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Abstract: Recently, nonergodic versions of several limit theorems for strictly
stationary processes were given ([6], [7]), [8]). The proofs were based on
the fact that important properties of the stationary process which hold with
respect to an invariant measure p, are preserved with respect to its ergodic
components. Using the same technique we shall prove two nonergodic ver-
sions of Heyde’s functional CLT and log log law here.

1. Basic notions and the main results.

Let (2, A, T, u) be a dynamical system where (2, A, p) is a probability
space with o¢-algebra A of subsets of 2, g is a probability measure on the
measure space (2, A) and the mapping T : 2— £ is bijective and bimeasurable,
pT'=p. The collection J of all sets A=A such that A=TA is a o-algebra.
If p(A)=0 or p(A)=1 for each A=y, we say that g is ergodic. A o-algebra
MC A for which HCT-1.H is called invariant (sometimes, an invariant o-algebra
is defined by the property T ' HC . H). Let us denote M;=T ‘M, i€Z; M-
= ‘Qz M, and M. is the coarsest g-algebra containing all H,;, i€ Z.

For a measurable function f, (f-T?) is a strictly stationary process. Let
us suppose that f is square integrable and let us denote X;=f-T"*, S,=3>1.X;,
o =E(S%|9). Let ¢(t)=(2tloglog?)!’?, e<t<oco. For ¢%>0 a.s. we define

0,)=02(Sy+nt—E)Xp41), EZnt<k+1, k=0,1,--,n—1;
Na)=(p(a3) " (Sr+(nt—k) Xp+1) if a3>e,
=0 otherwise, k=<nt<k+1, £=0,1, ---, n—1.
We put g=sup{n:oi=<e}. Notice that for g ergodic, the functions ¢, and g
are constant almost surely; in we shall consider them as numbers.

The functions 8, and 7, belong to C[0, 1], the space of all continuous
functions on [0, 1]. Let K be the set of all absolutely continuous functions
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x<C[0, 1] such that x(0)=0 and S:[x(t)]”dtgl and % denotes the derivative of
x determined almost everywhere with respect to the Lebesgue measure. By W

we denote the standard Brownian motion on [0, 1] and —d-» denote the con-
vergence of C[0, 1]-valued r.v. in distribution as defined in [1].
For peZ, let x,=E(X_,| Mo)—E(X-p| M_p).

Theorem 1. (C.C. Heyde). Let the measure p be ergodic and

(1) E(X|Ma)=Xo, E(X,|H-=)=0,
(2) m=1{lim SUPn.w E(XF-mX )" +1im SUPp. E(ZF-mx-p)*} <o0.

. _
Then there exists a limit 0=liMp.w0s,/n'? and 0<o<co. If ¢>0 then 0, W.
Also, g<co, {9a:n>g} is relatively compact, and the set of its limit points
coincides with K. :

The proof is given in [2], [3]
Here we shall prove nonergodic version of [Theorem 1. In that case, o,
and ¢ should be considered as J-measurable functions.

Theorem 2. Let the assumptions (1) and (2) of Theorem 1 hold. Then there

d
exists a limit 6=liMy.0,/n'? and 0=o<co. If ¢>0 a.s. then 6,—W, the
family {n.;neN} is relatively compact a.s., and the set of its limit points
coincides with K.

Theorem 3. Let the assumption (1) of Theorem 1 hold and let
(3) m=1{lim Sups.x E(X5=nxp)*|9)+1im sups.c E(Xj-nx-5)*|I) <.

Then the conclusion of Theorem 2 holds.

2. Some auxiliary results and the proofs of Theorems 2, 3.

Let the invariant o-algebra ¥ be given and let the square integrable
function f satisfy the assumptions of or 3. We shall show that
without loss of generality we can suppose that the dynamical system (2, A, T, p)
has some useful properties, namely that there exists an ergodic decomposition
of the measure p¢. The proofs of results presented here can be found in 5],
[61. [73, (81

We say that a g-algebra £€C A is separable if there exists an at most
countable collection of sets generating & (see [4]). It can be easily shown that
there exists a separable cg-algebra HM*C M such that E(X;| T/ W*)=E(X,|T’/.H)
a.s. for all 7, j&Z. Hence, there exists a separable ¢-algebra €C A such that
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T-e=€, M¥Ce and X;, E(X;|T'M) are &-measurable, 7, j€Z. We can thus
suppose that A and # are separable. Then, there exists a function g such
that A is generated by {g '(4): ACR is an interval} (we can take

g=2§°=1—31;‘—764j where {A,, A,, ---} generates A).

Let us define ¢: 2—R? by (¢pw);=g(T'w), icZ. Let S be a shift in R?,
i.e. (Sz)i=zi+;. We have ¢T=S<¢ and ¢ Y(B%)=A, B? being the Borel
o-algebra in R%. The probability measure y=pu¢* is S-invariant, i.e. y=vS™%
So, (R%, 8%, S, v) is a dynamical system. For an .-measurable function 2 on
Q2 there exists a #Z-measurable function 2 on RZ, h=h+¢. If h is integrable
and £C ®? is a o-algebra, it is Ep(h[glf“é):E,,(ﬁlé)ogb a.s. (). For the
o-algebra I={Ac 8%: A=SA} we have IJ=¢~(J). So, we can assume that
2, A, T, p)=(R%, 8%, S,v). Under this assumption there exists a family
(my; w= Q) of regular conditional probabilities induced by g with respect to y;
moreover, m,T '=m, and the measures m, are ergodic for almost all (¢) wef
(see [5]).

Let €C A be a ¢-algebra and let v be a probability measure on the measure
space (2, A). L%*¢&, v) denotes the Hilbert space of all A-measurable functions

g such that Sg”du<oo and there exists a &-measurable function h, g=h a.s.

(v). Functions from L%, v) which are equal almost surely (v) are considered
as equal. ) - *

The projection operator onto L*( M., #)OL*(M;-1, p) is denoted by P, ieZ.
We have Ph=Eh|M)—EM| M), he L} (A, p); so, x,=FPX_,. By P{ we
denote the projection operator onto L2(H;, me)OL¥( Hi_1, my).

Lemma 1. Let he L¥ M, ). Then for almost all (#) w€Q we have
he LY Mw, my) and Eh| M)=En (| M) a.s. (M), Eh?*| M)=En (h*| M) a.s.
(mw), PPh=P;h a.s. (mg).

The proof of Lemma 1| is given in [5].

Corollary. Let he L¥ (A, p) and h, heT, hT?, --- be a martingale difference
sequence in L¥A, p). Then for almost all () w2, h, heT, heT? - is a
martingale difference sequence in L*(A, my).

Proof. The o-algebra generated by heT-", n=0, is separable and invariant.
We can thus assume that h=P,h. Following we have h=P¢h a.s.
(m,), hence (hoT? is a martingale difference sequence in L*(A, m,) for a.e.
(o) wef.

Let h,, n=1, 2, --- be C[0, 1]-valued random variables. We can view them
as functions h,(t, ®) of t and w. The variables h, converge to W in distribution
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iff their finite-dimensional distributions converge to those of W and the sequence
(hy) is tight. The first condition can be expressed by the use of characteristic
functions:

(i) For each finite 2, each collection 0<t,< -+ <t,<1, and (s,, *-+, s;)ER*
it is
. 1
Sexp(z 25185 halt;, )dp — exp(—-z—(tl-(2§=1 S+ (ta—11) - (Zhae 5,)%+ )) _

The second condition can be expressed by (ii), (iii), compare [2], as follows:
(ii) supn g(]A4(0, ')l>1)f:0-'
(iii) For each £>0, sup, p(Sup;-;i<s| (s, )—ha(t, )| >e€) 5> 0.

The convergence of h, is related to the measure g; in the case described
above we say that h, converge in distribution with respect to p.

Lemma 2. Let for almost all (¢) w8, h, converge to W in distribution
with respect to m,. Then hy, converge to W in distribution with respect to 7

Proof. Condition (i) immediately follows from the fact that
fexpti- S1uss,-hatty Ndp={{expti- Shessy hatty, Ndmodp(@).

Let ¢>0 be fixed. For >0 we put

A, t)=p{w: sup,mu(|ha(0, -)| >A)<7}
and

B0, t)=p{w: sup, my(Sups-s1<s| ha(s, <)—ha(t, )| >e)<7}.
For each n it holds u(]ha(0, -)|>A)<7+1—A(A, 1) and
L(SUD s-s1<s | hnls, *)—ha(t, -)| >e)<t+1—B(@, 7).

We have A(4, 1) = 1 and B(@, 7) 7 1 hence the conditions (ii), (iii) hold for
Y, too.

Proof of Following [2], pp. 141-142, there exist functions
g, he L*(4, p) such that f=g+h—h-T and (g-T?) is a martingale difference
sequence. In the ergodic case, the theorem can be derived from the existence
of this decomposition (see [3], [2]). According to the [Corollary] to Lemma 1,
the decomposition exists in a.e. (p) probability space (2, A, m,). So, the
functional CLT and log log law hold in a.e. (g) probability space (2, A, m,).
We get the invariance principle in (2, A, g) by The proof of the
functional loglog law is even easier: Let A be the set of all elements of
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for which {9.: neN} is relatively compact and has K as the set of limit
points. We have m,(A)=1 for a.e. (#) w2, so u(A)=1 which finishes the
proof of

Proof of Theorem 3. According toLemma 1, the assumptions of

1 are fulfilled in almost all (u) probability spaces (2, A, m,). Similarly as in
the proof of we get the desired result from its validity in spaces

(2, A, m,).
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