Yokohama Mathematical Journal Vol. 35, 1987

CONGRUENCE THEOREMS FOR PROPER SEMI-RIEMANNIAN HYPERSURFACES IN A REAL SPACE FORM

By

NAOTO ABE, NAOYUKI KOIKE and SEIICHI YAMAGUCHI

(Received April 23, 1987)

§0. Introduction.

For Riemannian hypersurfaces in a real space form, several authors investigated problems related to congruity under some assumptions. P. J. Ryan ([2], [3]) established a local congruence theorem in a real space form for Riemannian hypersurfaces whose shape operators have at most two mutually distinct constant eigenvalues. It is a natural question to consider this problem for semi-Riemannian hypersurfaces in a semi-Riemannian real space form. The main purpose of this paper is obtain a congruence theorem for proper semi-Riemannian hypersurfaces analogous to that of Ryan.

Throughout this paper, all manifolds are smooth and connected and geometrical objects are assumed to be smooth unless mentioned otherwise.

§1. Preliminaries.

In this section, we prepare the basic facts about submanifolds in a semi-Riemannian manifold and especially in a space of constant curvature. We call a non-degenerate and symmetric tensor field of type (0, 2) on a manifold M a semi-Riemannian metric of M and a manifold M with a semi-Riemannian metric a semi-Riemannian manifold. Let T_pM be the tangent space of M at $p \in M$. A semi-Riemannian manifold M^n isometrically imbedded into a semi-Riemannian manifold N^m by an imbedding f is called a semi-Riemannian submanifold of N. In the sequel, we shall identify f(M) with M. Especially if n=m-1, then Mis called a semi-Riemannian hypersurface of N. Let $T_p^{\perp}M$ be the normal space of M in N at $p \in M$ and \langle , \rangle be semi-Riemannian metrics of N and M. The Levi-Civita connections on N and M are denoted by $\tilde{\nabla}$ and ∇ , respectively.

For the tangent vector fields X and Y of M, we have the Gauss formula:

(1.1)
$$\tilde{\nabla}_{\mathbf{X}} Y = \nabla_{\mathbf{X}} Y + h(X, Y),$$

where $\nabla_X Y$ and h(X, Y) are the tangential and the normal components of $\tilde{\nabla}_X Y$ respectively. It is easy to show that h is symmetric. The tensor field h is said to be the second fundamental form of the semi-Riemannian submanifold M.

If X is a tangent vector field of M and E is a normal vector field of M, then we have the Weingarten formula:

(1.2)
$$\tilde{\nabla}_{\mathbf{X}} E = -A_{\mathbf{E}} X + D_{\mathbf{X}} E ,$$

where $-A_E X$ and $D_X E$ are the tangential and the normal components of $\tilde{\nabla}_X E$ respectively. It is easy to verify that D is a connection of the normal bundle of M. We called A the second fundamental tensor of the semi-Riemannian submanifold M. It follows that

$$(1.3) \qquad \langle h(X, Y)E \rangle = \langle A_E X, Y \rangle$$

for any tangent vectors X and Y of M and any normal vector E of M.

Let \tilde{R} and R be the curvature tensors of N and M, respectively. The equations of Gauss and Codazzi are given by

(1.4)
$$\langle \widetilde{R}(X, Y)Z, W \rangle = \langle R(X, Y)Z, W \rangle + \langle h(X, Z), h(Y, W) \rangle$$

 $-\langle h(X, W), h(Y, Z) \rangle$,

(1.5)
$$(\widetilde{R}(X, Y)Z)^{\perp} = (\nabla'_{X}h)(Y, Z) - (\nabla'_{Y}h)(X, Z)$$

for any tangent vectors X, Y, Z and W of M, where $(\tilde{R}(X, Y)Z)^{\perp}$ is the normal component of $\tilde{R}(X, Y)Z$ and $(\nabla'_{x}h)(Y, Z) = D_{x}(h(Y, Z)) - h(\nabla_{x}Y, Z) - h(Y, \nabla_{x}Z)$.

Assume that N is of constant curvature c. Then the equation (1.5) can be rewritten as

(1.6)
$$(\nabla_{\boldsymbol{X}}(A_{\boldsymbol{E}}))Y = (\nabla_{\boldsymbol{Y}}(A_{\boldsymbol{E}}))X$$

for a parallel normal vector field E of M. Especially, if M is a semi-Riemannian hypersurface of N, the equation (1.4) can be rewritten as

(1.7)
$$R(X, Y) = cX \wedge Y + \varepsilon A_E X \wedge A_E Y,$$

where $X \wedge Y$ is defined by

$$(X \land Y)Z = \langle Y, Z \rangle X - \langle X, Z \rangle Y$$

for any tangent vector Z of M, E is a unit normal vector of M and $\varepsilon = \langle E, E \rangle$.

For a semi-Riemannian hypersurface M of N, we shall call $\varepsilon = \langle E, E \rangle$ the sign of the semi-Riemannian hypersurface M, where E is a unit normal vector of M.

§2. A congruence theorem.

Let $M_{(1)}$ and $M_{(2)}$ be semi-Riemannian submanifolds of a semi-Riemannian manifold N. $M_{(1)}$ and $M_{(2)}$ are said to be congruent if there exists an isometry $\tilde{\phi}$ of N such that $\tilde{\phi}(M_{(1)})=M_{(2)}$. Let R_{ν}^{n} be an *n*-dimensional real vector space together with an inner product of signature $(\nu, n-\nu)$ given by

$$\langle x, x \rangle = -\sum_{i=1}^{\nu} x_i^2 + \sum_{j=\nu+1}^{n} x_j^2$$
,

where $x = (x_1, \dots, x_n)$ is the natural coordinate of R_{ν}^n . R_{ν}^n is called an *n*dimensional semi-Euclidean space. We take any point O of $M_{(1)}$ and any curve α in $M_{(1)}$ starting at O. We set $\overline{O} = \phi O$ and $\overline{\alpha} = \phi \alpha$. Let P_{α} (resp. $P_{\overline{\alpha}}$) be the parallel translation from O (resp. \overline{O}) along the curve α (resp. $\overline{\alpha}$) with respect to the normal connection of $M_{(1)}$ (resp. $M_{(2)}$). Let h_1 (resp. h_2) be the second fundamental form of $M_{(1)}$ (resp. $M_{(2)}$). O'Neill proved the following theorem in [1].

Theorem A. Let $M_{(1)}$ and $M_{(2)}$ be semi-Riemannian submanifolds of \mathbb{R}_{p}^{n} such that there exists an isometry $\phi: M_{(1)} \rightarrow M_{(2)}$. Then there is an isometry $\tilde{\phi}$ of \mathbb{R}_{p}^{n} such that $\tilde{\phi}|M_{(1)}=\phi$ if and only if, at a point O of M, there exists a linear isometry $F_{0}: T_{0}^{\perp}M_{(1)} \rightarrow T_{0}^{\perp}M_{(2)}$ with the following property (*): If α is any curve in $M_{(1)}$ starting at O, then, for each s the linear isometry

$$F_{\alpha(s)} = P_{\bar{\alpha}(s)} \circ F_{O} \circ P_{\alpha(s)}^{-1} \colon T^{\perp}_{\alpha(s)}(M_{(1)}) \to T^{\perp}_{\bar{\alpha}(s)}(M_{(2)})$$

preserves second fundamental form, that is,

$$F_{\alpha(s)}h_1(v, w) = h_2(\phi_* v, \phi_* w)$$

for any v and $w \in T_{\alpha(s)}M_{(1)}$.

We define semi-Riemannian manifolds $S_{\nu}^{n}(c)$ and $H_{\nu}^{n}(c)$ as follows:

$$S_{\nu}^{n}(c) = \{(x_{1}, \dots, x_{n+1}) \in R_{\nu}^{n+1} | -\sum_{i=1}^{\nu} x_{i}^{2} + \sum_{i=\nu+1}^{n+1} x_{i}^{2} = 1/c\}, \quad (c > 0),$$

$$H_{\nu}^{n}(c) = \{(x_{1}, \dots, x_{n+1}) \in R_{\nu+1}^{n+1} | -\sum_{i=1}^{\nu+1} x_{i}^{2} + \sum_{i=\nu+2}^{i=\nu+2} x_{i}^{2} = 1/c\}, \quad (c < 0).$$

These spaces are complete and of constant curvature c. $S_{\nu}^{n}(c)$ and $H_{\nu}^{n}(c)$ are called a semi-sphere and a semi-hyperbolic space, respectively. $S_{\nu}^{n}(c)$ is diffeomorphic to $R^{\nu} \times S^{n-\nu}$ and $H_{\nu}^{n}(c)$ is diffeomorphic to $S^{\nu} \times R^{n-\nu}$. We call these spaces and the semi-Euclidean space real space forms.

Remark. Among these spaces, $S_{n-1}^{n}(c)$ and $H_{1}^{n}(c)$ are not simply connected.

N. ABE, N. KOIKE AND S. YAMAGUCHI

As a generalization of Theorem A, we prove the following theorem.

Theorem 2.1. Let $M_{(1)}$ and $M_{(2)}$ be semi-Riemannian submanifolds of a real space form N such that there exists an isometry $\phi: M_{(1)} \rightarrow M_{(2)}$. Then there is an isometry $\tilde{\phi}$ of N such that $\tilde{\phi}|M_{(1)}=\phi$ if and only if, at a point O of $M_{(1)}$, there exists a linear isometry $F_0: T_0^{\perp}M_{(1)} \rightarrow T_0^{\perp}M_{(2)}$ with the property (*) in Theorem A, where $T_0^{\perp}M_{(1)}$ (resp. $T_0^{\perp}M_{(2)}$) is the normal space of $M_{(1)}$ (resp. $M_{(2)}$) in N at O (resp. \overline{O}).

Proof. The necessity is obvious and hence we shall prove the sufficiency. Assume that there exists a linear isometry $F_0: T_{\bar{0}(1)}^{\perp}M \rightarrow T_{\bar{0}}^{\perp}M_{(2)}$ with the property (*). To apply Theorem A, we imbed the real space form N into a semi-Euclidean space R_{ν}^{m+1} as a hypersurface in the natural way. Let $\tilde{T}_{\bar{p}}^{\perp}M_{(1)}$ (resp. $\tilde{T}_{q(2)}^{\perp}M$) be the normal space of $M_{(1)}$ (resp. $M_{(2)}$) in R_{ν}^{m+1} at $p \in M_{(1)}$ (resp. $q \in M_{(2)}$).

First we define a linear isometry $\tilde{F}_0: \tilde{T}_0^{\perp}M_{(1)} \rightarrow \tilde{T}_0^{\perp}M_{(2)}$ as follows:

(2.1)
$$\widetilde{F}_{o}(Y_{1}+b\overline{E}_{o})=F_{o}(Y_{1})+b\overline{E}_{\overline{o}}$$

126

for any $Y_1 \in T_b^{\perp} M_{(1)}$ and any real number b, where \overline{E} is a unit normal vector field of N in \mathbb{R}_{ν}^{m+1} .

We will prove that \tilde{F}_o satisfies the property (*). Easily we can show

(2.2)
$$\widetilde{P}_{\alpha}|_{T_{\widetilde{O}}^{1}M_{(1)}} = P_{\alpha} \text{ and } \widetilde{P}_{\overline{\alpha}}|_{T_{\widetilde{O}}^{1}M_{(2)}} = P_{\overline{\alpha}},$$

where \tilde{P}_{α} (resp. $\tilde{P}_{\bar{\alpha}}$) is the parallel translation with respect to the normal connection of $M_{(1)}$ (resp. $M_{(2)}$) in R_{ν}^{m+1} .

Let \bar{h} and \tilde{h}_a be the second fundamental forms of N and $M_{(a)}$ (a=1, 2) in R_{ν}^{m+1} , respectively. We set $\tilde{F}_{\alpha(s)} = \tilde{P}_{\bar{\alpha}(s)} \circ \tilde{F}_{0} \circ \tilde{P}_{\alpha(s)}^{-1}$. If follows from (2.1) and (2.2) that

(2.3)
$$\widetilde{F}_{\alpha(s)}h_1(v, w) = F_{\alpha(s)}h_1(v, w)$$

for any v and $w \in T_{\alpha(s)}M_{(1)}$. Since $F_{\alpha(s)}h_1(v, w) = h_2(\phi_*v, \phi_*w)$, we have

(2.4)
$$\widetilde{F}_{\alpha(s)}h_1(v, w) = h_2(\phi_* v, \phi_* w).$$

On the other hand, since N is totally umbilic in R_{ν}^{m+1} , we have

(2.5)
$$\widetilde{F}_{\alpha(s)}\overline{h}(v, w) = \overline{h}(\phi_* v, \phi_* w).$$

Therefore, it is clear from (2.4) and (2.5) that

(2.6)
$$\widetilde{F}_{\alpha(s)}\widetilde{h}_1(v, w) = \widetilde{h}_2(\phi_* v, \phi_* w),$$

which implies that \tilde{F}_o satisfies the property (*).

By virtue of Theorem A, it follows that there exists a linear isometry ϕ of R_{ν}^{m+1} such that

$$\tilde{\phi}|M_{(1)}=\phi$$
.

Moreover, $\tilde{\phi}|N$ is clearly an isometry of N. This completes the proof. Q.E.D.

Corollary 2.2. Let $M_{(1)}$ and $M_{(2)}$ be totally geodesic semi-Riemannian submanifolds of a real space form N such that there exists an isometry $\phi: M_{(1)} \rightarrow M_{(2)}$. Then $M_{(1)}$ and $M_{(2)}$ are congruent.

Corollary 2.3. Let $M_{(1)}$ and $M_{(2)}$ be semi-Riemannian hypersurfaces of a real space form N such that there exists an isometry $\phi: M_{(1)} \rightarrow M_{(2)}$. Assume that $M_{(1)}$ and $M_{(2)}$ have no geodesic points. Then there is an isometry $\tilde{\phi}$ of N such that $\tilde{\phi}|M_{(1)}=\phi$ if and only if, at each point p of $M_{(1)}$, $\phi_*A_{E_1}^1=\pm A_{E_2}^2\phi_*$ holds for any unit normal vector E_1 (resp. E_2) of $M_{(1)}$ (resp. $M_{(2)}$) at p (resp. $\phi(p)$), where A^1 (resp. A^2) is the second fundomental tensor of $M_{(1)}$ (resp. $M_{(2)}$).

§3. Decomposition of proper semi-Riemannian hypersurfaces.

Let M be a semi-Riemannian manifold with a semi-Riemannian metric \langle , \rangle , TM the tangent bundle of M and T a distribution on M, that is, a subbundle of TM. If $\nabla_X Y \in T$ for any $X \in TM$ and any $Y \in \Gamma(T)$, then T is said to be parallel, where $\Gamma(T)$ is the module of all cross sections of the subbundle T of TM. If $\langle , \rangle | T_p \ (p \in M)$ is non-degenerate, then T is called a non-degenerate distribution. The following three results are stated in [5].

Theorem B. Let T be a non-degenerate parallel distribution on a semi-Riemannian manifold M. Let M' be the maximal integral manifold of T through a point of M. Then M' is a totally geodesic submanifold of M. If M is complete, then so is M'.

Theorem C. Let T be a non-degenerate parallel distribution on a semi-Riemannian manifold M and T^{\perp} the orthogonal complement of T. Then T^{\perp} is a non-degenerate parallel distribution. Let M' (resp. M") be the maximal integral manifold of T (resp. T^{\perp}) through $p \in M$. Then there exists an isometry ϕ of a neighborhood of p in M into the product semi-Riemannian manifold M'×M".

Theorem D. Let T be a non-degenerate parallel distribution on a complete and simply connected semi-Riemannian manifold M and T^{\perp} the orthogonal complement of T. Let M' (resp. M'') be the maximal integral manifold of T (resp. T^{\perp}) through $p \in M$. Then there exists an isometry ϕ of M onto the product semi-Riemannian manifold $M' \times M''$. Moreover M' and M'' are complete and simply

N. ABE, N. KOIKE AND S. YAMAGUCHI

connected.

Now we prepare some lemmas on a tensor field of type (1, 1). At first we can prove the following lemma by using local frame fields.

Lemma 3.1. Let B_1 and B_2 be real vector bundles on a manifold M. Let Φ be a continuous bundle homomorphism of B_1 into B_2 . Set $k(p) = \dim (\operatorname{Ker} \Phi_p)$ and $r(p) = \dim (\operatorname{Im} \Phi_p)$ $(p \in M)$. Then r is lower semi-continuous and k is upper semi-continuous. Moreover, if Φ is smooth and k or r is constant on M, then $\operatorname{Ker} \Phi$ is a subbundle of B_1 and $\operatorname{Im} \Phi$ is a subbundle of B_2 .

Let A be a tensor field of type (1, 1) on M. If A can be expressed by a real diagonal matrix with respect to a linear frame at each point of M, then A is said to be diagonalizable.

Lemma 3.2. Let A be a diagonalizable tensor field of type (1.1) on M. Assume that the number of mutually distinct eigenvalues of A is exactly s at each point of M. Then the eigenvalues $\lambda_1, \dots, \lambda_s$ ($\lambda_1 > \dots > \lambda_s$) are smooth on M and T_{λ_i} =Ker $(A - \lambda_i I)$ is a smooth subbundle of TM $(1 \le i \le s)$.

Proof. Since $\lambda_1, \dots, \lambda_s$ are continuous function on M (see [2], for example), $(A-\lambda_1 I)$ and $(A-\lambda_2 I) \dots (A-\lambda_s I)$ are continuous bundle homomorphisms of TM. The minimal polynomial of A is $(t-\lambda_1) \dots (t-\lambda_s)$. We have $T_{\lambda_1} = \text{Im}((A-\lambda_2 I) \dots (A-\lambda_s I))$. From Lemma 3.1, dim $(T_{\lambda_1})_p$ is constant on M. Similarly $\lambda_2, \dots, \lambda_s$ have constant multiplicities on M. Using the Cauchy's integral representation, we can show that $\lambda_1, \dots, \lambda_s$ are smooth on M. Hence $(A-\lambda_i I)$ is smooth $(1 \le i \le s)$. From Lemma 3.1, T_{λ_i} is a smooth subbundle $(1 \le i \le s)$.

Q. E. D.

Lemma 3.3. Let A, λ_i and T_{λ_i} $(1 \le i \le s)$ be as the above lemma. Assume that $(\nabla_X A)Y = (\nabla_Y A)X$ holds for any X and $Y \in TM$. Then distributions $T_{\lambda_1}, \dots, T_{\lambda_s}$ are involutive. Moreover if dim $T_{\lambda_i} > 1$, then $X\lambda_i = 0$ holds for any $X \in T_{\lambda_i}$.

Proof. Let X and Y be elements of $\Gamma(T_{\lambda_1})$, where $\Gamma(T_{\lambda_1})$ is the module of all the cross sections of the subbundle T_{λ_1} of TM. From $(\nabla_x A)Y = (\nabla_y A)X$ we have

(3.1)
$$(A-\lambda_1 I)[X, Y] = (X\lambda_1)Y - (Y\lambda_1)X.$$

By multiplying $(A - \lambda_2 I) \cdots (A - \lambda_s I)$ to both sides of (3.1), the left hand side is equal to zero since $(t - \lambda_1) \cdots (t - \lambda_s)$ is the minimal polynomial of A and the right hand side is equal to

$$(\lambda_1 - \lambda_2) \cdots (\lambda_1 - \lambda_s) \{ (X\lambda_1)Y - (Y\lambda_1)X \}.$$

Therefore both sides of (3.1) is equal to zero, that is,

 $[X, Y] \in T_{\lambda_1} \text{ and } (X\lambda_1)Y - (Y\lambda_1)Y = 0.$

which means that T_{λ_1} is involutive. Similarly $T_{\lambda_2}, \dots, T_{\lambda_s}$ are involutive. Especially if dim $T_{\lambda_1} > 1$, then we have $X\lambda_1 = 0$ from (3.2) by choosing X and Y to be linearly independent. This completes the proof. Q.E.D.

If A can be expressed by a real diagonal matrix with respect to an orthonormal frame at each point of the semi-Riemannian manifold M, then A is said to be proper.

Lemma 3.4. Let A, λ_i and T_{λ_i} $(1 \le i \le s)$ be as in Lemma 3.3. Assume that A is proper and s=2. Then T_{λ_1} and T_{λ_2} are non-degenerate and $TM=T_{\lambda_1}\oplus T_{\lambda_2}$ (orthogonal direct sum). Moreover, assume that λ_1 and λ_2 are constant over M. Then T_{λ_1} and T_{λ_2} are parallel.

Proof. By Lemma 3.3, distributions T_{λ_1} and T_{λ_2} are smooth and involutive. For $X \in \Gamma(T_{\lambda_1})$ and $Y \in \Gamma(T_{\lambda_2})$, we have, from (1.6),

$$(3.3) \qquad (A - \lambda_1 I) \nabla_Y X = (A - \lambda_2 I) \nabla_X Y.$$

Since $(t-\lambda_1)(t-\lambda_2)$ is the minimal polynomial of A, the left hand side of (3.3) is in T_{λ_2} and the right hand side is in T_{λ_1} . Therefore both sides of (3.3) are equal to zero, that is,

(3.4)
$$\nabla_Y X \in \Gamma(T_{\lambda_1})$$
 and $\nabla_X Y \in \Gamma(T_{\lambda_2})$.

If $Z \in T_{\lambda_1}$, then we have

$$(3.5) \qquad \langle \nabla_{\mathbf{z}} X, Y \rangle + \langle X, \nabla_{\mathbf{z}} Y \rangle = \nabla_{\mathbf{z}} \langle X, Y \rangle = 0.$$

On the other hand, it follows from (3.4) that

$$\nabla_{\mathbf{Z}} Y \in T_{\lambda_{\mathbf{v}}}$$
, that is, $\langle X, \nabla_{\mathbf{Z}} Y \rangle = 0$.

which together with (3.5) yields

$$\nabla_{z} X \in (T_{\lambda_{s}})^{\perp} = T_{\lambda_{s}}.$$

From (3.4) and (3.6), we can see that the distribution T_{λ_1} is parallel. Similarly T_{λ_2} is parallel. Q. E. D.

Let A be the second fundamental tensor of a semi-Riemannian hypersurface M of a semi-Riemannian manifold N. M is said to be proper if A_E is proper for a unit normal vector E at each point of M.

Theorem 3.5. Let M^n be a proper semi-Riemannian hypersurface of a real

space form $N^{n+1}(\bar{c})$ whose sign is ε . Assume that there exist constants λ and μ $(\lambda \neq \mu)$ and the set of all eigenvalues of A_E is $\{\lambda, \mu\}$ for a unit normal vector Eat each point of M. Then the maximal integral manifolds of T_{λ} (resp. T_{μ}) are locally isometric to the real space form $M(c_1)$ (resp. $M(c_2)$) of constant curvature $c_1 = \bar{c} + \varepsilon \lambda^2$ (resp. $c_2 = \bar{c} + \varepsilon \mu^2$) and $\bar{c} + \varepsilon \lambda \mu = 0$ holds. M is locally isometric to $M(c_1) \times M(c_2)$.

Proof. Fix a point p of M. Let E be a unit normal vector field of M defined on a neighborhood U of p. Let us restrict ourselves to the neighborhood U. By Lemma 3.4, T_{λ} and T_{μ} are non-degenerate and parallel. Let M' (resp. M'') be the maximal integral manifold of T_{λ} (resp. T_{μ}) through p. Since M' and M'' are totally geodesic in M from Theorem B, the curvature tensors of M' and M''' are just the restriction of the curvature tensor R of M. Hence we denote them by the same letter R without confusion. For any X and $Y \in T_{\lambda}$, $R(X, Y) = (\bar{c} + \epsilon \lambda^2)(X \wedge Y)$ holds by virtue of (1.7). Thus M' is of constant curvature c_1 . Similarly M'' is of constant curvature c_2 . Therefore it follows from Theorem C that there exists an isometry ϕ of a neighborhood V of p in U into the product of real space forms $M(c_1)$ and $M(c_2)$. Take any unit vectors $X \in T_{\lambda}$ and $Y \in T_{\mu}$. Since the distribution T_{μ} is parallel, we have $R(X, Y)Y \in T_{\mu}$, which together with (1.7) implies $\bar{c} + \epsilon \lambda \mu = 0$. Q.E.D.

Therefore we obtain the following theorem from Theorem D.

Theorem 3.6. Let M^n be a complete and simply connected proper semi-Riemannian hypersurface of a real space form $N^{n+1}(\bar{c})$ whose sign is ε . Assume that there exist constants λ and μ ($\lambda \neq \mu$) and the set of all eigenvalues of A_E is $\{\lambda, \mu\}$ for a unit normal vector E at each point of M. Then M is isometric to the product of $M(c_1)$ and $M(c_2)$ which are complete, simply connected and of constant curvature $c_1 = \bar{c} + \varepsilon \lambda^2$ and $c_2 = \bar{c} + \varepsilon \mu^2$, and $\bar{c} + \varepsilon \lambda \mu = 0$ holds.

§4. Models of proper semi-Riemannian hypersurfaces.

In this section we introduce some complete proper semi-Riemannian hypersurfaces M of real space forms N which will serve as models in our discussion. Let A be the second fundamental tensor of M. Let E be a unit normal vector of M. We put $\varepsilon = \langle E, E \rangle$.

Let us consider the following hypersurfaces M of real space forms N (and take a connected component of M if necessary).

(R) The hypersurfaces of $N = R_{\nu}^{n+1}$.

(R-1)
$$R_{\nu}^{n} = \{x = (x_{1}, \dots, x_{n+1}) \in N | x_{n+1} = 0\},\$$

$$A_E=0$$
, $\varepsilon=1$.

(R-2)
$$S_{\nu}^{n}(c) = \{x \in N | -\sum_{i=1}^{\nu} x_{i}^{2} + \sum_{i=\nu+1}^{n+1} x_{i}^{2} = 1/c\} \quad (c > 0),$$
$$A_{E} = \pm \sqrt{c}I, \quad \varepsilon = 1.$$

(R-3)
$$R_{\nu-1}^n = \{x \in N | x_1 = 0\},$$

 $A_E=0$, $\varepsilon=-1$.

(R-4)
$$H_{\nu-1}^{n}(c) = \{x \in N \mid -\sum_{i=1}^{\nu} |x_{i}^{2} + \sum_{i=\nu+1}^{n+1} |x_{i}^{2}| = 1/c\} \quad (c < 0),$$
$$A_{E} = \pm \sqrt{-cI}, \quad \varepsilon = -1.$$

(R-5)
$$R_{\tau}^{r} \times S_{\nu-\tau}^{n-r}(c) = \left\{ \{ x \in N \mid -\sum_{i=\tau+1}^{\nu} x_{i}^{2} + \sum_{i=\nu+r-\tau+1}^{n+1} x_{i}^{2} = \frac{1}{c} \right\} \quad (c > 0) ,$$
$$A_{E} = \pm (0_{\tau} \oplus \sqrt{c} I_{n-\tau}) , \qquad \varepsilon = 1 .$$

(R-6)
$$R_{\tau}^{r} \times H_{\nu-\tau-1}^{n-r}(c) = \left\{ x \in N | -\sum_{i=\tau+1}^{\nu} x_{i}^{2} + \sum_{i=\nu+r-\tau+1}^{n+1} x_{i}^{2} = \frac{1}{c} \right\} \quad (c < 0),$$
$$A_{E} = \pm (0_{\tau} \oplus \sqrt{-c} I_{n-\tau}), \quad \varepsilon = -1.$$

(S) The hypersurfaces of $N=S_{\nu}^{n+1}(\bar{c})$ ($\subset R_{\nu}^{n+2}$).

(S-1)
$$S_{\nu}^{n}(c) = \{ x \in N \mid x_{n+2} = \sqrt{1/\bar{c} - 1/c} \} \quad (\bar{c} \le c) ,$$
$$A_{E} = \pm \sqrt{c - \bar{c}I} , \quad \varepsilon = 1 .$$

(S-2) $R_{\nu-1}^{n} = \{x \in N | x_1 = x_{n+2} + t_0\}$ $(t_0 > 0)$,

$$A_E = \pm \sqrt{\bar{c}I}$$
 , $\varepsilon = -1$,

(S-3)
$$S_{\nu-1}^{n}(c) = \{x \in N | x_1 = \sqrt{1/c - 1/\bar{c}}\} \quad (0 < c \le \bar{c}),$$

 $A_{\nu} = \pm \sqrt{\bar{c} - cI}, \quad \varepsilon = -1,$

(S-4)
$$H_{\nu-1}^n(c) = \{x \in N | x_{n+2} = \sqrt{1/\bar{c} - 1/c}\}$$
 (c<0),

$$A_{E}=\pm\sqrt{\bar{c}-c}I$$
, $\varepsilon=-1$

(S-5)
$$S_{\tau}^{r}(c_{1}) \times S_{\nu-\tau}^{n-r}(c_{2}) = \left\{ x \in N \mid -\sum_{i=1}^{\tau} x_{i}^{2} + \sum_{i=\nu+1}^{\nu+r-\tau+1} x_{i}^{2} = \frac{1}{c_{1}} \right\},$$

$$-\sum_{i=\tau+1}^{\nu} x_i^2 + \sum_{i=\nu+\tau-\tau+2}^{n+2} x_i^2 = \frac{1}{c_2} \}$$

$$(1/c_1 + 1/c_2 = 1/\bar{c}, \ c_1 > 0, \ c_2 > 0),$$

$$A_E = \pm (\sqrt{c_1 - \bar{c}} I_r \oplus (-\sqrt{c_2 - \bar{c}}) I_{n-r}), \quad \varepsilon = 1.$$

:

(S-6)
$$S_{\tau}^{r}(c_{1}) \times H_{\nu-\tau-1}^{n-r}(c_{2}) = \left\{ x \in N | -\sum_{i=1}^{\tau} x_{i}^{2} + \sum_{i=\nu+1}^{\nu+\tau-\tau+1} x_{i}^{2} = \frac{1}{c_{1}}, -\sum_{i=\tau+1}^{\nu} x_{i}^{2} + \sum_{i=\nu+\tau-\tau+2}^{n+2} x_{i}^{2} = \frac{1}{c_{2}} \right\}$$
$$(1/c_{1}+1/c_{2}=1/\bar{c}, c_{1}>0, c_{2}<0),$$

$$A_{E} = \pm (\sqrt{\bar{c} - c_{1}} I_{r} \oplus \sqrt{\bar{c} - c_{2}} I_{n-r}), \qquad \varepsilon = -1.$$

(H) The hypersurfaces of $N=H_{\nu}^{n+1}(\bar{c})$ ($\subset R_{\nu+1}^{n+2}$).

(H-1)
$$R_{\nu}^{n} = \{x \in N | x_{1} = x_{n+2} + t_{0}\}$$
 $(t_{0} > 0),$
 $A_{E} = \pm \sqrt{-\bar{c}I}, \quad \varepsilon = 1.$

(H-2)
$$S_{\nu}^{n}(c) = \{x \in N | x_{1} = \sqrt{1/c - 1/c}\}$$
 (c>0),
 $A_{E} = \pm \sqrt{c - cI}$, $\varepsilon = 1$.

(H-3)
$$H_{\nu}^{n}(c) = \{ x \in N | x_{n+2} = \sqrt{1/\bar{c} - 1/c} \} \quad (\bar{c} \le c < 0) ,$$
$$A_{E} = \pm \sqrt{c - \bar{c}I} , \quad \varepsilon = 1 .$$

(H-4)
$$H_{\nu-1}^{n}(c) = \{ x \in N | x_1 = \sqrt{1/c - 1/\bar{c}} \}$$
 $(c \le \bar{c}),$
 $A_E = \pm \sqrt{\bar{c} - cI}, \quad \varepsilon = -1.$

$$\begin{aligned} (\text{H-5}) \qquad S_{\tau}^{r}(c_{1}) \times H_{\nu-\tau}^{n-r}(c_{2}) = & \left\{ x \in N | -\sum_{i=1}^{\tau} x_{i}^{2} + \sum_{i=\nu+2}^{\nu+\tau-\tau+2} x_{i}^{2} = \frac{1}{c_{1}} \right\} \\ & -\sum_{i=\tau+1}^{\nu+1} x_{i}^{2} + \sum_{i=\nu+\tau-\tau+3}^{n+2} x_{i}^{2} = \frac{1}{c_{2}} \right\} \\ & (1/c_{1}+1/c_{2}=1/\bar{c}, \ c_{1}>0, \ c_{2}<0) , \\ & A_{E} = \pm (\sqrt{c_{1}-\bar{c}}I_{\tau} \oplus \sqrt{c_{2}-\bar{c}}I_{n-\tau}) , \qquad \varepsilon = 1 . \end{aligned} \\ (\text{H-6}) \qquad & H_{\tau-1}^{r}(c_{1}) \times H_{\nu-\tau}^{n-\tau}(c_{2}) = \left\{ x \in N | -\sum_{i=1}^{\tau} x_{i}^{2} + \sum_{i=\nu+\tau}^{\nu+\tau-\tau+2} x_{i}^{2} = \frac{1}{c_{1}} , \right. \\ & -\sum_{i=\tau+1}^{\nu+1} x_{i}^{2} + \sum_{i=\nu+\tau-\tau+3}^{n+2} x_{i}^{2} = \frac{1}{c_{2}} \right\} \\ & (1/c_{1}+1/c_{2}=1/\bar{c}, \ c_{1}<0, \ c_{2}<0) , \\ & A_{E} = \pm (\sqrt{\bar{c}-c_{1}}I_{\tau} \oplus (-\sqrt{\bar{c}-c_{2}})I_{n-\tau}) , \qquad \varepsilon = -1 . \end{aligned}$$

Remark. We note that the each model satisfies either of the following (I) or (II):

(I) The hypersurface M is totally umbilic in N, that is, $A_E = \lambda I$ holds, and

M is of constant curvature $c \ (=\bar{c}+\epsilon\lambda^2)$.

(II) A_E has exactly two mutually distinct eigenvalues λ and μ , M is isometric to the product of real space forms of constant curvature $c_1(=\bar{c}+\epsilon\lambda^2)$ and $c_2(=\bar{c}+\epsilon\mu^2)$, and furthermore $\bar{c}+\epsilon\lambda\mu=0$ holds.

Since the calculations of the second fundamental tensors of the models are much the same, we shall work on the case (S-2), for example. Namely, we consider the following situation:

$$R_{\nu-1}^{n} = M = \{ p \in R_{\nu}^{n+2} | p_{1} = p_{n+2} + t_{0} \} \cap S_{\nu}^{n+1}(\bar{c}) \qquad (\subset R_{\nu}^{n+2}) ,$$

where $p = (p_1, \dots, p_{n+2})$. Let $T_p^{\perp}M$ (resp. $\tilde{T}_p^{\perp}M$) be the normal space of M in $S_{\nu}^{n+1}(\bar{c})$ (resp. R_{ν}^{n+2}) at $p \in M$. In the sequel, we shall identify $T_x R_{\nu}^{n+2}$ ($x \in R_{\nu}^{n+2}$) with R_{ν}^{n+2} in the natural way. By straightforward calculations, we have

$$\widetilde{T}_{p}^{\perp}M = \left\{ x \in R_{\nu}^{n+2} | x_{2} = \frac{(x_{1} - x_{n-2})p_{2}}{t_{0}}, \dots, x_{n+1} = \frac{(x_{1} - x_{n+2})p_{n+1}}{t_{0}} \right\},$$
$$T_{p}S_{\nu}^{n+1}(\bar{c}) = \left\{ x \in R_{\nu}^{n+2} | -\sum_{i=1}^{\nu} x_{i}p_{i} + \sum_{i=\nu+1}^{n+2} x_{i}p_{i} = 0 \right\},$$

where $x = (x_1, \dots, x_{n+2})$ and $p = (p_1, \dots, p_{n+2})$. Therefore it follows that

$$T_{p}^{\perp}M = \widetilde{T}_{p}^{\perp}M \cap T_{p}S_{\nu}^{n+1}(\overline{c})$$

$$= \left\{ x \in R_{\nu}^{n+2} | x_{1} = \left(\frac{t_{0}^{2}\overline{c}}{1+t_{0}cp_{n+2}} + 1\right)x_{n+2}, x_{2} = \frac{p_{2}t_{0}\overline{c}x_{n+2}}{1+t_{0}cp_{n+2}}, \dots, x_{n+1} = \frac{p_{n+1}t_{0}\overline{c}x_{n+2}}{1+t_{0}cp_{n+2}} \right\}.$$

Consequently, we can construct a unit normal vector field E of M in $S_{\nu}^{n+1}(\bar{c})$ as follows:

(4.1)
$$E(p) = \pm (p_1 \sqrt{\overline{c}} + 1/(t_0 \sqrt{\overline{c}}), p_2 \sqrt{\overline{c}}, \cdots, p_{n+1} \sqrt{\overline{c}}, p_{n+2} \sqrt{\overline{c}} + 1/(t_0 \sqrt{\overline{c}}))$$

for each point p of M.

Let $\tilde{\nabla}$ be the Levi-Civita connection on R_{ν}^{n+2} . If $X \in TM$, then, from (1.1) and (1.2), we have

where $(\tilde{\nabla}_{\mathbf{X}} E)^{\mathbf{T}}$ is the component tangential to M of $\tilde{\nabla}_{\mathbf{X}} E$. Let \tilde{E} be a vector field on R_{ν}^{n+2} defined by

(4.3)
$$\widetilde{E}(x) = \pm (x_1 \sqrt{\overline{c}} + 1/(t_0 \sqrt{\overline{c}}), x_2 \sqrt{\overline{c}}, \cdots, x_{n+1} \sqrt{\overline{c}}, x_{n+2} \sqrt{\overline{c}} + 1/(t_0 \sqrt{\overline{c}})),$$

for each point x of R_{ν}^{n+2} . We note that the vector field \tilde{E} is the extension of E. Let X^{k} , \tilde{E}^{k} and $(\tilde{\nabla}_{X}E)^{k}$ $(1 \le k \le n+2)$ be the components of X, \tilde{E} and $\tilde{\nabla}_{X}E$, respectively. Then we have

(4.4)
$$(\tilde{\nabla}_{X}E)^{k} = \sum_{i=1}^{n+2} X^{i} (\partial \widetilde{E}^{k} / \partial x_{1}).$$

On the other hand, it follows from (4.3) that

(4.5) $\partial \widetilde{E}^k / \partial x_i = \pm \sqrt{\overline{c}} \, \delta_i^k \,,$

where δ_i^j is the Kronecker's delta. Therefore, from (4.2), (4.4) and (4.5), we obtain $A_E = \pm \sqrt{\overline{c}I}$.

§ 5. Main theorem.

Now we prove the following main theorem.

Theorem 5.1. Let M^n be a proper semi-Riemannian hypersurface of a real space form $N^{n+1}(\bar{c})$. Assume that there exist constants λ and μ ($\lambda \neq \mu$) and the set of all eigenvalues of A_E is { λ, μ } or { λ } for a unit normal vector E at each point of M. Then M is locally congruent to one of the models in §4.

Proof. Since the number of mutually distinct eigenvalues of A_E is at most two, the following two cases can be considered:

- (I) M is totally umbilic in $N^{n+1}(\bar{c})$.
- (II) A_E has exactly two mutually distinct eignvalues λ and μ ($\lambda \neq \mu$).

Case (I). Assume that $A_E = \lambda I$. From (1.7), M is of constant curvature $c \perp$ given by $\bar{c} + \varepsilon \lambda^2$, where $\varepsilon = \langle E, E \rangle$. Then, the following tweleve cases can be considered:

- (1) $\bar{c}=0$, c=0 and $\varepsilon=1$, (2) $\bar{c}=0$, c>0 and $\varepsilon=1$,
- (3) $\bar{c}=0$, c=0 and $\epsilon=-1$, (4) $\bar{c}=0$, c<0 and $\epsilon=-1$,
- (5) $0 < \bar{c} \le c$ and $\varepsilon = 1$, (6) $\bar{c} > 0$, c = 0 and $\varepsilon = -1$,
 - (7) $\bar{c} \ge c > 0$ and $\varepsilon = -1$, (8) $\bar{c} > 0$, c < 0 and $\varepsilon = -1$,
 - (9) $\bar{c} < 0$, c=0 and $\varepsilon=1$, (10) $\bar{c} < 0$, c>0 and $\varepsilon=1$,
 - (11) $\bar{c} \leq c < 0$ and $\varepsilon = 1$, (12) $0 > \bar{c} \geq c$ and $\varepsilon = -1$.

According to (1), (2), \cdots , (11) or (12), we can compare M with (R-1), (R-2), (R-3), (R-4), (S-1), (S-2), (S-3), (S-4), (H-1), (H-2), (H-3) or (H-4), respectively.

Let \overline{M} be the model corresponding to M. Let ϕ be a local isometry of M into \overline{M} and \overline{A} the second fundamental tensor of \overline{M} . From (1.7), we have

 $\lambda = \pm \sqrt{\epsilon(c-\bar{c})}$. Hence, at each point p of M, $\bar{A}_{\bar{E}}\phi_* = \pm \phi_*A_{\bar{E}}$ holds for any unit normal vector E (resp. \bar{E}) of M (resp. \bar{M}). Therefore from Corollary 2.2 and Corollary 2.3, we can see that M is locally congruent to \bar{M} .

Case (II). Assume that $A_E = \lambda I_r \bigoplus \mu I_{n-r}$ ($\lambda \neq \mu$). By Theorem 3.5, M is locally isometric to the product of real space form $M(c_1)$ of constant curvature $c_1(=\bar{c}+\epsilon\lambda^2)$ and real space form $M(c_2)$ of constant curvature $c_2(=\bar{c}+\epsilon\mu^2)$ and $\bar{c}+\epsilon\lambda\mu=0$ holds. Moreover we can take a local isometry ϕ of M into $M(c_1) \times$ $M(c_2)$ such that $\phi_*T_{\lambda}=TM(c_1)$ around each point of M, where $\epsilon=\langle E, E \rangle$ and $T_{\lambda}=\text{Ker}(A_E-\lambda I)$. Then the following six cases can be considered:

- (1)' $\bar{c}=0, c_1=0, c_2>0 \text{ and } \epsilon=1,$
- (2)' $\bar{c}=0, c_1=0, c_2<0 \text{ and } \epsilon=-1,$
- (3)' $\bar{c} > 0$, $c_1 > 0$, $c_2 > 0$ and $\varepsilon = 1$,
- (4)' $\bar{c} > 0$, $c_1 > 0$, $c_2 < 0$ and $\varepsilon = -1$,
- (5)' $\bar{c} < 0$, $c_1 > 0$, $c_2 < 0$ and $\varepsilon = -1$,
- (6)' $\bar{c} < 0$, $c_1 < 0$, $c_2 < 0$ and $\varepsilon = -1$,

According to (1)', (2)', \cdots (5)' or (6)', we are able to compare M with (R-5), (R-6), (S-5), (S-6), (H-5) or (H-6) respectively.

Let \overline{M} be the model corresponding to M and \overline{A} the second fundamental tensor of \overline{M} . Let ϕ be a local isometry of M into \overline{M} such that $\phi_*T_{\lambda}=TM(c_1)$. From (1.7) we have $\lambda=\pm\sqrt{\varepsilon(c_1-\overline{c})}$ and $\mu=\pm\sqrt{\varepsilon(c_2-\overline{c})}$ ($\lambda\mu=-\varepsilon\overline{c}$). Hence, it follows that $\overline{A}_{\overline{E}}\phi_*=\pm\phi_*A_E$ holds for any unit normal vector E of M at p and any unit normal vector \overline{E} of \overline{M} at $\phi(p)$. From Corollary 2.3, M is locally congruent to \overline{M} . Q.E.D.

As a global version of this theorem, we have the following.

Theorem 5.2. Let M^n be a complete proper semi-Riemannian hypersurface of a real space form $N^{n+1}(\bar{c})$. Assume that there exist constants λ and μ ($\lambda \neq \mu$) and the set of all eigenvalues of A_E is { λ, μ } or { λ } for a unit normal vector Eat each point of M. Furthermore assume that M is locally isometric to neither type of S_{n-1}^n , H_1^n , $S_{k-1}^k \times M'$ nor $H_1^k \times M'$ ($1 \le k \le n-1$), where M' is a semi-Riemannian manifold. Then M is congruent to one of the models in §4.

Proof. By the preceding Theorem 5.1, M is locally congruent to one of the models in §4. Let \overline{M} be the model locally congruent to M. Let $\pi: \widehat{M} \to M$ be the universal semi-Riemannian covering of M and f be the imbedding of M into N. Then by for, \widehat{M} is immersed into N. By the way, since π is a local isometry, M and \widehat{M} (i.e., \widehat{M} and \overline{M}) are locally congruent. Let \widehat{A} (resp. \overline{A}) be

the second fundamental tensor and \hat{E} (resp. \bar{E}) be a unit normal vector field of \hat{M} (resp. \bar{M}). Since M is complete, so is \hat{M} .

At first, we consider the case where \overline{M} is a real space form. Since \overline{M} is neither S_{n-1}^n nor H_1^n , there exists an isometry ϕ of \hat{M} onto \overline{M} . It follows from $\hat{A}_{\hat{E}} = \pm \sqrt{\varepsilon(c-\bar{c})}I$ and $\overline{A}_{\overline{E}} = \pm \sqrt{\varepsilon(c-\bar{c})}I$ that $\overline{A}_{\overline{E}}\phi_* = \pm \phi_*\hat{A}_{\hat{E}}$. Then, from Corollary 2.2 and Corollary 2.3, \hat{M} and \overline{M} are congruent. Thus it follows from this fact that π is injective and π is an isometry of \hat{M} onto M. Therefore, M and \overline{M} are congruent.

Next, we consider the case where \overline{M} is a product of the space forms. It follows from Theorem 3.6 that there exists an isometry ϕ of \hat{M} onto $M(c_1) \times M(c_2)$ such that $\phi_*T_2 = TM(c_1)$. Moreover, $M(c_1)$ and $M(c_2)$ are real space forms by the assumption. It follows from $\overline{A}_{\overline{E}} = \pm(\sqrt{\epsilon(c_1-\overline{c})}I_r \oplus \pm \sqrt{\epsilon(c_2-\overline{c})}I_{n-r})$ and $\hat{A}_{\widehat{E}} = \pm(\sqrt{\epsilon(c_1-\overline{c})}I_r \oplus \pm \sqrt{\epsilon(c_2-\overline{c})}I_{n-r})$ that $\overline{A}_{\overline{E}}\phi_* = \pm \phi_*\hat{A}_{\widehat{E}}$. Hence, from Corollary 2.3, \hat{M} and \overline{M} are congruent. Thus, π is injective and π is an isometry of \hat{M} onto M. Therefore M and \overline{M} are congruent. Q. E. D.

References

- [1] B. O'Neill: Semi-Riemannian Geometry, with Applications to Relativity, Academic Press, New York, (1983).
- [2] P.J. Ryan: Homogeneity and some curvature conditions for hypersurfaces, *Tohoku* Math. J., 21 (1969), 363-388.
- [3] P.J. Ryan: Hypersurfaces with parallel Ricci tensor, Osaka J. Math., 8 (1971), 251-259.
- [4] J.A. Wolf: Spaces of Constant Curvature, Publish or Perish, Berkeley, California, (1977).
- [5] H. Wu: On the de Rham decomposition theorem, Illinois J. Math., (1964), 291-311.

Department of Mathematics Faculty of Science Science University of Tokyo 26 Wakamiya Shinjuku-ku, Tokyo 162 Japan