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1. Introduction.

Let {X,, —oco<n<co} be a strictly stationary sequence of random variables
which take values in R?. Assume that the process satisfies the absolute regu-
larity condition

,B(n)=E[ sup IP(BIJMEN)——P(B)!] —> 0 (as n—oo) 1.1
BEMy,

where i} denotes the ¢-algebra generated X, -+, X, (a<b). Suppose that the

distribution function F(x) of X, has a density function f(x) and let f,(x) be a

nonparametric estimator of f(x) based on Xj, ---, X,. In this paper, we focus

our attentions on a global measure of performance of f,(x) which is called an

integrated square error (ISE)

1,,=S{ Falx)— f(x)}2dx. (1.2)

Several authors had proved central limit theorems (C.L.T.) for I, when
{X.} is a sequence of independent and identically distributed (i.i.d.) random
variables. (cf. Bickel and Rosenblatt (1973), Csérgo and Révész (1981) and
Rosenblatt (1975)).

Most recently, Hall (1984) devised an elegant approach to this problem. He
set up a central part of the problem in the context of degenerate U-statistics,
applied the martingale theory to derive a central limit theorem for degenerate
U-statistics with variable kernels and then proved the C.L.T. for I, by com-
bining this result and the Lindeberg-Feller theorem.

Turning back to dependent cases, techniques used in Bickel and Rosenblatt
(1973), Csorgo and Révész (1981) and Rosenblatt (1975) seem to have some
drawbacks in proving the C.L.T. for I, when {X,} is an absolutely regular
strictly stationary sequence and f,(x) is the Rosenblatt-Parzen type estimator.
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In this paper, using Yoshihara’s technique (1976) and modifying Hall's
method we prove the C.L.T. for I, in that case. Our result generalizes Hall’s
one (1984).

2. The main results.

In this and following sections, we assume that {X,} is a strictly stationary
sequence of random vectors which are defined on a probability space 2, 4, P)
and take values in R? (p=1) and which have the marginal probability density

function f(x) with respect to the Lebesgue measure.
Let K(x) be a bounded, non-negative function on R? such that

SK(z)dz=1, SziK(z)dz=0 and SzizjK(z)dz=22'5U 2.1)

for each 7 and ; (154, j<p). Here, z=(z,, -+, 2,), dz=dz,---dz,, T is a con-
stant which does not depend on 7 and j and d;;=1 and d,;=0 (Z+#]).
As usual, for a sample (X, -+, X,) we define the Rosenblatt-Parzen estimator

fn(x) for f(x) by

_ 1 n X—Xi '
= B K(; ) @.2)
where h=h(n) is a bandwidth parameter such that as n—co, h—0 and nhP—oo
(p being the number of dimension).

For brevity, we use the following notations:

K(x, y)=Ku(x, =K(Z5%), 2.3)
H(x, y)=H(x, v)
=K, ©—EK@w, X)HK@, »)—EKw, X)}du, @4

HX,, X)=H.X:, X,)=H(X;, X;)—EH(X;, X)), (2.5)
Sn= E, H(Xi, Xj)- (2-6)
1sj<isn

We consider the following set of conditions:

Condition A. A(i). {X.} is an absolutely regular strictly stationary
sequence with coefficient B(n)=0(e"™), y being some positive constant.
A(ii). nh?(log n)~*—oco and h*(log n)>—0.

Next, we put
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. 1 n 2
r!ofzilﬂwE[ES{K(x, X;)—EK(x, X,)}{Efn(x)—f(x)}dx] 2.7
if exist and
' . 2
ot=lim— 5 ES}. 2.8)
(The existence of ¢, is assured by below.) Further, let
ni/th-2 if nh?P*4—>o00
d(n)={ nh?/? if nh?+40 2.9)

nhPHOIEPHD f phPH L0 A<L00).
Now, we state the main result.

Theorem. Suppose Condition A holds. Then, 0,>0 exists. Further, if o,

exists, then
2t0.7 \ if nh?*4>c0,

dn){Is—EI.} —> | 212¢,Z it nhPH-0,  (2.10)
(Ae2 G228/ P+ L 2GIR-PIA+OYILZ  if phPH_ A0 <A< 00),

as n—oo, where Z has the standard normal distribution.
Remark 1. We consider the following set of conditions:

Condition B. B(i). {X,} is a strictly stationary m-dependent sequence.

B(ii). The joint density functions f;;(x, y) of (X;, X,) exist for all 7 and j
(li—jl=m) and are uniformly continuous on R?XR? for each 7 and ;. f(x)
and f;,(x, y) have uniformly bounded second partial derivatives. Further,

Sfij(u, u)du<oo

holds.

By the same method as the proof of [Theorem|, we can prove that the same
conclusion as holds under Condition B instead of Condition A. InTthis
case, ¢, and ¢, are given explicitely as follows:

or=53+2 :El Fot, : @.11)

ai={ f”(x)dx}S{SK(u)K(u-}-v)du}gdv. @.12)




98 H. TAKAHATA AND K. YOSHIHARA

Here,

at= s fndx—{ (145 fords]

o= [1F0 2700 furtn, Ddxdy—[((af fmrdx]

P 2
and Azlegx—z is the Laplacian. The conclusion is a generalization of Hall’s
= i

result (1984).

Remark 2. For an absolutely regular strictly stationary sequence, in order
to show that the conclusion of holds with a§=6§+2§160¢ and o3

defined by [2.12), it is needed to assume some additional conditions to Condition
A. For example, additional conditions are as follows:

(i) Slztz,zkIK(z)dz§M<oo for all 4, j and %

C(ii) Second partial derivatives of f(x) and of foj(x) exist and uniformly
bounded and moreover satisfy the Lipschitz condition of order one. Further,
they belong to some ball in the space L!'(R¢) or LY(R¢XRP?).

But, we do not treat this problem in details.
The proof of is given in Section 3, but the proofs of all lemmas,
needed there, are given in Appendix.

3. Proof of Theorem.

In this and following sections, we shall agree that ¢, with or without sub-
script, denotes some absolute constant and |{||,={E|{|*}*/* for any ¢t=1.
Firstly, we consider I,—EI,. Since

L={{ fa(x)—= ()} *dx
=1 fa01— Efaaprdz+2{{ fot0)— EfsHESo)— (1)} dx

+ [ Efatn— f1dx, 3.

we decompose I,—EI, as follows:

1

I,.—EI,.=—n—,—h,—plsj§“I7(Xi, X;)
2 n

+—22 3 ((Kx, X)— EK(x, X)HEfo(x)— f(0)}dx

nh? j=1
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1 2 )
+ i 2 [S{K(x, X, — EK(x, X,)}*dx
—SE{K(x, X,)—EK(x, X,)}zdx]
=L,+L,+L,, (say). (3.2)

(cf. Hall (1984)).

Now, the main part of the proof of [Theorem is broken up into proofs of
the following four facts:

(i) the C.L.T. for L, (Proposition 3.1)),

(ii) the C.L.T. for L, (Proposition 3.2),

(iii) the asymptotic uncorrelatedness of L, and L, (Proposition 3.3),
(iv) the asymptotic negligibility of L, (Proposition 3.4).

To prove these facts, let ¢, be a sufficiently large number such that
B(m)=n(n"*%) (3.3

where m=[c,logn] and [s] denotes the integral part of s. Further, let
r=r,=[n'*] and k=*k,=[n/(r+m)]. Define a sequence {(a;, b;) (G=1, -, k)}
of pairs of integers inductively as follows;

by=0, a;=bi;+m, bi=a;i+r—1 (=12, -, k). (3.4

Let Fp=MH¢e™ (a=1, -+, k). Put

by bg—m
To=Tw=3 5 HX, X) (@=L, 8 (35)
and
Us= 2 (Tae—ET40). (3.6)

Proposition 3.1. If the conditions of Theorem are satisfied, then, as n—oo,

1

Sn

S, —> N, 1) 3.7)
where st=ES3.

Proof. Let 52=VarU,. Then, as n—oo,

?I—ZkIIE{TaIFa} L0, Cemma 6)
L BT R —(E{Ta Fu))r] 5> 1 Comma 6

5% a=1
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and
) |
< B ET—>0. Cemma B

Hence, by Dvoretzky’s theorem (1972)
1 D
ST‘Un — N, 1) (n—o0)

and so is obtained, since

s2=82(140(1)), Cemma?) (3.8)
2 ~ o~ 2
§%~—%—EH”(X1, X2)~l’2-—hwag Cemma 5 (3.9)
and
STI%—E(S,,—U,,)Z——>O. Cemma D) (3.10)

where {}?t} is a sequence of independent and identically distributed random
variables such that each X; has the same distribution as that of X;.

- ?
Proposition 3.2. Let L,= ng L,. If the conditions of Theorem are satisfied
aud if nhP*—o0 as n—oo, then, as n—oo, ’
1 - D
nlizpp+e L, —> N, o}).

Proof. Let
K={{K(x, X)— EK(x, X)HEfo(n)—f()}dx (=1, -+, ).
Then, {K;} is an absolutely regular strictly stationary sequence of random

variable with coefficient B(n) and EK;=0. Since EK§$<ch®?*® (cf. Hall (1984)),
so by

E(f_Vn‘JlKj ‘gcnz(EKg-)z”’écn”h“p”’ .
Hence, using we have
. 1 K k E ) 1 ba
E(eXpZth j)N};Il expthj;a)aKj)+ckﬁ(m)
8 k
)} +otnn

_—_exp{—g- -TTZI’;:D;T,E(;EI K,)z‘i‘ O(k(%)s/?- It 8)}+0(n-1) .

= 1= grparen BB ) Ol mmpabrr | $15
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Thus, (3.11) follows, since

lim— % B( 3 K,)'=et.

o A ECPFD) A

Proposition 3.3. If nh?*—2 (0<i<oo) as n—oo, then n~'*h~P*® L, and
Sa'Sn are asymptotically uncorrelated as n— oo.

Proof. By Lemmas 1 and 4, Schwarz’s inequality and (A.7)

[E{LS:HS E 3 |EKHX, X0

=1 1si{jsn

< |EK.H(X,, X3l

{escrs + }
\max(li-jl, 1j-kI, 1k~i1)sm max(ii-fI,1j-k1,1k=-21I>m
<[ nml Kol max 1A, X)latn*Bom) |

L c[nm*h?+2h?+o(n""5)]

since | Kqlle<ch?*2
Hence, from Condition A(ii) the desired conclusion follows.

Proposition 3.4. If the conditions of Theorem are satisfied, then
Var(Ly)=0(n"*h"*?). (3.12)
Proof. Let ’

Mi=S{K<x, X)—EK(x, X)Ydx (=0, £1, +2, -,

Then, {M;} is an absolutely regular, strictly stationary sequence of random
variables with mixing coefficient 8(n). We note that by Lemma 2 in Hall (1984)

EM}=0n"?) (j=1,2,3).

So, by Lemma 3 we have
néher Var(Ls)-——E[ j_f)l {M,-—EMj}:rgcn]lMl—EMlllﬁéanMl lB<cnh®?

which implies (3.12) and the proof is completed. _
The rest of the proof of Theorem is obvious and so is omitted.

Appendix

In this appendix, we prove lemmas needed in the proof of Theorem.
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Lemma 1. (cf. Lemma 2.1 in Yoshihara (1976)). Let &, -+, &, be random
vectors satisfying an absolute regularity condition with mixing condition B(n).
Let h(x,, ---, x3) be a bounded Borel measurable function, i.e., |h(xy, -+, xp)| =c).
Then

Ehq, -, w—S Sh(xl, o) Xy, K s Xk

XAF P (xy, ) x)dF P (x40, =5 X2)| 26,8 j41—1)) (A.1)

where F and F® are distribution functions of random vectors (X, -, X))
and (Xi,,,, *+* , %1,), respectively, and 1,<iy< - <t

Lemma 2. Let &, -+, &, be random vectors as in Lemma 1. Let h(y, z) be
a Borel measurable function such that |h(y, 2)|=c, for all ¥y and z. Let n be an
M*-measurable random variable. Further, let H(y)=Eh(y,{). Then

E|E{h(n, DIM}—H(p)| <2c.8(m). (A.2)

Proof. Let Q and R be probability distribution of 7 and {, respectively.
Let P be the joint distribution of (%, {) and let P(z|y) be a regular conditional
probability distribution of { given p=y. Then

L.H.S. of (A.2)=Sl§h(y, é)P(dzly)—Sh(y, 2)R(d2)|Q(dy)
a1 Pz19-Rid2)1 @@y

=¢,Var[P—Q X R]1=2¢,8(m)

where Var[P—Q X R] denotes the total variation of P—Q X R. (cf. Rozanov and
Volkonski (1961)). Thus, the proof is completed.

Lemma 3. Let n and { be as in Lemma 2. If |||, and ||§ll; exist for s>2
and t>2 and En=E{=0, then

|EpQl s cfi- 2= 2m)nl,ICl. . (A.3)

Lemma 4. (cf. Theorem 2.2 in Utev). Let &, -+, &, be as in Lemma 1.
Assume E&;=0 and E|&;|**°<c¢, (i=1, ---, n) for some t=2 and 6>0. If B(n)
=0(e ™) for some y>0, then

E| 26| sctymax{Lun, 3), (Lu(n, )} (a4

where c(t) is some absolute constant depending only on t and
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Lin, 9= 35 lEdltes. (A.5)

In what follows, we always assume that all conditions of are
satisfied. Let {X;} be i.i.d. random vectors each of which has the same dis-
tribution as that of X,. Put

Mo=§u1§>lH(x. )| =0(h?).

G(x, $)=GCalx, »)=H(u, )H(u, »)dF (),
and

Ya<x>=“j_z_1mH(x, X) (a=1, -, k).

Let Q. be the distribution function of (X,,, -+, X,,). By Hall’s results (1984)
and Lemma 1, the following inequalities are easily obtained:

EHX, X)=0; E{HX,, X)| X,}=0 a.s. (A.6)
M@2j)=M.@2j))=EH¥X,, X)=0(n***") (j=1,2,3) (A7)
it}gH(x, ¥)=0(h?) (A.8)
EHX,, X,)=E[S{K(x, X)—EK(x, X) }2dx]’gchw (A.9)
for all 7 and j;
|EH(X,, X;)| <ch?B(li—J]) for all 7 and j; (A.10)
EG(X,, X)=0: EG¥X,, X)=0"?); (A.11)
|EG(Xy, Xp)| ScBY*(|i—j|)h/®?, for all i and ;. (A.12)

Lemma 5. As n—oo
2 ~ A
$h=Var U,=E( i:l T.) - {E( z’i;l T,,,)}2~"7EH=(X1, X)=0(n*h).

Proof. Firstly, we note that by (A.9)

Aag—m

<3 3N \EHX, X)| scn*Bom=ont).  (A.14)

a=1 it=a, j=1

(4.

a=1

Now, we consider

B(ETa)'= B ETi+2_ 35 ETTo=lutle, (ay). (A

a=1 lsala’'s

Since by Lemma 1, (A.5) and the fact |T.H(x, y)|<rnM?
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b aqg'r—m
ETaTa’_S_i’E , j§1 IETaH(Xt': Xj')l
bg' ag'—m

£ 2 3 2rnMiB(m)scrin®f(m)

tV'=agq j'=1
if a<a’, so
Ilg=0(n‘1). (A.16>

Next, by Lemma 1 and the fact |T,|*Scrin®

ET=E(, 3 ¥oX0)' ~{B( 3 Yo(x0) dQu+ertn*im)

=aa

bo ‘
= 3 [BYiodFo+2, 3 (EYu(0Ya(x0)dQuto(n)

Sy si<t's
=)1a+2]eat0(n™), (say). (A.17)
By (A.12)
by [Qq—™
he=2 | E |BH G, XpdF(xo

+2,_ = |B(HE, X)H, X)1aF)]

15j<jisag-m

ba ~ ~
<3 [a;,EH%XI, £)+2 2 EGWX, X,,)]

s, 15j<jisag-m

=a,r[EH X, Xp)+O0(he»7)],
On the other hand. if /—i>m or |j’—j|>m. then by the and (A.6)

\SE{H(xi, X)H(xe, X;)}dQ.| S cBim)

and if s/—:<m and |;’—j|<m, then by Schwarz’s inequality and (A.9)

(Bt X)Hx, X0)dQu| scher.

Hence by (A.11) and Condition A(ii)

| eal < ) ||B(HGy XD B, X00)dQ.

@ Si<i Sbyr s 18], J Sag-m
<3 e Bm)+ 2 pcht?+3 o | EG( Xy, Xir)l
Zcrin®B(m)+cnrm®htP+cnrh®P
=o(nrh®?), (A.18)

where Y, denotes the summation over all 7, 7/, j and ;/ such that a,<:/<:'Zb,,
1<j, j’<a,—m and ’—i>m (or |j'—j|>m), 2 denotes the summation over
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all 7, #/, j and j’ such that i’/—/<m and 1<|j/'—j|<m and X, denotes the
summation over all 7, 7/ and ; such that i’—i<m and 1<j<a,—m. Thus, we
have '

Iu=§1(]m+]m)=él[aar{EH’()?l, X+ 0(h )} 4-o(nrh*?)]

n2

2
Now, (A.13) follows from (A.16) and (A.19) and the proof is completed.

EH*X,, X){14+o)}. (A.19)

Lemma 6. As n—oo

5ot é’;lE{Ta |F,} —> 0 (A.20)
and
53 2 [E{TS| Fub—(E{Tal Fal] —> 1. (A.21)

Proof. Since by Lemma 2 and (A.6)

k Odqg Qa—m
E| ZE(TFN<S 3 3 8 EIE(HX, X)IFa}|

= i=aa
b @p-m

gaﬁ_)l iz“) > {|EH(X,, X)|+cBim)}

Scen*B(m)=o0(n"15,),
so (A.20) follows.
To prove (A.21) it suffices to show that

[y =522 ng(TglFa}—ETf,; —50 (A.22)
and
I;=37[E|E{T | F,}|1*+(ET,)*] — 0. (A.23)

(A.22) follows since by Lemmas 1 and 2

SIS E %S EIE{HX, X)HXe, X,)|Fu)
—E{H(X,, X)H Xz, Xp)}|
=3 3 S _{EIE{H(X,, X)H(Xe, X;)|Fo)

a=1 a,si,1'sby 154, 7 Sag-

—Do(G,1'; j, i)+ E{H(X:, XpH( Xy, X;)}—DaG, "5 7, 5/

=2 > S _[efim)+chom)]

aml a,sSi,1'8b, 154,57 3a,-

Senfrf(m)=o(n-153?),
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where

Dali, i+ j, 7=\ E{H(x:, X)H(xe, X;)}dQs.

On the other hand, by
| B(E{H(X,, X))| Fal BAHXe, Xp)| Fu})|
=| B{H(X,, X)E{H(Xe, X)|Fu}|
<||E(HGx, X)E{HX:, Xp)| Fa}dF(x))| +cB0m)
=cfp(m)

for any 7, ¢/, j and j’ such that a,<i, i’<b, and 1<j, j’<a,—m. Hence, we
have

2 E(E(TI )y

k
<3 .. 3. .5 |EE{HX, X)|F) E{HXe, Xp)| Fa}|
Scnlrf(m)=o(n-15%). (A.24)

Thus, (A.23) is obtained from (A.14) and (A.24), and the proof is completed.

Lemma 7. As n—oo
ES,—U,)?:—0. (A.25)

Proof. Since
b aq—1

Sa—lUn=3 3 $ (HX, X)—EHX, X,)}

a=1l i=a,4 Jj=as-m+l

and by Lemma 1 and (A.6)

ba anp—1

S 3 S |EHX, X))

a=1 i=a, j=ap-m+1

k ba Ca+m 2%
=222l B B X))

ScnB(m)+ckm* MY 3(2) <cn®/4(log n)h®/»? |

so to prove (A.25) it is enough to show

k by Q=1
E{a@l ¢=§ j-a2-m+1H(Xi’ Xj)}=0(§%) as n—oco. (A'26)

We note that by
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LHS. of A20<k BE{S 'S HX, X))

=0, Jj=@g-Mm+1

e 3[B{ ¥ S mx, opE(S S X, X))

t=ag-m+l j=ay-m+1 i=ay jmag-m
-1

<2k 3 [{SE({= }i’m“ jﬂ::z_)mHH(xi, X,))”an+cr=m=,3(m)}+cm4]. (A.27)

Further, by

E{S( % 'S Hx, X))'dQu)

f=ag-m+l j=ag-m+l

¢, a.,—m+1 {S( E H(x,, Xj)) an}llz

J=ag-m+1
<emib,—a,)=cm?r. (A.28)
Hence, (A.26) follows from (A.28) and Lemma’5.

Lemma 8. As n—oo

3 ET4=0(54). (A.29)
Proof. Since |T%|<Zcn'r*, so by Lemma 1
ba
ET;gE{S(iga Ya(xt)dea}—!—cn‘r‘ﬁ(m}

ba
= 2 EY4x0dQ+| =  (EYixoYa(xe)dQ.

t=ag
121’

+2 = [B{raoriea}do.

a,si<t sb,

a,s11, 7 1350, SE{Y (xﬁ)Y (xig)ya(xts)}an
1g#1y (8#L)

[B{ 11 Ya(r:i0}dQu+on

ans1y, 19, 13, 1450,
g+l (8+0)

=Ia1+1a2+1a8+1a4+1a5+0(n_1) (say) .

k
(i) Firstly, we prove Z‘llalzo(ﬁ,). Let 3, be the summation over all
==

J1, =+, J& such that 1<j,, -+, js<a,—m and j,#j, (s#t). By [Lemma I,
Hoélder’s inequality and (A.8) we have the following inequalities :
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2<1>§EH*(x, X)dF(x)<a.M@)

S
ST e MYH6)8 (| jo—ji ) Sca M *4)

{EtHx, X HG, X,)dF()

S| E{Hx, Xp)H %, X;)}dF(x)
< S { M)+ cM¥6)8Y%(| ju— /1 1)} < a4 M*@)+ca M¥6).
A

<

|E(H G, X,)HGx, X,)Hx, X,)}dF()

- o ]
max{lfg~J1l, 1 Jg=F111>M maxllfe-J1i, |Jg-j1l}sm

ISE{H’(x, X;)H(x, X;)H(x, X;)}dF(x)
<
—max(ljg—hzl,(?}s—hl)>mcﬁ(m)+
scaifm)+a.m*M4)=a.m*M(4)+o(n"*).
If j1<7.<js<j. and max(j.—ji, j«—Js)>m, then by

M#4)

28
max{lja~-J411, |jg-f1l}sm

lE{ df}l H(x, X,d)}dF(x)I <cBm),

and if 7,<;.<js<j, max(jo—ji, je—Jo)=<m and j,—j,>m, then by Hélder’s
inequality

{1 s o arce

=< ISE{H(X, X;)H(x, X;,)} E{H(x, X;)H(x, X;)}dF(x)|+cB(m)
<M*@)+cB(m).
Further, if j,<j:</,<j. and max(j,—ji, js—Js J4—Js)=m, then
4
|[B{ 11 Hex, X,0}dF 0| smw.

Accordingly, we have

ol [B{ 11 Bz, X,0}dF ()|

=caaf(m)+a’{M*2)+cf(m)}+a,m*M4)
SaiMH*2)+a.m*M4d)+o(nY).
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Hence, we have
ffx‘l=SY&(xt)dF(xa)§c{a?,,M"(Z)+aam”M(4)+aaM2’3(6)+o(n")} . (A.30)

Thus, by (A.13) and Lemma 5

& k. Da
Bla=3 3 [EYa=odFo

Zc{n*M*2)+n*m*M@4)+n M*?3(6)+o(n"%)} =0(5%).

(ii) Next, by Schwarz’s inequality, (A.30) and we have

Sla=2} ¥ E{Yix)Vix)}dQ.

a=1 a,sili'sb,

IA

23 B e}

a,s1i<i Sb,

IA

¢ 3 (ba— 0P {aM* Q)+ aam* M@+ M ¥6)+o(n") =o(s}).

Similarly, we have

k
2 1a,=0(57).

a=1
(iii) Thirdly, we note that if |i;—is|>2m, then max(|i;—7.|, |Zs—i.|)>m
and so by and the fact that |V ,(x)| <ca,, we have

LGy, is, i) =| BV 2(x0)Y a(x0)Y o(x:)dQq | S catBim).

Hence, by Hélder’s inequality and (A.30) we have

1@, s, 19)

k k
El ]Ia4l§ 2

a=1 {aasil, 19, 13804 a,stg, 12, inga}

1ig-1ig1>2m 1ig-1ig1s2m
k
< [ catBim 1/ 1/4 1/4]
"_azs:x aasil,izg,issba aB( )+aasil,tzg,135ba{7,ai1} ash s}
1ig-1g1>2m 1ig-1gis2m

<on H+c é‘,l mbe—aq.)?{aiM*2)+a ,m*M(4)+a M?*36)} =o0(53).

) 3
(iv) To prove 21 | I.5] =0(5%), it suffices to show that

k

SE{ IT Y (50} dQu=0(s8). (A.31)

a=1 a,311<13<ig<iysb,
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This relation is proved, since by [Lemma 1, Hélder’s inequality and the method
used in (i)

L.H.S. of (A3Ds Z{E@+3® | [B{ 11 Ve }d0.

< B[S+ EETIT {aegh

<ckn'o(n-9)+c §1m4<ba—aa>2{aaM*<2>+aam8M<4>+aaM2/°<6>}
=0(54),

where ¥ (X)) denotes the summation over all 74, j; (d=1, .-, 4) such
that a,=1:<1,<03<0,Sba, 1=27:1<7:</s<js=a,—m and max(t,—iy, 1,—15, J2—J1,
Ja— ) >m(max(iy—iy, is—1is, Jo—J1, Jo—Jo)<mm).

Now, (A.29) follows from (i)-(iv) and the proof of is completed.

References

[1] Bickel, P.J. and Rosenblatt, M.: On some global measures of the deviations of
density function estimates. Ann. Statist. 1 (1973), 1071-1095.

[2] Billingsley, P.: Convergence of Probability Measures. Wiley, New York, (1968).

[8] Csérgo, M. and Révész, P : Strong Approximations in Probability and Statistics.
Academic Press, New York, (1981).

[4] Doob, J.L.: Stochastic Processes. Wiley, New York, (1953).

[5] Dvoretzsky, A.: Central limit theorems for dependent random variables. Proc. Sixth
Berkeley Symp. Math. Statist. Probab. (ed. L. LeCam et al.) Los Angeles: Univ.
of California Press. 2 (1972), 513-555.

[6] Hall, P.: Central limit theorem for integrated square error of multivariate non-
parametric density estimators. J. Multivariate Anal. 14 (1984), 1-16.

[7] Prakasa Rao, B.L.S.: Nonparametric Functional Estimation. Academic Press, New
York, (1983).

[8] Rosenblatt, M.: A quadratic measure of deviation of two-dimensional density
estimates and a test of independence. Ann. Statist. 3 (1975), 1-14.

[9] Roussas, G.G.: Nonparametric estimation in Markov processes. Ann. Inst. Statist.
Math. 21 (1969), 73-87.

[10] Rozanov, Yu. A. and Yolkonski, V. A.: Some limit theorems for random functions
1I. Theory Probab. Appl. 6 (1961), 186-198.

[117 Utev, S.A.: Inequalities for sums of weakly dependent random variables and
estimates of convergence rates in the invariance principle. Limit theorems for sums
of random variables, Trudy Inst. Mat. 3 (1984), 50-76 Akad. Nauk. SSSR. Sibir.
Otdel (In Russian).

[12] Yoshihara, K.: Limiting behavior of U-statistics for stationary, absolutely regular
processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete. 35 (1976), 237-252.



CENTRAL LIMIT THEOREMS FOR ISE 111

Department of Mathematics
Tokyo Gakugei University
Nukuikita-machi, Koganei
Tokyo

184 Japan

Department of Mathematics
Yokohama National University
Tokiwadai, Hodogaya-ku
Yokohama

240 Japan



	1. Introduction.
	2. The main results.
	Theorem. SuppOse ...

	3. Proof of Theorem.
	References

