fixed n, let t;=(G—ny)/(on'’®) and let J; denote the interval
[t;—Qan*®)", t;+(2an'?)~"). Then we have

(1) S6.60-11=| 2 @o—gwnat|

<3|, @eo—ganat].

Using the expression ‘
S()= )+ —1)¢ )+ —1:) /28"t +0(1—1s)), 0<oLl,
we obtain
(2) ], @ea—gndt| <M/ @ao*ns)
where
M;=sup |¢”" (D).
ted g
It is easy to see that n“”"Z‘]Mi converges to an [¢”(t)| dt<co and therefore
M=supn‘”2§)Mt<00.

Thus by (1) we have
|;¢n(i)—1|_<_M/(240'°n).

This proves the lemma. "

Proof of Theorem 1. Let K=loge. Suppose that X, is aperiodic. By
we have

(3) K ; ga(?) log [g(1)/$n()) 1= ; gn(O1—Pa(¥)/qa()]
=1—3 gali)=0(n"".
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On the other hand by the local limit theorem for i.i.d. integer ualued
random variables ([3], p, 187), we have

(4) 61;:Sl-}p n'%ga(@)—@a@)| —> 0 as mn—oo,
Hence we can choose a sequence {b,} satisfying
0<bp, —> co and d,exp(h2/2) — 0, (n—o00).
Denoting by B, the set {i: |i—nu|<n'%gb,}, we have as n—oco
(5) K 3 g2(@) 108 [92() /9IS T gn(@)[gn()/Pali)—1]
i€By i€By
<sup |ga(5)/Pn(i)—1]
i€By
< sup @) "'sup|ga() —@a ()|
i€By I

<(@2ro®)'%0,exp(b2/2) —> 0.
It follows from (4) that '

(6) C=snL}£J nt%qu(i)<co,
Hence we have
K log [9a(:)/$x()]1<In [(270*)"/2C exp ((—np)*/(2n0*))]
<(i—np)*/(2na®)+C,
where Co=max{0, 1/21n (2zxa2C?)}, and therefore
(7) K "‘QZB)“ gn(?) log [¢2(:)/$n(?)] Sie%,; gn(LE—nu)*/(2na®)+C,]
=E[{(Sa~npt)*/@na*)+CoH{| Sn—np| >n**ab,}].

By the central limit theorem (S,,—n;z)/(n”za)—iN(O, 1). In view of the relation
E{(Sa—np)?/(ne®} =1, random variables (Sn—np)*/(2ne?)+C,, n>1, are uniformly
integrable. Hence the right side of (7) converges to zero as n—oo. Combined
with (3) and (5) this proves A,—0, (n— o).

Next, we suppose that X, has the span A>1. Then there exists an integer
r such that Y ,=(X,—r)/h are integer valued strongly aperiodic. The entropy
of Th=Y,+ - +Y, is equal to H, and Var Y,=¢%/h:. Hence from the first
part of the proof we have

A,=log h+1/2log 2rene®/h?)—H, —> logh, (n—).
For a>0 and n>1 let
An(a)={i: |(G—np)/(n'%a)| <(2a Inn)'/?}.

Lemma 2. If X, is strongly aperiodic and E|X,|*<co, then for every a>0
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teil,l,l()a) ‘Qn(l)/¢n(z)-"1 | =O(n-1I2+a) .

Proof. It is known that under the assumption
SgPIQn(z)_’¢n(z)l =0(n-1)
holds ([3], p. 197). Hence |
. N ne1 N
ieSAl.:‘IZ()a)|qn(l)/¢n(z) llsie§39a>¢n(z) sup|ga()—@a0)|
=0(n1/2+a)0(n-1)=0(n-1/2+d) .

Lemma 3. If X, is strongly aperiodic and E|X,|*<oo, then

(8) P(|Sa—np|/(n'*e)>2alnn)"/*)=0(n"*(Inn)"'*)
and
(9 E((Sn—np)t/(n*2a)I{|Sp—np| >a(2anlnn)/*}=0(n"%(Inn)''?).

Proof. Let us write G,(x)=P(|Ss—nu|>n'%gx). Then by the non-uniform
form of Berry-Essen inequality ([3], p. 125)

(10) |Ga(x)—G(x)| L Cy/[n* A+ x|%)]
for some constant C,>0, where G(x)=§m>z¢(y)dy. Hence

Ga(2alnn)*)<G((2a In n)'*)+C,/[a*/*(2n In n)*/2]
<n~%zwalnn)*+4+Cin"'%(2alnn)"**

- =0(n"%(Inn)""%),
This proves (8).
Since

E(XCH1 X >xh=x"P(| X|>x)+2{ yP( X|>)dy,

the left side of (9) is written as

o0

(@alnm)Ga(@alnn)2)+2{ ¥Ga(y)dy.

(2alnn)l/2

Because of this is dominated by

(2alnn)Gn(2aln n)””)+2§ yG(y)dy+ZCm’”’S ytdy.

(¢alnn)l/e (2alnnyl/2

By (8) the first term is O(n~*(Inn)'/?). Since yG(y)<2¢(y), the second term is
dominated by 2G((2a In n)'/*)=0(n"%(Inn)~*/?), - Obviously the last term is O(n~/%),
Thus we have (9).
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Proof of For any & with 0<e<1/2, let k=[1/e—1], and let

a;=je/2, for 1<j<k. Then it is easy to verify that 0<a,<e, 0<a;—a,.,<e
for 2<j<k, and 1/2—e<a,<(1—e)/2.

Let Ey=An(a), E;=An(ajNAn(a;-1)° for 2<7<k and E,.=Aa(a,). It

follows from that

D

K™ 3 gn(@) 108 [g2()/$a()]< X ga(d) sup [gad)/$a()—1]
i€l icE; ickE;

So(n—l/ual):o(n-l/s-n)’ (n__)oo).

By Lemma 2 and Lemma 3, we have for 2<j<k

(12)

K'Y ga() 10g [gn(1)/$a@)]I< 2 gn() sup |gald)/$n()—1|
teE; ick; i€E;

<O(n~*+29)o(n~"4-1)

So(n~1**ati-t)=o(n=1**),  (n—oo).

Finally from and (6), we have

13)

K—‘;eg;“ IQn(i) log [gx(2)/éna()] S‘GEE‘ 1q,,(z') In[C(@n()n*%)~*]
S‘ > @n@)[Cot+(G—np)*/2ne®]

€E 41

<O(n~%¢(Inn)"*)4-O(n-%*(In n)*'*)

=o(n~!**),  (n—o0).

In view of (3), the inequalities (12) and (13) prove that

An=31¢n(0) 10g [ga(@)/$ali)]=0(n"1**),  (n—c0).

Remark. At first the author proved by direct calculation using

Stirling’s formula. The original proof was elementary but lengthy ([6J). The
idea of the present proof is due to Prof. T. Mori. The author is very grateful
to him for his kind advice in preparing this paper in the present form.
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