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\S 0. Introduction.

For Riemannian hypersurfaces in a real space form, several authors investi-
gated problems related to congruity under some assumptions. P. J. Ryan ([2],

[3]) established a local congruence theorem in a real space form for Riemannian
hypersurfaces whose shape operators have at most two mutually distinct con-
stant eigenvalues. It is a natural question to consider this problem for semi-
Riemannian hypersurfaces in a semi-Riemannian real space form. The main
purpose of this paper is obtain a congruence theorem for proper semi-Riemannian
hypersurfaces analogous to that of Ryan.

Throughout this paper, all manifolds are smooth and connected and geo-
metrical objects are assumed to be smooth unless mentioned otherwise.

\S 1. Preliminaries.

In this section, we prepare the basic facts about submanifolds in a semi-
Riemannian manifold and especially in a space of constant curvature. We call
a non-degenerate and symmetric tensor field of type $(0,2)$ on a manifold $M$ a
semi-Riemannian metric of $M$ and a manifold $M$ with a semi-Riemannian metric
a semi-Riemannian manifold. Let $T_{p}M$ be the tangent space of $M$ at $p\in M$.
A semi-Riemannian manifold $M^{n}$ isometrically imbedded into a semi-Riemannian
manifold $N^{m}$ by an imbedding $f$ is called a semi-Riemannian submanifold of $N$.
In the sequel, we shall identify $f(M)$ with $M$. Especially if $n=m-1$ , then $M$

is called a semi-Riemannian hypersurface of $N$. Let $T_{p}^{\perp}M$ be the normal space
of $M$ in $N$ at $p\in M$ and $\langle$ , $\rangle$ be semi-Riemannian metrics of $N$ and $M$. The
Levi-Civita connections on $N$ and $M$ are denoted by $\tilde{\nabla}$ and $\nabla$, respectively.

For the tangent vector fields $X$ and $Y$ of $M$, we have the Gauss formula:

(1.1) $\tilde{\nabla}_{X}Y=\nabla_{X}Y+h(X, Y)$ ,
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where $\nabla_{X}Y$ and $h(X, Y)$ are the tangential and the normal components of $\forall_{X}Y$

respectively. It is easy to show that $h$ is symmetric. The tensor field $h$ is
said to be the second fundamental form of the semi-Riemannian submanifold $M$.

If $X$ is a tangent vector field of $M$ and $E$ is a normal vector field of $M$,
then we have the Weingarten formula:

(1.2) $\tilde{\nabla}_{X}E=-A_{B}X+D_{X}E$ ,

where $-A_{B}X$ and $D_{X}E$ are the tangential and the normal components of $\forall_{X}E$

respectively. It is easy to verify that $D$ is a connection of the normal bundle
of $M$. We called $A$ the second fundamental tensor of the semi-Riemannian
submanifold $M$. It follows that

(1.3) $\langle h(X, Y)E\rangle=\langle A_{B}X, Y\rangle$

for any tangent vectors $X$ and $Y$ of $M$ and any normal vector $E$ of $M$.
Let $R$ and $R$ be the curvature tensors of $N$ and $M$, respectively. The

equations of Gauss and Codazzi are given by

(1.4) $\langle R(X, Y)Z,$ $W$) $=\langle R(X, Y)Z, W\rangle+\langle h(X, Z), h(Y, W)\rangle$

$-\langle h(X, W), h(Y, Z)\rangle$ ,

(1.5) $(R(X, Y)Z)^{\perp}=(\nabla_{X}^{\prime}h)(Y, Z)-(\nabla_{Y}^{\prime}h)(X, Z)$

for any tangent vectors $X,$ $Y,$ $Z$ and $W$ of $M$, where $(R(X, Y)Z)^{\perp}$ is the normal
component of $R(X, Y)Z$ and $(\nabla_{X}^{\prime}h)(Y, Z)=D_{X}(h(Y, Z))-h(\nabla_{X}Y, Z)-h(Y, \nabla_{X}Z)$ .

Assume that $N$ is of constant curvature $c$ . Then the equation (1.5) can be
rewritten as
(1.6) $(\nabla_{X}(A_{B}))Y=(\nabla_{Y}(A_{E}))X$

for a parallel normal vector field $E$ of $M$. Especially, if $M$ is a semi-Rieman-
nian hypersurface of $N$, the equation (1.4) can be rewritten as

(1.7) $R(X, Y)=cX\wedge Y+\epsilon A_{E}X\wedge A_{E}Y$ ,

where $X\wedge Y$ is defined by

$(X\wedge Y)Z=\langle Y, Z\rangle X-\langle X, Z\rangle Y$

for any tangent vector $Z$ of $M,$ $E$ is a unit normal vector of $M$ and $\epsilon=\langle E, E\rangle$ .
For a semi-Riemannian hypersurface $M$ of $N$, we shall call $\epsilon=\langle E, E\rangle$ the

sign of the semi-Riemannian hypersurface $M$, where $E$ is a unit normal vector
of $M$



CONGRUENCE THEOREMS FOR PROPER SEMI-RIEMANNIAN 125

\S 2. A congruence theorem.

Let $M_{(1)}$ and $M_{(2)}$ be semi-Riemannian submanifolds of a semi-Riemannian
manifold N. $M_{(1)}$ and $M_{(2)}$ are said to be congruent if there exists an isometry
$\emptyset$ of $N$ such that $\phi(M_{(1)})=M_{(2)}$ . Let $R_{\nu}^{n}$ be an n-dimensional real vector space
together with an inner product of signature $(\nu, n-\nu)$ given by

$\langle x, x\rangle=-\sum_{\ell=1}^{\nu}x_{i^{2}}+\sum_{j=\nu+1}^{n}x_{j^{2}}$ ,

where $x=(x_{1}, \cdots , x_{n})$ is the natural coordinate of $R_{\nu}^{n}$ . $R_{\nu}^{n}$ is called an n-
dimensional semi-Euclidean space. We take any point $0$ of $M_{(1)}$ and any curve
$\alpha$ in $M_{(1)}$ starting at $0$ . We set $\overline{O}=\phi O$ and $\overline{\alpha}=\phi\alpha$ . Let $P_{a}$ (resp. $P_{\overline{a}}$ ) be the
parallel translation from $0$ (resp. $\overline{O}$ ) along the curve $\alpha$ (resp. $\overline{\alpha}$ ) with respect
to the normal connection of $M_{(1)}$ (resp. $M_{(2)}$ ). Let $h_{1}$ (resp. $h_{2}$) be the second
fundamental form of $M_{(1)}$ (resp. $M_{(2)}$ ). O’Neill proved the following theorem
in [1].

Theorem A. Let $M_{(1)}$ and $M_{(2)}$ be semi-Riemannian submamfolds of $R_{\nu}^{n}$ such
that there exists an isometry $\phi:M_{(1)}\rightarrow M_{(2)}$ . Then there is an isometry $\phi$ of $R_{\nu}^{n}$

such that $\phi|M_{(1)}=\phi$ if and only if, at a point $O$ of $M$, there exists a linear iso-
metry $F_{O}$ : $T_{O}^{\perp}M_{(1)}\rightarrow T_{\overline{o}}^{\perp}M_{(2)}$ with the following ProPerty $(*)$ : If $\alpha$ is any curve
in $M_{(1)}$ starting at $O$ , then, for each $s$ the linear isometry

$F_{\alpha(s)}=P_{\overline{\alpha}(s)}\circ F_{0^{Q}}P_{\alpha(s)}^{-1}$ : $T_{\alpha(s)}^{\perp}(M_{(1)})\rightarrow T_{\overline{a}(s)}^{\perp}(M_{(2)})$

preserves second fundamental form, that is,

$F_{a(s)}h_{\iota}(v, w)=h_{2}(\phi_{*}v, \phi_{*}w)$

for any $v$ and $w\in T_{a(s)}M_{(1)}$ .

We define semi-Riemannian manifolds $S_{\nu}^{n}(c)$ and $H_{\nu}^{n}(c)$ as follows:

$S_{\nu}^{n}(c)=\{(x_{1}, \cdots x_{n+1})\in R_{\nu}^{n+1}|-\sum_{\ell=1}^{\nu}x_{i^{2}}+\sum_{i=\nu+1}^{n+1}x_{i^{2}}=1/c\}$ , $(c>0)$ ,

$H_{\nu}^{n}(c)=\{(x_{1}, \cdots x_{n+1})\in R_{\nu+1}^{n+1}|-\sum_{i=1}^{\nu+1}x_{\ell^{2}}+\sum_{\ell=\nu+2}^{i=\nu+2}x_{i^{2}}=1/c\}$ , $(c<0)$ .

These spaces are complete and of constant curvature $c$ . $S_{\nu}^{n}(c)$ and $H_{\nu}^{n}(c)$ are
called a semi-sphere and a semi-hyperbolic space, respectively. $S_{\nu}^{n}(c)$ is diffeo-
morphic to $R^{\nu}\times S^{n-\nu}$ and $H_{\nu}^{n}(c)$ is diffeomorphic to $S^{\nu}\times R^{n-\nu}$ . We call these
spaces and the semi-Euclidean space real space forms.

Remark. Among these spaces, $S_{n-1}^{n}(c)$ and $H_{1}^{n}(c)$ are not simply connected.
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As a generalization of Theorem $A$ , we prove the following theorem.

Theorem 2.1. Let $M_{(1)}$ and $M_{(2)}$ be semi-Riemannian submanifolds of a real
space form $N$ such that there exists an isometry $\phi:M_{(1)}\rightarrow M_{(2)}$ . Then there is
an isometry $\phi$ of $N$ such that $\phi|M_{(1)}=\phi$ if and only if, at a $p\dot{\alpha}nt0$ of $M_{(1)}$ ,
there exists a linear isometry $F_{O}$ : $T_{O}^{\perp}M_{(1)}\rightarrow T_{7J}^{\perp}M_{(2)}$ with the prOperty $(*)$ in Theo-
rem $A$ , where $T\partial M_{(1)}$ (resp. $T_{0}^{\perp}M_{(2)}$ ) is the normal space of $M_{(1)}$ (resp. $M_{(2)}$ ) in
$N$ at $O$ (resp. $\overline{O}$ ).

Proof. The necessity is obvious and hence we shall prove the sufficiency.

Assume that there exists a linqar isometry $F_{o}$ : $T_{0(1)}^{\perp}M\rightarrow T_{\mathcal{D}}^{\perp}M_{(2)}$ with the pro-
perty $(*)$ . To apply Theorem $A$ , we imbed the real space form $N$ into a semi-
Euclidean space $R_{\nu}^{m+1}$ as a hypersurface in the natural way. Let $T_{p}^{1}M_{(1)}$ (resp.
$T_{q(2)}^{1}M)$ be the normal space of $M_{(1)}$ (resp. $M_{(2)}$ ) in $R_{\nu}^{m+1}$ at $p\in M_{(1)}$ (resp. $ q\in$

$M_{(2)})$ .
First we define a linear isometry $F_{0}$ ; $7_{0}^{1}M_{(1)}\rightarrow T_{0}\perp M_{(2)}$ as follows:

(2.1) $P_{0}(Y_{1}+b\overline{E}_{0})=F_{0}(Y_{1})+b\overline{E}_{0}$

for any $Y_{1}\in T_{O}^{\perp}M_{(1)}$ and any real number $b$ , where $\overline{E}$ is a unit normal vector
field of $N$ in $R_{\nu}^{m+1}$ .

We will prove that $fl_{0}$ satisfies the property $(*)$ . Easily we can show

(2.2) $\tilde{P}_{\alpha}|_{T_{O}^{1}\Pi_{(1)}}=P_{\alpha}$ and $\tilde{P}_{\overline{\alpha}}|_{\tau_{0}^{\perp}\kappa_{(2)}}=P_{\overline{\alpha}}$ ,

where $\tilde{P}_{\alpha}$ (resp. $\tilde{P}_{\overline{a}}$ ) is the parallel translation with respect to the normal con-
nection of $M_{(1)}$ (resp. $M_{(2)}$ ) in $R_{\nu}^{m+1}$ .

Let $\overline{h}$ and $\tilde{h}_{a}$ be the second fundamental forms of $N$ and $M_{(a)}(a=1,2)$ in
$R_{\nu}^{m+1}$ , respectively. We set $P_{\alpha(s)}=\tilde{P}_{\overline{\alpha}(s)^{\circ}}P_{0}\circ\tilde{P}_{\alpha(\iota)}^{-1}$ . If follows from (2.1) and
(2.2) that

(2.3) $P_{\alpha(s)}h_{1}(v, w)=F_{\alpha(s)}h_{1}(v, w)$

for any $v$ and $w\in T_{\alpha(s)}M_{(1)}$ . Since $F_{\alpha(s)}h_{1}(v, w)=h_{2}(\phi_{*}v, \phi_{*}w)$ , we have

(2.4) $P_{\alpha(\epsilon)}h_{1}(v, w)=h_{2}(\phi_{*}v, \phi_{*}w)$ .
On the other hand, since $N$ is totally umbilic in $R_{\nu}^{m+1}$ , we have

(2.5) $F_{\alpha(s)}\overline{h}(v, w)=\overline{h}(\phi_{*}v, \phi_{*}w)$ .
Therefore, it is clear from (2.4) and (2.5) that

(2.6) $P_{\alpha(S)}\tilde{h}_{1}(v, w)=\tilde{h}_{2}(\phi_{*}v, \phi_{*}w)$ ,

which implies that $fl_{o}$ satisfies the property $(*)$ .
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By virtue of Theorem $A$ , it follows that there exists a linear isometry $\phi$ of
$R_{\nu}^{m+1}$ such that

$\phi|M_{(1)}=\phi$ .
Moreover, $\phi|N$ is clearly an isometry of $N$. This completes the proof. Q.E.D.

Corollary 2.2. Let $M_{(1)}$ and $M_{(2)}$ be totally geodesic semi-Riemannian sub-
manffolds of a real space form $N$ such that there exists an isometry $\phi:M_{(1)}\rightarrow M_{(2)}$ .
Then $M_{(1)}$ and $M_{(2)}$ are congruent.

Corollary 2.3. Let $M_{(1)}$ and $M_{(2)}$ be semi-Riemannian hypersurfaces of a
real space form $N$ such that there exists an isometry $\phi:M_{(1)}\rightarrow M_{(2)}$ . Assume that
$M_{(1)}$ and $M_{(2)}$ have no geodesic $p\alpha nts$ . Then there is an isometry $\phi$ of $N$ such
that $\phi|M_{(1)}=\phi$ if and only if, at each Pmnt $p$ of $M_{(1)},$ $\phi_{*}AA_{1}=\pm AB_{2}\phi*holds$

for any unit normal vector $E_{1}$ (resp. $E_{2}$) of $M_{(1)}$ (resp. $M_{(2)}$ ) at $p$ (resp. $\phi(p)$),

where $A^{1}$ $(resP. A^{g})$ is the second fundomental tensor of $M_{(1)}$ (resp. $M_{(2)}$ ).

\S 3. Decomposition of proper semi-Riemannian hypersurfaces.

Let $M$ be a semi-Riemannian manifold with a semi-Riemannian metric $\langle, \rangle$ ,
$TM$ the tangent bundle of $M$ and $T$ a distribution on $M$, that is, a subbundle
of $TM$. If $\nabla_{X}Y\in T$ for any $X\in TM$ and any $Y\in\Gamma(T)$ , then $T$ is said to be
parallel, where $\Gamma(T)$ is the module of all cross sections of the subbundle $T$ of
$TM$. If $\langle, \rangle|T_{p}(p\in M)$ is non-degenerate, then $T$ is called a non-degenerate
distribution. The following three results are stated in [5].

Theorem B. Let $T$ be a non-degenerate parallel distribution on a semi-
Riemannian manifold M. Let $M^{\prime}$ be the maximal integral manifold of $T$ through
a point of M. Then $M^{\prime}$ is a totally geodesic submamfold of M. If $M$ is com-
plete, then so is $M^{\prime}$.

Theorem C. Let $T$ be a non-degenerate parallel distribution on a semi-
$R\iota emanman$ mamfold $M$ and $T^{\perp}the$ orthogonal complement of T. Then $T^{\perp}$ is a
non-degenerate parallel distribution. Let $M^{\prime}$ (resp. $Af^{\prime\prime}$ ) be the maximal integral
manifold of $T$ (resp. $T^{\perp}$ ) through $p\in M$. Then there exists an isometry $\phi$ of a
neighborhood of $p$ in $M$ into the product semi-Riemannian manifold $M^{\prime}\times M^{\prime}$ .

Theorem D. Let $T$ be a non-degenerate parallel distribution on a complete
and simply connected semi-Riemanman manifold $M$ and $T^{\perp}$ the orthogonal com-
plement of T. Let $M^{\prime}$ (resp. $M^{\prime}$ ) be the maximal integral manifold of $T$ (resp.
$T^{\perp})$ through $p\in M$. Then there exists an isometry $\phi$ of $M$ onto the product semi-
Riemanman mamfold $M^{\prime}\times M^{\prime}$ . Moreover $M^{\prime}$ and $M^{\prime}$ are complete and simply
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connected.

Now we prepare some lemmas on a tensor field of tyPe $(1, 1)$ . At first we
can prove the following lemma by using local frame fields.

Lemma 3.1. Let $B_{1}$ and $B_{2}$ be real vector bundles on a manifold M. Let $\Phi$

be a continuous bundle homomorPhism of $B_{1}$ into $B_{2}$ . Set $k(p)=\dim(Ker\Phi_{p})$ and
$r(P)=\dim({\rm Im}\Phi_{p})(p\in M)$ . Then $r$ is lower semi-continuous and $k$ is uPper semi-
continuous. Moreover, if $\Phi$ is smooth and $k$ or $\gamma$ is constant on $M$, then Ker $\Phi$

is a subbundle of $B_{1}$ and ${\rm Im}\Phi$ is a subbundle of $B_{2}$ .

Let $A$ be a tensor field of type $(1, 1)$ on $M$. If $A$ can be expressed by a
real diagonal matrix with respect to a linear frame at each point of $M$, then
$A$ is said to be diagonalizable.

Lemma 3.2. Let $A$ be a diagonalizable tensor field of type (1.1) on $M$.
Assume that the number of mutually distinct eigenvalues of $A$ is exactly $s$ at each
point of M. Then the eigenvalues $\lambda_{1},$ $\cdots$ , $\lambda_{s}(\lambda_{1}>\ldots>\lambda_{s})$ are smooth on $M$ and
$T_{\lambda_{i}}=Ker(A-\lambda_{i}I)$ is a smooth subbundle of $TM(1\leq i\leq s)$ .

Proof. Since $\lambda_{1},$ $\cdots$ , $\lambda_{s}$ are continuous function on $M$ (see [2], for exam-
ple), $(A-\lambda_{1}I)$ and $(A-\lambda_{2}I)\cdots(A-\lambda_{s}I)$ are continuous bundle homomorphisms of
$TM$. The minimal polynomial of $A$ is $(t-\lambda_{1})\cdots(t-\lambda_{s})$ . We have $T_{\lambda_{1}}=$

${\rm Im}((A-\lambda_{2}I)\cdots(A-\lambda_{s}I))$ . From Lemma 3.1, dim $(T_{\lambda_{1}})_{p}$ is constant on $M$. Simi-
larly $\lambda_{2},$ $\cdots$ , $\lambda_{s}$ have constant multiplicities on $M$. Using the Cauchy’s integral
representation, we can show that $\lambda_{1},$ $\cdots$ , $\lambda_{s}$ are smooth on $M$. Hence $(A-\lambda_{i}I)$

is smooth $(1\leq i\leq s)$ . From Lemma 3.1, $T_{\lambda_{i}}$ is a smooth subbundle $(1\leq i\leq s)$ .
Q. E. D.

Lemma 3.3. Let $A,$ $\lambda_{\ell}$ and $T_{\lambda\ell}(1\leq i\leq s)$ be as the above lemma. Assume
that $(\nabla_{X}A)Y=(\nabla_{Y}A)X$ holds for any $X$ and $Y\in TM$. Then distributions $T_{\lambda_{1}},$ $T_{\lambda_{*}}$

are involutive. Moreover if dim $T_{\lambda\ell}>1$ , then $X\lambda_{\ell}=0$ holds for any $X\in T_{\lambda\ell}$ .

Proof. Let $X$ and $Y$ be elements of $\Gamma(T_{\lambda_{1}})$ , where $\Gamma(T_{\lambda_{1}})$ is the module
of all the cross sections of the subbundle $T_{\lambda_{1}}$ of $TM$. From $(\nabla_{X}A)Y=(\nabla_{Y}A)X$

we have

(3.1) $(A-\lambda_{1}I)[X, Y]=(X\lambda_{1})Y-(Y\lambda_{1})X$ .
By multiplying $(A-\lambda_{2}I)\cdots(A-\lambda_{s}I)$ to both sides of (3.1), the left hand side is
equal to zero since $(t-\lambda_{1})\cdots(t-\lambda_{s})$ is the minimal polynomial of $A$ and the
right hand side is equal to

$(\lambda_{1}-\lambda_{2})\cdots(\lambda_{1}-\lambda,)\{(X\lambda_{1})Y-(Y\lambda_{1})X\}$ .
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Therefore both sides of (3.1) is equal to zero, that is,

(3.2) [X, $Y$] $\in T_{\lambda_{1}}$ and $(X\lambda_{1})Y-(Y\lambda_{1})Y=0$ .
which means that $T_{\lambda_{1}}$ is involutive. Similarly $T_{\lambda},,$ $\cdots$ , $T_{\lambda}$ are involutive.
Especially if dim $T_{\lambda_{1}}>1$ , then we have $X\lambda_{1}=0$ from (3.2) by choosing $X$ and $Y$

to be linearly independent. This completes the proof. Q. E. D.

If $A$ can be expressed by a real diagonal matrix with respect to an ortho-
normal frame at each point of the semi-Riemannian manifold $M$, then $A$ is said
to be proper.

Lemma 3.4. Let $A,$ $\lambda_{\ell}$ and $T_{\lambda_{\ell}}(1\leq i\leq s)$ be as in Lemma 3.3. Assume that
$A$ is Proper and $s=2$ . Then $T_{\lambda_{1}}$ and $T_{\lambda_{2}}$ are non-degenerate and $TM=T_{\lambda_{1}}\oplus T_{\lambda_{\epsilon}}$

(orthogonal direct sum). Moreover, assume that $\lambda_{1}$ and $\lambda_{2}$ are constant over $M$.
Then $T_{\lambda_{1}}$ and $T_{\lambda_{2}}$ are parallel.

Proof. By Lemma 3.3, distributions $T_{\lambda_{1}}$ and $T_{\lambda}$ , are smooth and involutive.
For $X\in\Gamma(T_{\lambda_{1}})$ and $Y\in\Gamma(T_{\lambda_{2}})$ , we have, from (1.6),

(3.3) $(A-\lambda_{1}I)\nabla_{Y}X=(A-\lambda,I)\nabla_{X}Y$ .
Since $(t-\lambda_{1})(t-\lambda_{2})$ is the minimal polynomial of $A$ , the left hand side of (3.3)
is in $T_{\lambda}$ , and the right hand side is in $T_{\lambda_{1}}$ . Therefore both sides of (3.3) are
equal to zero, that is,

(3.4) $\nabla_{Y}X\in\Gamma(T_{\lambda_{1}})$ and $\nabla_{X}Y\in\Gamma(T_{\lambda_{2}})$ .
If $Z\in T_{\lambda_{1}}$ , then we have

(3.5) $\langle\nabla_{z}X, Y\rangle+\langle X, \nabla_{Z}Y\rangle=\nabla_{Z}\langle X, Y\rangle=0$ .
On the other hand, it follows from (3.4) that

$\nabla_{Z}Y\in T_{\lambda_{2}}$ , that is, \langle X, $\nabla_{Z}Y\rangle$ $=0$ .
which together with (3.5) yields

(3.6) $\nabla_{z}X\in(T_{\lambda_{2}})^{\perp}=T_{\lambda_{1}}$ .
From (3.4) and (3.6), we can see that the distribution $T_{\lambda_{1}}$ is parallel. Similarly
$T_{\lambda_{2}}$ is parallel. Q. E. D.

Let $A$ be the second fundamental tensor of a semi-Riemannian hypersurface
$M$ of a semi-Riemannian manifold N. $M$ is said to be proper if $A_{B}$ is proper
for a unit normal vector $E$ at each point of $M$.

Theorem 3.5. Let $M^{n}$ be a ProPer semi-Riemannian hypersurface of a real
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spaoe form $N^{n+1}(\overline{c})$ whose sign is $\epsilon$ . Assume that there exist constants $\lambda$ and $\mu$

$(\lambda\neq\mu)$ and the set of all eigenvalues of $A_{B}$ is $\{\lambda, \mu\}$ for a unit normal vector $E$

at each point of M. Then the maximal integral manifolds of $T_{\lambda}$ (resp. $T_{\mu}$ ) are
locally isometric to the real space form $M(c_{1})$ (resp. $M(c_{2})$ ) of constant curvature
$c_{1}=\overline{c}+\epsilon\lambda^{2}$ (resp. $c_{2}=\overline{c}+\epsilon\mu^{2}$) and $\delta+\epsilon\lambda\mu=0$ holds. $M$ is locally isometric to
$M(c_{1})\times M(c_{2})$ .

Proof. Fix a point $P$ of $M$. Let $E$ be a unit normal vector field of $M$

defined on a neighborhood $U$ of $p$ . Let us restrict ourselves to the neighbor-
hood $U$ . By Lemma 3.4, $T_{\lambda}$ and $T_{\mu}$ are non-degenerate and parallel. Let $M^{\prime}$

(resp. $M^{\prime\prime}$ ) be the maximal integral manifold of $T_{\lambda}$ (resp. $T_{\mu}$) through $p$ . Since
$M^{\prime}$ and $M^{\prime\prime}$ are totally geodesic in $M$ from Theorem $B$ , the curvature tensors
of $M^{\prime}$ and $M^{\prime}$ are just the restriction of the curvature tensor $R$ of $M$. Hence
we denote them by the same letter $R$ without confusion. For any $X$ and
$Y\in T_{\lambda},$ $R(X, Y)=(\overline{c}+\epsilon\lambda^{t})(X\wedge Y)$ holds by virtue of (1.7). Thus $M^{\prime}$ is of con-
stant curvature $c_{1}$ . Similarly $M^{\prime}$ is of constant curvature Cf. Therefore it
follows from Theorem $C$ that there exists an isometry $\phi$ of a neighborhood $V$

of $P$ in $U$ into the product of real space forms $M(c_{1})$ and $M(c_{2})$ . Take any
unit vectors $X\in T_{\lambda}$ and $Y\in T_{\mu}$ . Since the distribution $T_{\mu}$ is parallel, we have
$R(X, Y)Y\in T_{\mu}$ , which together with (1.7) implies $\overline{c}+\epsilon\lambda\mu=0$ . Q. E. D.

Therefore we obtain the following theorem from Theorem D.

Theorem 3.6. Let $M^{n}$ be a comPlete and simPly connected Proper semi-
Riemannian hypersurface of a real space form $N^{n+1}(\overline{c})$ whose sign is $\epsilon$ . Assume
that there exist constants $\lambda$ and $\mu(\lambda\neq\mu)$ and the set of all eigenvalues of $A_{B}$ is
$\{\lambda, \mu\}$ for a unit normal vector $E$ at each Point of M. Then $M$ is isometric to
the producf of $M(c_{1})$ and $M(c_{2})$ which are complete, simply connected and of con-
stant curvature $c_{1}=\overline{c}+\epsilon\lambda^{2}$ and $c_{2}=\overline{c}+\epsilon\mu^{2}$ , and $\overline{c}+\epsilon\lambda\mu=0$ holds.

\S 4. Models of proper semi-Riemannian hypersurfaces.

In this section we introduce some complete proper semi-Riemannian hyper-
surfaces $M$ of real space forms $N$ which will serve as models in our diScussion.
Let $A$ be the second fundamental tensor of $M$. Let $E$ be a unit normal vector
of $M$. We put $\epsilon=\langle E, E\rangle$ .

Let us consider the following hypersurfaces $M$ of real space forms $N$ (and

take a connected component of $M$ if necessary).

(R) The hypersurfaces of $N=R_{\nu}^{n+1}$ .
(R-1) $R_{\nu}^{n}=\{x=(x_{1}, r\cdot\cdot , x_{n+1})\in N|x_{n+1}=0\}$ ,
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$A_{B}=0$ , $\epsilon=1$ .
(R-2) $S_{\nu}^{n}(c)=\{x\in N|-\sum_{i-1}^{\nu}x_{\ell^{2}}+\sum_{i-\nu+1}^{n+1}x_{i^{2}}=1/c\}$ $(c>0)$ ,

$A_{B}=\pm\sqrt{c}I$, $\epsilon=1$ .
(R-3) $R_{\nu-1}^{n}=\{x\in N|x_{1}=0\}$ ,

$A_{B}=0$ , $\epsilon=-1$ .
(R-4) $H_{\nu-1}^{n}(c)=\{x\in N|-\sum_{\ell=1}^{\nu}x_{t^{2}}+\sum_{\ell=\nu+1}^{n+1}x_{\ell^{2}}=1/c\}$ $(c<0)$ ,

$A_{B}=\pm\sqrt{-c}I$ , $\epsilon=-1$ .
(R-5) $R_{\tau}^{r}\times S_{\nu-\tau}^{n-r}(c)=\{\{x\in N|-\sum_{\ell=\tau+1}^{\nu}x_{i^{2}}+\sum_{\ell=\nu+r-\tau+1}^{n+1}x_{i^{2}}=\frac{1}{c}\}$ $(c>0)$ ,

$A_{B}=\pm(0_{r}\oplus\sqrt{c}I_{n-r})$ , $\epsilon=1$ .
(R-6) $R_{\tau}^{r}\times H_{\nu-\tau-1}^{n-r}(c)=\{x\in N|-\sum_{\ell=\tau+1}^{\nu}x_{\ell^{2}}+\sum_{\ell=\nu+r-\tau+1}^{n+1}x_{i^{2}}=\frac{1}{c}\}$ $(c<0)$ ,

$A_{B}=\pm(0_{r}\oplus\sqrt{-c}I_{n-r})$ , $\epsilon=-1$ .
(S) The hypersurfaces of $N=S_{\nu}^{n+1}(\overline{c})(\subset R_{\nu}^{n+2})$ .
(S-1) $S_{\nu}^{n}(c)=\{x\in N|x_{n+2}=\sqrt{1}/\overline{c}-1/c\}$ $(\overline{c}\leq c)$ ,

$A_{E}=\pm\sqrt{c-\overline{c}}I$ , $\epsilon=1$ .
(S-2) $R_{\nu-1}^{n}=\{x\in N|x_{1}=x_{n+2}+t_{0}\}$ $(t_{0}>0)$ ,

$A_{B}=\pm\sqrt{\overline{c}I}$ , $\epsilon=-1$ ,

(S-3) $S_{\nu-1}^{n}(c)=\{x\in N|x_{1}=\sqrt{1}/c-1/\overline{c}\}$ $(0<c\leq\overline{c})$ ,

$A_{B}=\pm\sqrt{\overline{c}-c}I$ , $\epsilon=-1$ .
(S-4) $H_{\nu-1}^{n}(c)=\{x\in N|x_{n+2}=\sqrt{1}/\overline{c}-1/c)$ $(c<0)$ ,

$A_{B}=\pm\sqrt{\overline{c}-c}I$ , $\epsilon=-1$ .
(S-5) $S_{\tau}^{r}(c_{1})\times S_{\nu-\tau}^{n-r}(c_{2})=\{x\in N|-\sum_{\ell=1}^{\tau}x_{i^{2}}+\sum_{\ell\approx\nu+1}^{\nu+r-\tau+1}x_{\ell^{2}}=\frac{1}{c_{1}}$ ,

$-\sum_{\ell\approx\tau+1}^{\nu}x_{t^{2}}+\sum_{\ell=\nu+r-\tau+2}^{n+2}x_{t^{2}}=\frac{1}{c_{2}}\}$

$(1/c_{1}+1/c_{2}=1/\overline{c}, c_{1}>0, c_{2}>0)$ ,

$A_{B}=\pm(\sqrt{c_{1}-\overline{c}}I_{r}\oplus(-\sqrt{c_{2}-\overline{c}})I_{n-r})$ , $\epsilon=1$ . :



132 N. ABE, N. KOIKE AND S. YAMAGUCHI

(S-6) $S_{r}^{r}(c_{1})\times H_{\nu-\tau-1}^{n-r}(c_{2})=\{x\in N|-\sum_{t\sim 1}^{f}x_{1}^{2}+\sum_{\ell=\nu+1}^{\nu+r-\tau+1}x_{i^{2}}=\frac{1}{c_{1}}$ ,

$n+$

$-\sum_{\ell-\tau+1}^{\nu}x_{\ell^{2}}+\sum_{\ell\Leftrightarrow\nu+r-\tau+\iota}x_{\ell^{8}}==\frac{1}{c_{f}}\}$

$(1/c_{1}+1/c_{2}=1/\overline{c}, c_{1}>0, c_{2}<0)$ ,

$A_{B}=\pm(\sqrt{\overline{c}-c_{1}}I_{r}\oplus\sqrt{\overline{c}-c_{2}}I_{n-r})$ , $\epsilon=-1$ .
(H) The hypersurfaces of $N=H_{\nu}^{n+1}(\overline{c})(\subset R_{\nu+1}^{n+2})$ .

(H-1) $R_{\nu}^{n}=\{x\in N|x_{1}=x_{n+8}+t_{0}\}$ $(t_{0}>0)$ ,

$A_{E}=\pm\sqrt{-\overline{c}}I$ , $\epsilon=1$ .
(H-2) $S_{v}^{n}(c)=\{x\in N|x_{1}=\sqrt{1/c-1/\overline{c}}\}$ $(c>0)$ ,

$A_{B}=\pm\sqrt{c-\overline{c}I}$ , $\epsilon=1$ .
(H-3) $H_{\nu}^{n}(c)=\{x\in N|x_{n+8}=\sqrt{1/\overline{c}-1/c}\}$ $(\overline{c}\leq c<0)$ ,

$A_{B}=\pm\sqrt{c-\overline{c}}I$ , $\epsilon=1$ .
(H-4) $H_{\nu-1}^{n}(c)=\{x\in N|x_{1}=\sqrt{1/c-1/\overline{c}}\}$ $(c\leq\overline{c})$ ,

$A_{B}=\pm\sqrt{\overline{c}-c}I$ , $\epsilon=-1$ .

(H-5) $S_{\tau}^{r}(c_{1})\times H_{\nu-\tau}^{n-r}(c_{l})=\{x\in N|-\sum_{\ell=1}^{\tau}x_{i^{2}}+\sum_{\ell=\nu+2}^{\nu+r-\tau+2}x_{\ell^{2}}=\frac{1}{c_{1}}$ ,

$-\sum_{\ell\sim\tau+1}^{\nu+1}x_{\ell^{2}}+\sum_{\ell\Rightarrow\nu+r-\tau+S}^{n+2}x_{\ell^{2}}=\frac{1}{c_{2}}\}$

$(1/c_{1}+1/c_{2}=1/\overline{c}, c_{1}>0, c_{2}<0)$ ,

$A_{B}=\pm(\sqrt{c_{1}-\overline{c}}I_{r}\oplus\sqrt{c_{2}-\overline{c}}I_{n-r})$ , $\epsilon=1$ .

(H-6) $H_{\tau-1}^{r}(c_{1})\times H_{\nu-\tau}^{n-r}(c_{2})=\{x\in N|-\sum_{\ell=1}^{\tau}x_{\ell^{2}}+\sum_{\ell=\nu+2}^{\nu+r-\tau+2}x_{i^{2}}=\frac{1}{c_{1}}$ ,

$-\sum_{\ell=\tau+1}^{\nu+1}x_{i^{2}}+\sum_{i-\nu+r-\tau+S}^{n+2}x_{\ell^{2}}=\frac{1}{c_{2}}\}$

$(1/c_{1}+1/c_{g}=1/\overline{c}, c_{1}<0, c_{2}<0)$ ,

$A_{E}=\pm(\sqrt{\overline{c}-c_{1}}I_{r}\oplus(-\sqrt{\overline{c}-c_{2}})I_{n-r})$ , $\epsilon=-1$ .
Remark. We note that the each model satisfies either of the following (I)

or (II):

(I) The hypersurface $M$ is totally umbilic in $N$, that is, $A_{E}=\lambda I$ holds, and
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$M$ is of constant curvature $c(=\overline{c}+\epsilon\lambda^{2})$ .
(II) $A_{B}$ has exactly two mutually distinct eigenvalues $\lambda$ and $\mu,$ $M$ is iso-

metric to the product of real space forms of constant curvature $c_{1}(=\overline{c}+\epsilon\lambda^{1})$ and
$c_{2}(=C+e\mu^{2})$ , and furthermore $\overline{c}+\epsilon\lambda\mu=0$ holds.

Since the calculations of the second fundamental tensors of the models are
much the same, we shall work on the case (S-2), for example. Namely, we
consider the following situation:

$R_{\nu-1}^{n}=M=\{p\in R_{\nu}^{n+2}|p_{1}=p_{n+2}+t_{0}\}\cap S_{\nu}^{n+1}(\overline{c})$ $(\subset R_{\nu}^{n+2})$ ,

where $p=(p_{1}, \cdots , p_{n+2})$ . Let $T_{p}^{\perp}M$ (resp. $7_{p}^{\perp}M$) be the normal space of $M$ in
$S_{\nu}^{n+1}(\overline{c})$ (resp. $R_{\nu}^{n+2}$) at $p\in M$. In the sequel, we shall identify $T_{x}R_{\nu}^{n+2}(x\in R_{\nu}^{n+t})$

with $R_{\nu}^{n+2}$ in the natural way. By straightforward calculations, we have

$T_{p}^{\perp}M=\{x\in R_{\nu}^{n+2}|x_{2}=\frac{(x_{1}-x_{n-2})p_{2}}{t_{0}},$ $\cdots$ $x_{n+1}=\frac{(x_{1}-x_{n+2})p_{n+1}}{t_{0}}\}$ ,

$T_{p}S_{\nu}^{n+1}(\overline{c})=\{x\in R_{\nu}^{n+2}|-\sum_{\ell=1}^{\nu}x_{\ell}p_{\ell}+\sum_{\ell=\nu+1}^{n+2}x_{\ell}p_{\ell}=0\}$ ,

where $x=(x_{1}, \cdots x_{n+2})$ and $p=(p_{1}, \cdots , p_{n+2})$ . Therefore it follows that
$T_{p}^{\perp}M=T_{p}\perp M\cap T_{p}S_{\nu}^{n+1}(\overline{c})$

$=\{x\in R_{\nu}^{n+2}|x_{1}=(\frac{t_{0}^{2}\overline{c}}{1+t_{0}cp_{n+2}}+1)x_{n+2},$ $x_{2}=\frac{p_{2}t_{0}\overline{c}x_{n+2}}{1+f_{0}cp_{n+2}}$ ,

..., $x_{n+1}=\frac{p_{n*1}t_{0}\overline{c}x_{n+2}}{1+t_{0}cp_{n+2}}\}$ .
Consequently, we can construct a unit normal vector field $E$ of $M$ in $S_{\nu}^{n+1}(\overline{c})$ as
follows:

(4.1) $E(p)=\pm(p_{1}\sqrt{\delta}+1/(t_{0}\sqrt{}\delta\gamma, p_{2}\sqrt{\delta}\ldots p_{n+1}\sqrt{\delta}p_{n+2}\sqrt{\delta}+1/(t_{0}\sqrt{}\delta\gamma)$

for each point $P$ of $M$.
Let $\tilde{\nabla}$ be the Levi-Civita connection on $R_{\nu}^{n+2}$ . If $X\in TM$, then, from (1.1)

and (1.2), we have

(4.2) $A_{B}X=-(\tilde{\nabla}_{X}E)^{T}$ ,

where $(\tilde{\nabla}_{X}E)^{T}$ is the component tangential to $M$ of $\tilde{\nabla}_{X}E$ . Let $\tilde{E}$ be a vector
field on $R_{\nu}^{n+2}$ defined by

(4.3) $\tilde{E}(x)=\pm(x_{1}\sqrt{\overline{c}}+1/(t_{0}\sqrt{\overline{c})}, x_{2}\sqrt{\overline{c}}, \cdots x_{n+1}\sqrt{\overline{c}}, x_{n+2}\sqrt{\overline{c}}+1/(t_{0}\sqrt{\overline{c}}))$ ,

for each point $x$ of $R_{\nu}^{n+2}$ . We note that the vector field $\tilde{E}$ is the extension of
$E$ . Let $X^{k},\tilde{E}^{k}$ and $(\tilde{\nabla}_{X}E)^{k}(1\leq k\leq n+2)$ be the components of $X,\tilde{E}$ and $\tilde{\nabla}_{X}E$ ,
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respectively. Then we have

(4.4) $(\tilde{\nabla}_{X}E)^{k}=\sum_{\ell=1}^{n+2}X^{i}(\partial\tilde{E}^{k}/\partial x_{1})$ .

On the other hand, it follows from (4.3) that

(4.5) $\partial\tilde{E}^{k}/\partial x_{i}=\pm\sqrt{\overline{c}}\delta_{i}^{k}$ ,

where $\delta i$ is the Kronecker’s delta. Therefore, from (4.2), (4.4) and (4.5), we
obtain $A_{E}=\pm\sqrt{\overline{c}}I$ .

\S 5. Main theorem.

Now we prove the following main theorem.

Theorem 5.1. Let $M^{n}$ be a prOper semi-Riemannian hypersurface of a real

sPace form $N^{n+1}(\delta)$ . Assume that there exist constants $\lambda$ and $\mu(\lambda\neq\mu)$ and the set

of all eigenvalues of $A_{E}$ is $\{\lambda, \mu\}$ or $\{\lambda\}$ for a unit normal vector $E$ at each

Point of M. Then $M$ is locally congruent to one of the models in \S 4.

Proof. Since the number of mutually distinct eigenvalues of $A_{B}$ is at most

two, the following two cases can be considered:

(I) $M$ is totally umbilic in $N^{n+1}(\overline{c})$ .
(II) $A_{B}$ has exactly two mutually distinct eignvalues $\lambda$ and $\mu(\lambda\neq\mu)$ .

$*$

Case (I). Assume that $A_{B}=\lambda I$ . From (1.7), $M$ is of constant curvature $c_{-}^{J}$

given by $C+e\lambda^{2}$ , where $\epsilon=\langle E, E\rangle$ . Then, the following tweleve cases can be

considered:

(1) $\overline{c}=0,$ $c=0$ and $\epsilon=1$ , (2) $\overline{c}=0,$ $c>0$ and $\epsilon=1$ ,

(3) $C=0,$ $c=0$ and $\epsilon=-1$ , (4) $C=0,$ $c<0$ and $\epsilon=-1$ ,

(5) $0<C\leq c$ and $\epsilon=1$ ,

(7) $C\geq c>0$ and $\epsilon=-1$ ,

(9) $\tilde{c}<0,$ $c=0$ and $\epsilon=1$ ,

(11) $\overline{c}\leq c<0$ and $\epsilon=1$ ,

(6) $C>0,$ $c=0$ and $\epsilon=-1$ ,

(8) $C>0,$ $c<0$ and $\epsilon=-1$ ,

(10) $C<0,$ $c>0$ and $\epsilon=1$ ,

(12) $0>\overline{c}\geq c$ and $\epsilon=-1$ .
According to (1), (2), $\cdots$ , (11) or (12), we can compare $M$ with (R-1), (R-2),

(R-3), (R-4), (S-1), (S-2), (S-3), (S-4), (H-1), (H-2), (H-3) or (H-4), respectively.

Let $\overline{M}$ be the model corresponding to $M$. Let $\phi$ be a local isometry of $M$

into $\overline{M}$ and $\overline{A}$ the second fundamental tensor of $\overline{M}$. From (1.7), we have
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$\lambda=\pm\sqrt{\epsilon(c-\overline{c})}$ . Hence, at each point $p$ of $M,\overline{A}_{\overline{E}}\phi_{*}=\pm\phi_{*}A_{B}$ holds for any unit
normal vector $E$ (resp. $\overline{E}$ ) of $M$ (resp. $\overline{M}$ ). Therefore from Corollary 2.2 and
Corollary 2.3, we can see that $M$ is locally congruent to $\overline{M}$.

Case (II). Assume that $A_{B}=\lambda I_{r}\oplus\mu I_{n-r}(\lambda\neq\mu)$ . By Theorem 3.5, $M$ is
locally isometric to the product of real space form $M(c_{1})$ of constant curvature
$c_{1}(=C+\epsilon\lambda^{2})$ and real space form $M(c_{2})$ of constant curvature $c_{2}(=C+\epsilon\mu^{2})$ and
$\overline{c}+\epsilon\lambda\mu=0$ holds. Moreover we can take a local isometry $\phi$ of $M$ into $ M(c_{1})\times$

$M(c_{2})$ such that $\phi_{*}T_{\lambda}=TM(c_{1})$ around each point of $M$, where $\epsilon=\langle E, E\rangle$ and
$T_{\lambda}=Ker(A_{E}-\lambda I)$ . Then the following six cases can be considered:

(1) $\overline{c}=0,$ $c_{1}=0,$ $c_{2}>0$ and $\epsilon=1$ ,

(2) $C=0,$ $c_{1}=0,$ $c_{g}<0$ and $\epsilon\Leftarrow-1$ ,

(3) $C>0,$ $c_{1}>0,$ $c_{2}>0$ and $\epsilon=1$ ,

(4) $C>0,$ $c_{1}>0,$ $c_{2}<0$ and $\epsilon=-1$ ,

(5) $C<0,$ $c_{1}>0,$ $c_{2}<0$ and $\epsilon=-1$ ,

(6) $C<0,$ $c_{1}<0,$ $c_{2}<0$ and $\epsilon=-1$ ,

According to (1), (2) , (5) or (6), we are able to compare $M$ with (R-5),
(R-6), (S-5), (S-6), (H-5) or (H-6) respectively.

Let $\overline{M}$ be the model corresponding to $M$ and $\overline{A}$ the second fundamental
tensor of $\overline{M}$. Let $\phi$ be a local isometry of $M$ into $\overline{M}$ such that $\phi_{*}T_{\lambda}=TM(c_{1})$ .
From (1.7) we have $\lambda=\pm\sqrt{\epsilon(c_{1}-\overline{c})}$ and $\mu=\pm\sqrt{\epsilon(c_{2}-\overline{c})}(\lambda\mu=-\epsilon\overline{c})$ . Hence, it
follows that $\overline{A}_{E}^{-}\phi_{*}=\pm\phi_{*}A_{B}$ holds for any unit normal vector $E$ of $M$ at $P$ and
any unit normal vector $\overline{E}$ of $\overline{M}$ at $\phi(p)$ . From Corollary 2.3, $M$ is locally
congruent to $\overline{M}$. Q. E. D.

As a global version of this theorem, we have the following.

Theorem 5.2. Let $M^{n}$ be a comPlete ProPer semi-Riemannian $hyPersurface$

of a real space form $N^{n+1}(\overline{c})$ . Assume that there exist constants $\lambda$ and $\mu(\lambda\neq\mu)$

and the set of all eigenvalues of $A_{E}$ is $\{\lambda, \mu\}$ or $\{\lambda\}$ for a unit normal vector $E$

at each pmnt of M. Furthermore assume that $M$ is locally isometric to neither
tyPe of $S_{n-1}^{n},$ $H_{1}^{n},$ $S_{k-1}^{k}\times M^{\prime}$ nor $H_{1}^{k}\times M^{\prime}(1\leq k\leq n-1)$ , where $M^{\prime}$ is a semi-
Riemanman mamfold. Then $M$ is congruent to one of the models in \S 4.

Proof. By the preceding Theorem 5.1, $M$ is locally congruent to one of
the models in \S 4. Let $\overline{M}$ be the model locally congruent to $M$. Let $\pi:\hat{M}\rightarrow M$

be the universal semi-Riemannian covering of $M$ and $f$ be the imbedding of $M$

into $N$. Then by for, $\hat{M}$ is immersed into $N$. By the way, since $\pi$ is a local
isometry, $M$ and $\hat{M}$ ( $i$ . $e.,\hat{M}$ and $\overline{M}$ ) are locally congruent. Let $\hat{A}$ (resp. $\overline{A}$ ) be
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the second fundamental tensor and $B$ (resp. $\overline{E}$ ) be a unit normal vector field
of $\hat{M}$ (resp. $\overline{M}$). Sinoe $M$ is complete, so is $\hat{M}$.

At first, we consider the case where $\overline{M}$ is a real space form. Since $\overline{M}$ is
neither $S_{n-1}^{n}$ nor $H_{1}^{n}$ , there exists an isometry $\phi$ of $\hat{M}$ onto $\overline{M}$. It follows from
$\hat{A}_{\hat{B}}=\pm\sqrt{\epsilon(c-\overline{c})}I$ and $\overline{A}_{B}=\pm\sqrt{\epsilon(c-\overline{c})}I$ that $\overline{A}_{B}\phi_{*}=\pm\phi_{*}\hat{A}_{\hat{B}}$ . Then, from Corol-
lary 2.2 and Corollary 2.3, $\hat{M}$ and $\overline{M}$ are congruent. Thus it follows from this
fact that $\pi$ is injective and $\pi$ is an isometry of $\hat{M}$ onto $M$. Therefore, $M$ and
$\overline{M}$ are congruent.

Next, we consider the case where $\overline{M}$ is a product of the space forms. It
follows from Theorem 3.6 that there exists an isometry $\phi$ of $\hat{M}$ onto $ M(c_{1})\times$

$M(c_{2})$ such that $\phi_{*}T_{\lambda}=TM(c_{1})$ . Moreover, $M(c_{1})$ and $M(c_{2})$ are real spaoe forms
by the assumption. It follows from $\overline{A}_{\overline{E}}=\pm(\sqrt{\epsilon(c_{1}-\overline{c})}I_{r}\oplus\pm\sqrt{\epsilon(c,-\overline{c})}I_{n-f})$ and
$\hat{A}_{\hat{B}}=\pm(\sqrt{\epsilon(c_{1}-\overline{c})}I_{r}\oplus\pm\sqrt{\epsilon(c_{f}-\overline{c})}I_{n-r})$ that $\overline{A}_{B}\phi_{*}=\pm\phi_{*}\hat{A}\text{{\it \^{E}}}$ . Hence, from Corol-
lary 2.3, $\hat{M}$ and $\overline{M}$ are congruent. Thus, $\pi$ is injective and $\pi$ is an isometry
of $\hat{M}$ onto $M$. Therefore $M$ and $\overline{M}$ are congruent. Q. E. D.
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