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1. Introduction.

Let {X;: —co<i<oo} be be a strictly stationary process with values in R?,
defined on a probability space (2, &, P). Suppose that E(X,)=0 and E(X2)=g?2
is finite. Put Sy=X,+ -+ +X, for each positive integer & (S,=0), and S, ,=
Sk/a+/n for nonnegative integers k2 where ¢ is a positive number defined in § 2.
Let {ua(t, x): n=1,2, -} be a sequence of functions defined on [0, 1]xR™.
For each n, define a functional Z,(f) (0<t<1) as follows:

[nt] Xis1

n k ) Sn — .f tgl
(L.1) Zoty] B W/ Se 0 G 1w
0 otherwise

which is a random element in D[0, 1] endowed with the Skorohod J,-topology

(see [1].

This type of the functionals have been studied by some authors, for ex-

ample, [4] [5] and [I0]. These authors have proved some weak

convergence theorems of the functional Z, to the stochastic integral Z(#)=
¢
Sou(s, W(s))dW(s) (W(t) denotes the standard Brownian motion in [0, 1]) under

the condition that {X,} is a sequence of martingale differences. Of course, here,
the authors assume that u, converges to u as n—oo in some sense.

It is natural to ask whether the same convergence theorem is valid when
we replace the martingale property by some weak dependence condition. This
problem is related with a conjecture that a process X,(¢) with the stochastic
differential dX,(t)=un.(t, Wa(t—))dW,(t) converges in distribution on D[0, 1] to
the process X(t) with the stochastic differential dX(t)=u(t, W(t))dW(t) when W,
converges in distribution on D[0, 1] to the standard Brownian motion W on
[o, 11.

This conjecture is correct if {X,} is a sequence of martingale differences.
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In this paper we consider the case where {X,} satisfies the strong mixing con-
dition or m-dependence condition. Our results show that the conjecture above
is not correct, i.e., if {X,} is not independent and satisfies some weak depend-

ence condition instead of martingale property, then a term of drift may appear
in limit (see and 2).

2. Preliminaries and Theorems.

Let {X,} be the process given in the previous section. We say that {X,}
satisfies the strong mixing condition if, as n—oo,

(2.1) a(n)= sup sup |P(ANB)—P(A)P(B)| 10

4cFd BeFy,
where F? denotes the o-algebra generated by X,, X4, -+, Xo. When a(m)>0
and a(m+1)=0, we say that {X,} satisfies the m-dependence condition.
Denote by A the set of functions u(¢, x) defined on [0, 1]XR?!, such that
the partial derivatives du/dt and 6*u/dx*® are continuous on [0, 1]X R*.
In what follows we always assume that

(2.2) (C.0) the limit lim n~*E(S2%)=0a* exists and is positive.

Nn-—+c0

In the following conditions are assumed:

(C.1) E(Xy)=0, E(X})=0% and E|X,|**¥< for some 0<d<2,

(C.2) {X,} is strongly mixing with a(n)=0(n"?) for some p>(4+29)/d.
In the following conditions are assumed :

(C.3) E(X,)=0, E(X})=0} and E|X,|*<oo,

(C.4) {X,} is m-dependent (m=1).

Remark. Since the condition (C.2) implies 7i};}loz”“”‘”(n)<00, the existence

of the limit ¢ is assured (cf. [3]).

For a sequence {u,} in A, define a sequence of processes Z,(t) (O_S_t_S_I) as
follows:

Xi+1
o 0<t=<1

2.5 ZoO)="3 unlk/n, Sa»)

where S, ,=S./04/ 1.
Now we state the main results,

Theorem 1. Let u(t, x) be in A. Suppose that u, and its partial derivatives
up to second order converge to u and the ones of u, respectively, uniformly on
each rectangle [0, 11X[—T, T] (T >0) as n—oco. Then under the conditions (C.1) and
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(C.2) each finite dimensional joint distribution of the process Z,(t) converges weakly

to that of the process

o—al
20t

where W(t) is the standard Brownian motion in D[0, 1] and the stochasic integral

is the usual Ito integral.

@6 zo={ us, Wspaws)+ 1o (s, wisnas,  osts

Theorem 2. Let u and u,’s be the same ones as in Theorem 1. Then under
the conditions (C.3) and (C.4) the process Z ,(t) converges in distribution on D[0, 1]
to the process Z(t) defined above.

Remark. We are not able to show the tightness of the processes Z, under

the conditions of [Theorem 1. We think that perhaps it is difficult to prove the
tightness for Z,’s even if the strong mixing condition is replaced by the ¢-
mixing condition or more stringent condition except for m-dependence.

3. Proof of Theorem 1.

In this section we prove the convergence of finite dimensional joint distribu-
tion of the process Z,(t), and in the next section we will prove the tightness
for Z,’s under the condtions of So throughout this section we
assume the conditions of [Theorem 1.

Lemma 3.1 ([2]). Let X and Y be Fl..- and F%-measurable random variables,
respectively, with | X||,={E|X|?}'?<co and |Y|,={E|Y |9}9<co. Then

3.1 | E(XY)—E(X)E(Y)| =10a'*(n)| X[ ,IlY |l
where p, ¢ and s are positive numbers such that 1/p+1/q+1/s=1.
Lemma 3.2. There exists an absolute constant K not depending upon n such
that
3.2) E|S,|*=Kn?,

Proof. The condition (C.2) implies ilnaz"/ “+2 ()< oo, Hence by Theorem
n=

in [9] we have the inequality Q.E.D.

Now remark that by the functional central limit theorem forst rongly mix-
ing sequences [3], the family of distributions of {S, ;:n, 0<E<n} is tight 11
Hence for any ¢>0 there exist a constant C>0 and functions u§(#, x) and
u®(t, x) in A satisfying the following conditions:
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(1) for all (¢, x)e[0, 1JX[—C, C1, u§(t, x)=ua(t, x) for all n and uC(t, x)=
u(t, x),

(OI) uC and u§ and their partial derivatives up to second order uniformly
bounded

and

() P(Z.xZ%<e for all n and P(ZxZ°)<e

where Z¢ (resp. Z€) denotes the process defined in (resp. [2.6)) replacing
u, (resp. u) by u§ (resp. u).

Therefore it suffices to prove the theorem when u and u, and their partial
derivatives up to second order are uniformly bounded.

For each positive integer m, define

3.3 T=Tin=Xp+Xs1+ - +Xs-tm-»
and Up=Upn=Xp-nt+Xi-mrt - +Xs-cem-1 (k=2m).

Then u,(k/n, S, ) can be expanded as follows (k=2m).

G (L, Sui)=ua(L, Surcn)tm (L, 50 m)

g/
+_;__aaz_;¢l( » Sne-m+010 T/L)UT; (0<8{°<1 a.s.)
=y (k Su s m)+ Oun _n_’ S"-k-zm)a’f/’%
Vet ) S
+%%%(%’ Sn k=m0 ,,T/k—) Tg;’L 0<05<1 as.).

Now we specify the integer m as m=[n%] where a is an arbitrarily fixed
number such that /(2+4+20)<a<1/3. Here [a] denotes the largest integer con-
tained in the real number a. For convenience, in what follows, if a>b, the

b
summation 3 should be read as zero. And for an n fixed let m’(¢) denote

i=qa

min {(2m—1), [nt]}.
By (3.4) we can rewrite Z,(¢) as follows: for 0=t=<1

m! (L) 1 [ntl k
65 Za=—="3 un(2, Son) a5 35 n(s Snt) Xum
m’ () 1 (ntl kb
= 0‘\/_77 =, ( » Sa, k)Xk+1+ o n kgz)mun(;z-, Sn.k—'m)Xk+1
1 Ent] O0un,

+

(_ Sn.-2m )T e Xuss— E(T s Xy 12)

ain =2m ox
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1 [nel azun b U,

+ o*n®'® 21 5Sm Ox2 (7, Sn,k—zm‘*'eék) aﬁ)UkaXk+l
1 [nt] azun /k . Tk

+03n3/2 25Em 0x? \7: Sn,k-—m+01( )N—F)T%Xk+1
1 wadon,rk

T T s3tn 5 Srream) ETa X

=LO+LO+ - +1), (say).

When 7 tends to infinity, the terms I,(t) and I,(¢) play the principal role. Below

we will show that the other terms converge to zero in probability as n—oo.

Hereafter we shall denote by the letter K, various absolute positive constants.

We, without mentions, use the assumption that u, and their partial derivatives

up to second order are uniformly bounded (see the beginning of this section).
(I,). Since a<1/3, we have

(3.6) E|L®)] .S_Kn‘”zzgllE [ Xp1|=0(m"%)=0(1).

(I,). By the Schwarz inequality and we have
ElU T Xsni| S(ENURT DV E | Xara |V PSK(E U |9)*=0(m).
Hence we have
3.7 E|L@®)|=K(n*")=0(1).
(Is). By the same calculation as was used for I,(t) we have
(3.8) E|L®)| <Kn*-")=0(1). '

(Is). For the brevity we denote by v, the partial derivative du,/0x.

(ntl
@9 oM =nE{ 3 vu(%, Susosn) TsXpss—am)

+220n(%, S scan)va(L, Sn.soam) T Knrs— 0 mT s X s ()}

=+2/,, (say)

where o(m)= TZIE(XOX,). The first term J, can be estimated easily as follows.

(3.10) ]1<n‘2K 2 E{(TyXys1—om))’} =Kn"*m*=o0(1).

Next we estimate the second term J,. Separate J, into two parts:

Je=n"% ¥ +n? 3 =l ,+/s., say.

k<j-2m j-2msk<j

By Lemma 3.1, we have
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3.11) | Jenl éKn‘ZKJZM a®/ O T X 11— (M) 246 T 5 X j41— (M) 346
< Kn 2ntad @O (mymt=o(m *)m*=o(1).
Here we used the following facts: 0<d<2 (see (C.1)) and

(3.12) IT 3 Xars— 0 lersSK 2 1 XampXpsslass

éKp%:o”Xk—p"4+26"Xk+1”4+26=0(m)-
Next we treat the term J; .. By the Schwarz inequality we have
(3.13) [ ]2, 2l §K"_2j_21§k<j I T & Xes1— M)l T3 X1 —a(m)l|

=0(n"'‘m¥)=o0(l).

Lemma 3.3. The quantities

.19 ost51 S ( [qu ( [qu] ))dW(S)-—S:u(s, W(s))dW(S)’
w2 w(ED)es ] s Wi

converge to zero in probability as g—o.

The proof of this lemma is given by the standard argument in the theory
of stochastic integrals.

Lemma 3.4. As n—oo,

[ntl-m-1 k Xk+m+1 _E"’t]_m'l k+m Xk+m+1
315) % un(e Sua) T = E s

P
— 0 (O=t=D).

The proof of this lemma is, using the mean value theorem, easy and so is
omitted.

Consider a partition 4:0=¢,<t< --- <t,=1 of [0, 1] and 54=ng(t¢—ti_,)
p
and p(t)=the integer ¢ such that #,<t<t,; For each partition 4 and each

positive integer n, define intervals of integers, depending on ¢ 0<t=1), as

Jit)={k; 1§k§[ntj+1]—|:"tj] and k=[nt]—[nt;]}
and
IH)=1{k; [nt;]< k<[ntjei] and k=Z[nt]} (4=0,1,2, -, p—1).

Lemma 3.5. For given £>0 there exists a positive number y such that, for
any partition 4 with 8,<y, we can choose a positive integer ny such that for any
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n=nyg and 0<t<£1

_ [ntl-m-1 kb Xiime 142} [nt,] '
@16 BT ua(y Sea) e B0 (MU s, 0,)
X[ntj]+m+t 2

— <e
el A/ n

Proof. For the simplicity we denote by s; the integer [nt¢,] (j=1,2, -+, p)
Fix ¢ and write I; and J; instead of I,(t) and J,(t).
L.H.S. of

j 142

=28 B G sn)ueG s Rz
=’j"§’E "e’j{un(%’ S""')_””(%’ Sn.sy }i:/% 2
o O N N ) e

% B i Sl Sna )} ]
=T,+2T,, (say).

We will estimate T, and T, separately.

O e st

n
€] j

+2°3 kl”.‘?”’ E{(un(—il—, Sn.us)—un(=L, s,,,,,))(un(_?, Sn.y)

(3 5., ) e

=T1,1+2T1,2: (say).

By the mean value theorem we have

»

(s Sn)—un(SL, Su,)| SK{(k—s5)/n+1S01—Snoy1}.
So, by Lemma 32.,

@17 T.,.<KS 3 [agﬂ%w;}

Jj=0 kE€1I;

E X‘ m 1/2
180, 4= S, o, 1 E X Bl ]

n
=Koy.

Next we consider T, ,. When k,<k;<k,+m+1, by Lemma 3.1 we have
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[Bf(un(E2, Sun) a5 Su)) (a5 Snom) (5 Sn.r)

XXk1+m+1Xk2+m+1}
<K (un(2, Sa )= n(2L, S0.0)))(un(22, Snong)—un(SE, Sn.ry))
| XXk1+m+1|l (4+26)/<s+a)"Xk2+m.+1"4+2aaa/“+”)(kz"'kl)

un(—22, Suuy)—ta(SL, Sa. Dl (kz Suorg)—un(SL, Sa).

X || Xoll3+200® 420 (ky— k1)

sK|

by the Holder inequality
(3.18) <Ko b4+ (k,—Fk,).

by the mean value theorem and
When k,+m+1<k; by Lemma 3.1 we have

{5 Sn0)- (k* Sn))(ualt s Snun) (35 52.))

X Xk1+'m.+1Xk2+m+1}

éK“Xk1+m+1”4+zanXk2+m+1“4+25a(1+6)“2+6)(m)
=0(m~?+2/3-n) (n=p—(4+420)/0 see (C.2))
<n-10y4 for all n<ny

when n4 is a sufficiently large integer. Here we used that we had specified
m=m(n) as m=[n*] (0/2+28)<a<1/3)
From these inequalities we have

(3.19) | Ty =Kd4 for some K.

As to T, as well as the case T, . we know that there exists an integer
fig=0 such that, for any n=ny,

|T:| =Koy for some K.

Thus for given ¢>0, we can choose a positive number y such that for any
division 4 (64,<y) there exists an integer n, satisfying that for any n=ny,

(§ > {un(k Sa, k) ( [t;n] , Sn'“ﬂu)} X:;-%+x

RET

2

<e.

This completes the proof of [Lemma 3.5
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Lemma 3.6. For a fixed division 4:0=t,<t,< -+ <tp,=1 and for all t 0=
t<1),

2L [t,n] Xl’.tjn]+m+i
(3.20) 2w Sngm) B L
LD [t;n] X[tjn3+i
§ ( n Sn [tjn]) ZJj '\/—7T

—> 0 in probability as n—oo,

This lemma can be proved by a standard arguments and so the proof is
omitted.

Lemma 3.7. For a fixed t (0=t=<1), as n—,

o AEE ) LR )

—> 0 in probability.
This lemma is proved using the mean value theorem.

Lemma 3.8. For given ¢>0, there exists a positive number y such that for
any division 4 with d,<y we can choose a positive integer n4 satisfying that for
all n=ny,

(3.22) El_ —2 aaljcn(n Sn k) ) a“n( [tjn] Sﬂ,EtjnJ) [tjﬂn]n_[tjn]

Jj=0

aun ( [tprn] ) [tn]—[tpyn] <
n

Sn. Etp(n‘nil

for all 0st=1.

Proof. Denote by v, the partial derivative du,/0x. By applying the mean
value theorem we have the following inequality.

L.H.S. of (3.22)

ipm [t,n] -
T~ n j=o kng v"( » Sa, ") ( n Sn,[zjn]) +K~/d4
& — - -
L K 5 ( k—[t;n] +”Sn.k—Sn,[tjn]”z)'i‘K'\/BAgK»\/ad.
n j=o0iel; n

Q.E.D.

Proof of heorem 1. Fix a division 4:0=t,<#,< --- <t,=1 and define two
processes as follows.
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2o, n="8 un(L2L 5, Z, %
n a(m) P<j‘=>01¢;1;n< [t;n] \ Sntejna )[tmn] [¢n]
+ o‘(::z) %n_( [tpc:n] ’ Sn.[zp(t)n]) [nt]—'TEtp(t)n]
and
ZW, 0=""3" utts, W)W t55) =W (E)+ utyeor, Wty )W O =Wty
S O, Wittt
+-2() gu (tpcess Wt pes)E—tpass)

0.2
where a(m)=§;E(XoXt) and 0(00)=§E(XOX¢).

Now by the expression (3.4) of Z, and Lemma 3.3-3.8, in order to complete
the proof of [Theorem 1, it is sufficient to show that, for each finite set {s;;
s:€[0, 1] 7=1, 2, -, k}, the joint distribution of (Z.(4, s), -+, Z(4, s,)) con-
verges weakly to the corresponding one of (Z(4, s,), ---, Z(d4, s;)). But this is
an immediate consequence of the functional central limit theorem for {S, i,
k=0, 1, 2, ---, n} which is ensured by the conditions (C.0), (C.1) and (C.2) (cf.
[3D. Thus has been proved.

4. Proof of Theorem 2.

Let {&:} be a sequence of identically distributed random variables defined
on a probability sprce (2o, Ao, P) and {A,, n=1, 2, ---} an increasing sequence
of the sub-o-fields of A, such that ¢{&,, ---, &z}C A, and E{&,:1] A.}=0 a.e..
Assume E{&i}=a6<oco.

Proposition 4.1. Let {u,(t, w): 0=t<1, wef, n=1,2, ---} be a family of
random variables satisfying that for each n and t, u,(t, ) is measurable with re-
spect to Acni1-q (@ 1S a fixed positive integer). Suppose that u,(t, w) are uniformly
bounded. Then the family of distributions on D[O0, 1] defined by the process

1 Cnel ]
Walt, )= —= S un(L2, o) 011

is tight.

Proof. This proposition had been proved essentially in [8], but for com.
. pleteness we will give the proof.
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Define

In order to prove the proposition, it suffices to show that, for each ¢>0, there

exists a 4 with A>1, and an integer m, such that, if m=m,, then

1) P{max | Yy, ssi=Yns| 2AVA} S =5
osism Z

for all £ and n.
Since

— 1 1
P{max |V nsri—Y 4| 2V} S 55 Ean{ o max | Vo ssi—Y n a7}

0St1SM m osism

where E;{|Z|} denotes E{|Z|;|Z|=4} for a random variable Z, it is sufficient
to show the uniform integrability of

1
— max | Y, 446—Y 0,22

m osism
Let K be a constant such that ||u,||<K for all n. Put
& if |l =a
$i.a= .
0 otherwise

and
ﬂt.azei,a'—E{si.a I Ji-l}’

then |7.| is bounded by 2a. Define
i+a

’ a))vt+1,a

and
L k+j+a
nDllz a=j=20 un(——trzl'—"; w)6k+j+1,a

where J;, . denotes the diffe-rence &i—7i,.. Then, by the argument used in § 23

in [1], we have
4 \4¢
E{max |Y% s~V , 14}5_(—) 12m2K 20t
osism 3

and
E{orsr}zsix | n D} o |2} SAKPmE 42{]§01%}.

Thus we have that, for all §>0, n and m
1 . at .
Epl gy @ax Y o= nalFSM{ G+ Earl 1861}}

for a suitable constant M. This completes the proof of the proposition.
Now we proceed to prove In what follows, we always assume
that {X,} is m-dependent (m=1) and E(X;)=0 and E|X,|‘<co.
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Recall the expansion (3.5) of Z,(t). Firstly we show that the random
elements I,(t), I4(t), I,(t) and I4(t) in D[0, 1] converge in probability to zero
element O as n—co, Remark that we can fix the integer m in the expansion
(3.5).

(11): E{SUP ‘Il(t)l}éKn-”zzmz—)lEleq.li —>0 as n—co,
0stsl k=0

Hence we have that I,(t)—> O in D[0, 1] as n—oo.
(Ig). I4(t) can be rewritten as
1 2z2» 1
7-5_-1=077l?k;j+h(2m+1)5[m]

where k; denotes j+k(2m+1)

k
un<"7?j’, Sn, kj—zm)(Tijk 4+1—E(Tk JX" ‘+1))

=3La0 Gy

Fix 7 (0</<2m). And define A,=0a{X,, Xi, -**, Xjsrem+n} and 5,,=T,,1X,,j+1
—E(T, jX,,jﬂ). Then the triplet ({u.}, {£.}, A.) satisfies the assumptions of
Proposition 4.1, hence we know that the family of the processes {+/ 71 (1),
0<t<1} is tight (for a fixed 7). Therefore we have sup|/4(t)| converges to
zero in probability as n—oo,

Iy, Is). Trivial.

Next we consider about the tightness for I,(¢) and I4(t). As to I4(t) the
tightness is trivial. On the other hand I,(f) can be handled in the same way as
the case I,(t). Combining the tightness with the convergence result of finite
joint distribution, we have completed the proof of

5. Examples.

Let {{;:7=1, 2, ---} be a sequence of i.i.d. random variables with E({;)=0,
E({%=o0" and finite fourth moment. Suppose that a sequence {u,} and » in A
satisfy the conditions of

Example A. Let ao, a,--, @n-, be a set of real numbers such that A=
aot+a,+ - +an-,#0. Define X;=aoli+a1lis:+ - +@m-1Li+m-:. Then X, ia an
(m—1)-dependent sequence with E(X;)=0 and E(X}=0c%*ai+a3+ - +al_,)
(=0’B say). we have

N RETIERY
i def| [ }ora
So, by our we have that an n,
[t kb Xews D e A*—B (tdu
S un(=, Sna)ggire — [Luts, Weonaw+ L2722 s, wisnas
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on D[0, 1].

Example B. In example A, put a¢,=2, a,=2, a,=—1 (m=3). Then it is
easily checked that {X;} is 2-dependent and not independent, and that A*=B=9.
Hence we have that as n—oo,

ok Xeew D
2 (s Snn) gy e — | uts, WisHaw(s)

on D[0, 1].
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