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1. Introduction.

Let {X,, n>1} be a sequence of random variables on a probability space
(2, &, P). Let Fr=0¢(X;:n<i<m), 1<n<m<oo. Define the following measure
of dependence between F? and F3,, by

@a(m)=sup{| P(B| A)—P(B)| : A€F1, P(A)>0, BEF3:m},

and put ¢(m)=supe.(m). The sequence {X,, n>1} is said to be ¢-mixing if
¢(m)—0 as m—oo,

Let D[0, 1] be the space of functions on [0, 1] that are right continuous and
have left-hand limits. We give the Skorokhod J;-topology in D[O0, 1] (cf. [1D.

Set S,.=ﬁ1)X, if >0 and S,=0 if £<0. Skorokhod and Slobodeneuk [5]

proved that

n-1 D
n S fu(n 180 Xess —> | FO)AW WD) (n—o0)

when {X,, i>1} is a sequence of i.i.d. random variables and W={W(¢): 0<t<1}
is a standard Wiener process.

In [91, [7], [8] [3] and the authors proved functional weak con-

vergence theorems of the same type concerning various classes of stochastic pro-
cesses. In this paper we will give a similar weak convergence theorem when
{X,, i>1} is some ¢-mixing sequence.

2. Conditions and the main result.

Let F be a space of functions defined on [0, 1]X(—o0, co) satisfying the
following condition: there exist some positive constants M and a such that for
feF
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@.1) | Df(s, )| <M(1+|x]%),

where D denotes either the identity operator or a first derivative.
Let {X;, i>1} be a centered sequence of random variables. Throughout the
paper we assume that for some §>0

2.2) sup E | Xi|*< 00,

2.3 limn-tESt=¢%>0

n—~oco

and there exists a sequence {a(n), n>1} of positive integers such that

(2.4) limzn-'a(n)=0 and sup:21<p“’(z'/\a(n))<00.

n—oo n

Remark 2.1. It is known (cf. Peligrad [2, Corollary (2.4)]) that if condi-
nions (2.2)-(2.4) are satisfied, then

D
(2.5) (n'?¢) 'Stpiz —> W (in D[O, 1])
when ¢>0.

Theorem 2.1. Let {X;, :>1} be a centered sequence satisfying conditions (2.2)-
2.4). If f, faneF, n>1, are functions such that for each s€[0, 1]

(2.6) Df.(s, x) —> Df(s, x) as mn—oco

uniformly in x on every finite interval, then

@) (@m) 2" 8" fali/n, Si/on ) Xivacn

D
— | &, We)dwn  as n—oo
Here, the stochastic integral in (2.7) is taken in the L*-sense.

From and Lemma 3 [1, § 20] we immediately obtain the follow-
ing theorem: "

Theorem 2.2. Let {X;, i1>1} be a centered wide stationary sequence of random
variables. Assume that for some d<(0, 1)

sup E| X;|*?<oco and Silp@) <.

If a sequence {f, fa, n=1}CF satisfies (2.6) and 0”=EX¥+2§‘2,EX1X1>O, then
(2.7) holds with a(n)=[n*"?%].

Remark 2.2. Although a ¢-mixing sequence is strong mixing (i.e.
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sup{| P(ANB)—P(A)P(B)|: Ac€F?, BeF3.n, m=>1}—0 as n—oo), the result
presented is not implied by that one given in [8], because our moment and
mixing rate assumptions are much weaker than those considered by Yoshihara

21

3. Proof of Theorem 2.1.
Firstly, we shall prove some lemmas. For each C>0, define
f(s, x) if |x|<C
fes, x)=40 if |x|>C+1
f(s, x)(C+1—xsgn(x)), otherwise

In what follows, we shall assume that ¢*=1.

Lemma 3.1. Let {f., n>1} be a sequence of functions such that f,F, n>1,
and let 0=t,<t,;< --- <ty=1 be a partition of the interval [0, 1]. Then, under the
assumptions of Theorem 2.1, for any e>0 and every C>0
(2.8) limlim Py(e, 7, n, C)=0,

T_’O n—+co

where
n-ain)

3£/, Si/nV) Xpwaom/n

=0

Pye, 7, n, O)=P(

b-1
_j=20fg(tj: Stneg-acny /M) Stas sy 17— Stae 2)/n*® >e)

and
r=max(t—ti-y).

Proof. For every i ([nt;]<i+a(n)<[nt;s,]) define

Wi=W i, =F36/n, Si/n*'®)—f5(t;, Scnzjj—am)/nm)-
Denote
an(t):Stnt]/nl/2 and W;(t)istnt]—a(n)/n1/2: e [O; 1] ’ nZl .
We have

b-1 [ntjl-alnd
P, 1,n, O=P(|Z WisXiracwr/nH2| >6).
J=0i=[nt;j-a(n)+1

On the other hand, by [2.1I), for every f&F
2.9) [fC(s, x)—fO(s’, )| <MQA+Co)(|s—s"|+|x—x']).

Thus, taking into account [2.9), [2.3) and [2.4), for every 0<j<b—1 and [nt;]
<ita(n)<[nt;,] we get
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@210)  EWLSK(OXli/n—t;|*+ ESy/n " =Wit;))
<K(O(tpa—ty+2alm)/n)'+ Sup  EW o+ W)

0sds7

But from well known inequality (cf. Peligrad [2, Lemma (1.1)]) we obtain

i+J
@1)  ESu—So= 2 EX3+2 3} Y EX.X

={+1 l=k+1

skz EXj+a 3 S o k) EXIEXT)

={+1 l=k+1

<j sup EX3+4; Zgo”z(z)sup EX3

=j[sup EXi(1+4 50t70) .
Hence, from [2.2), [2.4) and (2.11) it follows that
lim lim sup sup E(W ,(t4+8)—W.(t))*=

=0 no 0533y ¢

so we have

(2.12) lim lim M(n)=0,

T—‘O n—oo

where M(n)=sup{EW%;: [nt;]<it+a(n)<[nt;.], 0<<b—1}.
Furthermore, by Holder’s and Czebyshev’s inequalities
-a(n)

(2.13) Py(e, 7, n, C)Sn'IS'z{n EW3jcoyXivaom

=0

Lot

n-al(n) n-alnd

+ ZEWumXHa(n)Wu(k)XHacn)}

=0 k={+1

12 n-alnd 0 2 n-a(n) n-aln)
=n "¢ { ! EWij(i)X‘i+a(n)+4 > >
{=0 1=0 k=1+1

1/2((13 -—z)/\a(n))(E(W zj(i)Xf+a(n)lezj(h))Esz+a(n))1/2}

sn“s'z{n sup (Elw'tj(i) |2+“6)B/<"+6>(SlilpElX¢!“’")2/(“"’

osisn-aln)

+4n(}3 Sox/z(z/\a(n))) sup (E|WU“,WU(“|2+‘/")3/2<2+5)

,ksn-aln
X(supE l X¢|2+6)1/(2+">(Sup EX%)”’} .

Finally [2.8) is a consequence of (2.13), [2.12), (2.2}, (2.4) and the following in-
equality (cf 2.9)
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2.14) sup| W iy | <K(C),

where K(C) is a constant depending only on C.

Lemma 3.2. Under the assumptions of Lemma 3.1, for every C>0 and ¢>0
(2.15) lrmol lim Py(e, 7, n, C)=0,

where

b-1
Pie, 7, my O=P(| 3 {780t Watt)— £y, Wit} Waltsed=Watt)| >¢).

Proof. Let V.,(x)=/5@,, x)—f°(,, x), 1<j<b. Then
@16)  Ple, 7, n, O E{E V0 Wat)W altyd—-Wat)}
=¢ 3 E{VaWatV nWalty)

1s1sjsb-1

X W ati) =W alt D)W nlt50)—W (1)}
=176 8" EV 00 alt o) Xbracns

=0

n-a n-aln)
+2 X 2 E(Vajy(Waltjay)

1=0 k=t+1

X Xi+a(n)an(k)(Wn(tj(k)))Xh+a(n)) s

where j(7) denotes a positive integer such that

[ntja]<it+a(n)<[ntsopel.
Furthermore, by

max sup [V, (x)| — 0, as n—oo,
0sjsb-1

Now, using the methods of Lemma 31, it is easy to see that holds.

Lemma 3.3. Under the assumptions of Lemma 3.1, for every fEeF and any
given C>0

- D o ' i
@ID)  E £9Ms, Walt YW altso)—Walt)) —> 35 £9(ts, WDV ts00— W11,
Proof. Let us observe (cf. that for each 1[0, 1]
EW.)—-WL#)? —0 as n—oo,

and f€¢ is a continuous function. Thus is a simple consequence of
Remark 2.1.



80 I. SZYSZKOWSKI

For the sake of completness we give the following lemma:

Lemma 3.4 (cf. Yoshihara [7]) If fF, then for every ¢>0 and any given
c>0

P(| 5 7 WeN €)=t = o Wnaw | >s) —0
as y=max (ti—ti-1)—0, where 0=t,<t,;< --- <ty=1 is g partition of the interval
[o, 11.
Proof of Theorem 2.1. It is well known that
(2.18) ' P(ossttxng(t)l>C)—-—>0 as C—oo,

From this fact and Remark 2.1 we obtain (cf. Billingsley [1, §10])
(2.19) lim lim P(lr?tasx |S;| >Cnt/?)=0.

C-+00 =00
Now, it is easy to see that follows from [2.8), [2.15), (2.17), |(2.18),
and
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