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I. Introduction and main results.
1. Two propositions from ergodic theory.

Let (2, A, T, p) be a dynamical system where A is a ¢-algebra of subsets
of 2, T is a surjective and measure preserving map of £ onto itself and g is
a T-invariant probability measure on (2, A), i.e. u(A)=u(T*A) for each A
from A. By a c-algebra we shall always mean a sub-g-algebra of 4. Any
set or partition will be considered to be measurable as well. For an at most
countable and measurable partition § of £ and a g-algebra C let H,(§|C) denote
the conditional entropy of §, i.e. H,(§|C)=EZ2 sc:¢(u(A|C)) where u(A|C) means
the conditional probability and ¢(t)=—t-log () for 0<t<1, 0 otherwise. If there
is no danger of confusion we shall omit the referrence to g and for C trivial
H(&)=H(£|C) is called the entropy of £&. A c¢-algebra T ! HC .M will be called
invariant. 1If the o-algebras T*H exist we denote by Hew=V ezT M the smallest

g-algebra containing all T*%. By #.. we denote ﬂT“Jn.
There exists a og-algebra ¢ with the following properties

i) @ is invariant and for each invariant o¢-algebra HMCP it is MH=T 'H
mod g,
ii) @ is the maximal ¢-algebra with property (i),

We shall call @ the Pinsker og-algebra (the definition is equivalent to the usual
one as given in [9], see section III).

Theorem 1. Let M be an invariant c-algebra, Q an invariant sub-c-algebra
of the Pinsker cg-algebra @ and & be an M-measurable partition of 2 with finite
entropy. Then for k=1, 2, ---

4 HE|T*m)=HEIQVT *H)
an
' HE | M-)=HEIQV M)
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where QV M denotes the smallest g-algebra containing Q and M. If M. exists
then we can take & M-measurable.

As a special case of we shall obtain Theorems 10 and 11 on p.
67 in [9].

Theorem 2. Let M, Q be given as in Theorem 1. The c-algebras M and Q
are then conditionally independent with respect to M-, T *M, k=1,2, :--. For
any M-measurable and integrable function f it holds

EfIT*m=E(fIQVT*H), k=12,
E(fIM-w)=E(f|QV H-).

If M. exists then the conditional independence holds for it (in the place.of M)
and we can take f M.-measurable.

The invariant g-algebra ¥ is often defined by the relation JHCT-'H (see
[4], [6D. It is not difficult to get versions of Theorems 1,2 for that case.
Notice that if HCT-'H then the g-algebras T*.H all exist and we can consider
T as a bijective and bimeasurable transformation.

2. Decomposition of stationary processes.

Let L?(A, p), p=1, 2 denote the spaces of integrable, resp. square integrable
functions. If there is no danger of confusion we shall write L?(A). For an
invariant o-algebra # we define

Pf=E(f|T*H)—E(fIT*H)

whenever f is integrable and the c-algebras exist (are sub-c-algebras of A).
The operators P; will be called difference projection operators generated by M ;
notice that in L%(A), P; is the projection operator onto L:T -t M)SL¥T "' H).
As E(fI|M)T=E(f-T|T 'n),

(Pif)eT=Piss(fT).

(P, f)-T* is thus a reversed martingale difference sequence for any integrable f
where P,f and (P,f).T* are defined. The o¢-algebra ¢{f-T*: i=0} generated
by functions f-T% =0 is invariant so each reversed martingale difference
sequence can be expressed in this way. Let us suppose that T is invertible and
bimeasurable.

Theorem 3. Let M be an invariant o-algebra, P, the difference projection
operators generated by M, Q an invariant sub-o-algebra of the Pinsker c-algebra
@ and P; the difference projection operators generated by the invariant o-algebra
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MNQ. Then for each function f& LY(M) it holds

E(f|M-w)=E(f|QNHM-o)
and
Ptf=Ptf

whenever P; are defined. If the g-algebra M. exists we can take f< LN (M) and
ieZ.

Example. The assumption that f is JM.-measurable is important. Let
(X, F, 2) be a probability space where X={—1, 1}, & is the collection of all
subsets of X and A(—1)=1/2=2(1). (£2,, A, Ty, p1) is the dynamical system
where Q,=X%, A,=9%, p,=A% and T, is the shift on X%, i.e. (T\w)i=wi+:.
Let T,: X—X be defined by T,(1)=—1, Ty(—1)=1. (X, &, T,, A) is a dynamical
system. Let us put 2=02,XX, A=4,F, p=p.®2 and for (v, ") let
T (o, o")=(Tw’, T:w"). By ¢, i=1, 2, we denote the projections of 2 to 2,, X
and p; is the projection of 2, to the i-th coordinate, /=Z. Let f=(po°q:1):qs,
C1=q7' (A1), Co=q3z (F), Mi=0{p::120}, H=q7'(M,), P; be the difference pro-
jection operators generated by % and P; by “H\VC,. We shall show that

f=pof,

Pif=0.

but for each reZ

The function f is #\VC,-measurable; we shall prove that E(f|T (HVCy))
=0. The function ¢, is C,-measurable so E(f|C.VT 2 HM)=q;- E(po°q:1C:V T ' H).
The g-algebras €, and C, are independent so E(poeq;|CoV T 2 H)=E(Po°qs| T H).
For M, it holds E, (peeq:|T ' MH)=E, (po| T *M:)°¢q;. The o-algebras o{p,} and
T-'“M, are independent (w.r. to g,) hence E, (po|T *M,)=E, po. This proves

the first equality.
The function pyeq, is M~-measurable therefore E(f| M) =(D0°q1): E(qz| Hw).

The o-algebras C, and H.. are independent so E(g;| H)=FEq.=0 which proves
the second equality.

If f is an integrable function and if there exists an invariant o-algebra
MC R generating operators P; such that

E(f|R)=3 P.f

where R= F\IT'"J is the Rohlin g-algebra (compare [9]) we say that f is
n=
difference decomposable.

Theorem 4. For each integrable function f there exist uniquely determined
integrable functions f’ and f” such that f’ is difference decomposable, f” is
measurable with respect to the Pinsker g-algebra and
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f=f141".

The process (f-T?) can be thus expressed as a sum of a process measurable
with respect to the Pinsker o-algebra and at most countably many reversed
martingale difference sequences.

Corollary. The set of all difference decomposable functions from L¥A) is
equal to LA A)SLX(P).

3. Decomposition of invariant measure.

Let the ¢-algebra A be separable (in the sense of [7]) i.e. there exists a
countable collection ¢ such that A=c2, the smallest o-algebra containing &.
The set of all A=A such that A=TA forms a c-algebra 4. If the measure
¢ of each set from J is 0 or 1 we say that p is ergodic.

Let us suppose that there exists a family of regular conditional probabilities
(m, ; we Q) induced by 4 with respect to g. Following this family exists if
Q=R?, A is the c-algebra of Borel sets and T is the shift (Tw)i=wi.
Choosing a finite set instead of R gives the same result. Using the technique of
conditional probabilities we can prove the following proposition known from
Kryloff-Bogoliouboff theory (compare [8D.

Theorem 5. For almost all (u) w=R the measure m, is T-invariant and
ergodic.

Let £ be a finite partition of £ and £~ be the g-algebra generated by T ~*¢&,
£>0. From we can easily derive (compare [2]):

Theorem 6. H,,(fls‘)=SHmw($lE‘)dp(w).

Remark. If f is an integrable function and if for each invariant c-algebra
it is E(f| M)=E(f|T*H) we say that f is absolutely undecomposable in
LY(A, p) (according to these functions form LY, p)).

From it follows that if f is absolutely undecomposable in
LY(A, p) then it is absolutely undecomposable in LA, m,) for almost all (¢) w.

Let % be a separable and invariant ¢-algebra. In the spaces L*(A, p) and
LA, m,) where m, is an ergodic probability measure, Ji generates difference
projection operators P;, P{.

Theorem 7. Let fe LA, p) and P;, P¢ be the difference projection operators
defined above. Then for almost all (p) weR

P‘tf=P?f a.s. (mw)
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whenever P; exists and
Eu(f | H)=Emy(f| How) a5 (my).

II. Applications to the martingale limit theory.

Let feL*A). Let us denote p(f)=lim Supa-«|sa(f)ll Where s.(f)=(n)"".
SrafeTS. We shall say that f is finitely approximable if there exists a sequence
of functions f,= L*(A) such that (f,°77) is a reversed martingale difference.
sequence and p(f—f,)—0. If f is finitely approximable then the measures zs3;*(f)
weakly converge to a probability measure. This-CLT was given by M.I. Gordin

in 1969 for p ergodic ([4]) and in [3], and for a general invariant

measure g. The hard problem is to show which function f is finitely approxim-
able. From we can easily deduce the following statement (see [12]).

Theorem 8. If f is finitely approximable then there exist a difference decom-
bosable function f’ and f” measurable with respect to the Pinsker g-algebra such

that f=f'+f" and p(f”)=0.

A more detailed investigation of the relation of L%*®) and the space of
difference decomposable functions was done in [12].

gives a lot of opportunities to derive limit theorems for (f-T%?)
from their ergodic versions.

Let feL¥ 4, p) and (f-T*) be a reversed martingale difference sequence.
Let us define a mapping ¢: 2—R¥ by ¢(w);=f(T'w). (RY, &, S, v) where & is
the Borel o-algebra on R¥, (Sx);=x:.; and y=p¢, is a dynamical system. If
p: are the coordinate projections then p;=p,°S* and the process (p;) has the
same distribution as (f-7T*%). Hence we can assume that 4 is separable and the
family of regular conditional probabilities (m, ; w€ Q) induced by J exists. From
we get:

Corollary. For almost all (u) w8, (f-T?) is a reversed martingale difference
sequence in L*(A, m,).

From the we obtain nonergodic versions of limit theorems which
are known in the ergodic case: the central limit theorem, law of iterated
logarithm, invariance principle (see [11], [15]).

In a similar way, nonergodic versions of limit theorems for other processes
can be derived as well (ese for the nonergodic version of Gordin’s CLT for
integrable random variables). It is not difficult to derive a limit theorem in
L* A, p) if the convergence takes place in almost all (¢) LA, m,). In the
case of Gordin’s central limit theorem the assumptions which are given in
L4, p) are in LY(A, m,) preserved (the J-measurable functions become con-
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stants). On the other hand, however, there exists a function fe L* A, p) such
that ps3;'(f) weakly converge to a probability measure but m,s3'(f) does not
converge for any ergodic component m, of g ([14]).

III. Proofs.

First let us give some comments on the existence of the Pinsker ¢-algebra.
The Pinsker o¢-algebra was originally defined as the ¢-algebra genera'ted by all
finite measurable partitions & such that H(§|£§7)=0. In it is proved that a
finite partition & is measurable w.r. to so defined g-algebra @ if and only if
H|&)=0. It holds that H(§|&")=0 if and only if §C&~ mod ¢ (this means that
for each A=é¢ there is a set A’§~ such that y(AAA’)=0 where A means the
symmetric difference). From this it follows that the Pinsker o-algebra as de-
fined in [9] is characterized by the properties (i) and (ii) given in section L

Let us recall some other properties of entropy H.

Lemma 1. Let C, @ be o-algebras and &, §, 7 be at most countable partitions
of 2 with finite entropy. Then

a) if CC9 mody then HE|C)ZH(E|D)=0,

b) if C. are c-algebras and Cn, | C or Cn 1 C then

lim HE|Cn)=HEIC),

c) if {=¢& ({is finer then &) then limn . HE|L VT ") )=H(|{") where CV D
denotes a(C\UD); if 7 is P-measurable we thus have HE|G VT " )=HE|L™) for
each n=1, 2, -

d) if n is P-measurable, k is a positive integer and 7‘*> denotes the c-algebra
generated by T "%y, n=1, 2, ---, then H(n|n**)=0,

e) HEVC|C)=HC|C)+HCIEVC) where £\ means the common refinement of
&, L and & means the a-algebra generated by & (i.e. HE|C)SH(n|C) for £<7),

f) HEVCZ|CO)=HE|C)+HQEI|C) if and only if & and { are conditionally in-
dependent with respect fo C.

The proofs of (a)-(e) can be found in standard textbooks dealing with
ergodic theory (for example [1], [9]). We shall give the proof of (f) here.

For C trivial the proposition is given e.g. in [10]. We can suppose that
for each w=f there exists a probability measure m, on the g-algebra generated

by &V{ sucht hat m,(-)=p(-|C)(w). We have H,,(SIC):SHmw(E)d,u(w) and
similarly for {, éV{. Let H(¢VE|C)=HE|C)+HE|IC). Then SHmw(SVC)dp(w)
=S[Hmw(5)+Hmm(C)]dﬂ(w)- As 0£H, (EVO=Hnp, (& +Hny,,(L) (see (a), (e)) the
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partitions are independent w.r. to m, So, for Ac{ and Be{ we have
p(ANB|C)=p(A|C)-u(B|C). Let & and & be conditionally independent with
respect to C. Then Hy (§VE&)=Hn (&)+Hn (&) hence HE<E|C)=H(E|C)+H(E|C).

Proof of Theorem 1. First, we shall suppose that & is #-measurable and
M, Q are separable. Let £=§,<&< -, m<m< - (where n=<{ means that {
refines 7) be fat most countable partitions with finite entropies generating K,

resp. Q. By Lemma 1 (c), (b) we get
HE|T*m)=HE|IQVT ' H).

From (d) we obtain the statement for T ~*.H.

In the case of general g-algebras M, Q it is not difficult to find invariant
separable g-algebras H* and Q* such that w(A|T-*M)=p(A|T *H*),
p(AIQVT* My=p(A|Q*V T *H*), Ac&. So, we can restrict ourselves to the
case of separable # and Q.

We shall prove H(§| MH-«)=H(E|QV HM_.). Let us denote 9= f:\oT“"(ﬁtVQ)-

From (a) it follows that H(&| HM_»)=HEIQV HM-.)=H(E| D) and from (b)
we have lim,.. HE|T " #)=H(&|9) from which we obtain the desired equality.
Let all ¢-algebras T:H, i=Z, exist and £ be M.-measurable. Let §=
{A,, A,, -}, partition & be generated by A,, ---, A, and 7’ be generated by A;,
j=n+1. It is §=£’Vy’ and for each ¢>0 there exists n large enough so that
H(p")<e. For each §>0 there exists k, a T*H-measurable partition §” and a
partition %” such that &<§”V9”, §"<8'Vy”, H(n")<0,
~ Following it holds 0SS H(|C)—H(&’'|C)SH(n")<e, HE”|C)SHE'|C)
+0, H(¢'|C)<H(8”|C)+d8. So we have

|H(EIC)—HE"|0)| <e+0

for each o-algebra C.

The partition &” is T*.H-measurable hence HE” |T*M)=HE" |QV T M), i<k,
HE"| M_w)=H(E"|QV M-). The numbers ¢, d can be chosen arbitrarilly small
so the equations hold for & as well.

Proof of Let A be a set from M (resp. M) and let B be a
set from Q, & be the partition generated by A and 7 be the partition generated
by B. Let C be one from the g-algebras T *H, M-«, k=1, 2, ---. By [Lemmal
1(a) we have H¢|CVQ)=SH(E|CV 7)< H(|C)and by H¢ElcvQ)=H(|C)
so H¢|cVvH)=HE|c). From [Lemma 1 (e), (f) it follows that §, » are condition-
ally independent w.r. to € so Q and ¥ (resp. M) are conditionally independent
w.r. to C. The second statement of the theorem now follows from [7].

Proof of [Theorem 3. From it follows that P,P,f=P.f,
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P,E(f| H_)=0. is an immediate consequence of this and of the
mutual orthogonality of operators P;. :

Proof of Theorem 4. We can restrict ourselves to g=E(f|R). For Cc=
o{g°T*: k=0}, C. is a sub-g-algebra of R and is separable. Following the
Rohlin-Sinai theorem (see [9]) there exists an invariant g-algebra % such that
M- is an invariant sub-o-algebra of the Pinsker o-algebra @ and H.=Ca,
Hence the decomposition f=f’4f” exists. From we have E(f’|®)
=0 so the decomposition is unique.

Proof of For each J-measurable function f we have f-T=f.
Let ¢ be a countable set algebra generating 4. For each A=g¢ it holds p(Al|Y)
=p(A|9) - T=u(T'Al9). As m,(A)=p(A|I)(w), the measures m, are T-
invariant. '

By Birkhoff’s pointwise ergodic theorem we have n~!.37%;1,.T/—>u(AlY9)
a.s. (¢) and following p(Al9)=m,(A) a.s. (m,). The averages n~'37,1,°T/
thus converge to a constant a.s. (m,) for each A from &, so m, is ergodic

(see [1], p. 17).

Lemma 2. Let C be a separable g-algebra, JCC mod ¢ and f be an integr-
able function. Then for almost all (u) w2 it holds

E(flC)=En,(fIC) a.s. (m,)

Proof. Let ¢ be a countable set algebra generating €. For each A=¢ it

is E(Ly-E(f10)|T)=E(l,-f19), so SAE(fIC')dmw=SAfdmw.

Proof of Theorem 6. From the separability of i it follows that there
exists a separable g-algebra J’Cd such that =4 mod g From
and Lemma 2 it followst hat for each A& S¢(y(A|£‘))dy=S¢(p(AIJ’VE‘))dp:
SS¢(ma,(A|J’VE‘))dmwdp(a))=SS¢(mm(AIE‘))dma,dp(w) from which we obtain the
statement of

Proof of According to we can suppose that JC H
mod #. Now, the theorem follows from Lemma 2.

Remark. R. Yokoyama ([15]) has shown that for the proof of
the equation E(f| H-=)=E(f|IV HM-») where f& L' (M) is sufficient: Using
properties of conditional expectations we can deduce that E(E( fIT M) | 9=
E(f|9) hence E(14 E(fIT!M)|9)=El, f|9) for each AeTtH. Therefore
E fIT'M=En,,(fIT'H) a.s. (ma).
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The proof of Follows from the fact that for f’eL* ) dif-

ference decomposable and f”& L¥®), f=f'+f", it holds Esi(f)=Esi(f)+Esi(f")
(see for more details).
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