A SUBCLASS OF ANALYTIC FUNTIONS

By
Osman Altintas

(Received October 2, 1986)
(Revised January 8, 1987)

Abstract

In this place, we consider about the subclass $S(u)$ analytic functions in the unit disc E. It is the purpose of this paper to obtain coefficients estimates for functions in the ciass $S(u)$.

Introduction.

Let $f(z), g(z)$ and $\Phi(z)$ be functions analytic in the unit disc $E=\{z:|z|<1\}$. We say that $f(z)$ is subordinate to $g(z)$ in E if $f(z)=g(\Phi(z))$ where $|\Phi(z)| \leq 1$ in E. (see [5, p. 50]).

Let $S(u)$ be the class of functions

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

which are analytic in E and satisfy the condition

$$
\begin{equation*}
\left|\frac{f(z)}{g(z)}-1\right|<\left|u \frac{f(z)}{g(z)}+1\right| \tag{1}
\end{equation*}
$$

for some $u(0 \leq u \leq 1)$ and for all $z \in E$, where

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
$$

is univalent and starlike in E.
Goel and Sohi [2] have obtained coefficients estimates for functions $f(z)$ belonging to the class $S(0)$ and sharp bounds for the coefficients $\left|a_{2}\right|,\left|a_{3}\right|$ of the class $S(u)$.

Theorem. If the function $f(z)=z+a_{2} z^{2}+\cdots$ is in $S(u)$ then

$$
\left|a_{n}\right| \leq n+(n-1)(1+u)+\left(u+u^{2}\right) \frac{(n-1)(n-2)}{2} \quad \text { for } n \geq 2 \text {. }
$$

Proof. Let

$$
\psi(z)=\frac{\frac{f(z)}{g(z)}-1}{u \frac{f(z)}{g(z)}+1}
$$

From (1) we have

$$
|\psi(z)| \leq|z| \text { and } \psi(z)=z \cdot \Phi(z) \quad \text { where } \quad \Phi(z)=\sum_{n=0}^{\infty} C_{n} z^{n}
$$

analytic in E and $|\Phi(z)| \leq 1$ in E. The equality

$$
\frac{f(z)-g(z)}{z\left(u \frac{f(z)}{g(z)}+1\right)}=g(z) \cdot \Phi(z)
$$

implies that

$$
\frac{f-g}{z\left(u \frac{f}{g}+1\right)} \text { is majorized by } g \text { in } E .
$$

If we let

$$
\frac{f(z)-g(z)}{z\left(u \frac{f(z)}{g(z)}+1\right)}=h(z)=h_{1} z+h_{2} z^{2}+\cdots
$$

then by MacGregor [3, p. 99 Theorem 2(B)]. We have $\left|h_{n}\right| \leq n$. Let

$$
P(z)=\frac{f(z)}{g(z)}-1=\frac{(1+u) \psi(z)}{1-u \psi(z)}=p_{1} z+p_{2} z^{2}+\cdots
$$

and

$$
Q(z)=\frac{(1+u) z}{1-u z}=q_{1} z+q_{2} z^{2}+\cdots
$$

In this case $P(z)$ is subordinate to $Q(z)$. For $n \geq 1$ and $0 \leq u \leq 1$ we obtain

$$
q_{n+1}-q_{n}=u^{n-1}\left(u^{2}-1\right) \leq 0
$$

and

$$
q_{n}-2 q_{n+1}+q_{n+2}=u^{n-1}(1-u)\left(1-u^{2}\right) \geq 0 .
$$

So the sequence $\left\{q_{n}\right\}$ consists of non negative, non increasing real numbers and $\left\{q_{n}\right\}$ is convex. Hence by Rogosinski [5, p. 50 and 53] we have

$$
\left|p_{n}\right| \leq q_{1}=1+u .
$$

Let $K(z)=u \frac{f(z)}{g(z)}+1=1+u+u p_{1} z+u p_{2} z^{2}+\cdots$, From the equality

$$
f(z)-g(z)=z \cdot K(z) \cdot h(z)
$$

equating of the coefficients of z^{n} on both sides, we have

$$
a_{n}-b_{n}=(1+u) h_{n-1}+u p_{1} h_{n-2}+u p_{2} h_{n-3}+\cdots+u p_{n-2} h_{1} .
$$

Since

$$
\begin{aligned}
& \left|p_{n}\right| \leq 1+u, \quad\left|h_{n}\right| \leq n \quad \text { and } \quad\left|b_{n}\right| \leq n, \\
& \text { we obtain } \quad\left|a_{n}-b_{n}\right| \leq(1+u)(n-1)+u(1+u)(n-2+n-3+\cdots+1)
\end{aligned}
$$

and from $\left|a_{n}\right| \leq\left|a_{n}-b_{n}\right|+\left|b_{n}\right|$ we obtain

$$
\left|a_{n}\right| \leq n+(1+u)(n-1)+\left(u+u^{2}\right) \frac{(n-1)(n-2)}{2} .
$$

Remark. In this proof we have not been able to obtain an extremal function.

Corollary 1. If $u=0$ then $\left|a_{n}\right| \leq 2 n-1$. Goel [1].
Corollary 2. If $u=1$ then $\operatorname{Re} \frac{f(z)}{g(z)}>0$, so f is a close-to-star function. In this case we have $\left|a_{n}\right| \leq n^{2}$. (see $[4, p .61$, Theorem 4]).

Refsrences

[1] R.M. Goel: On the coefficients of a class of close-to-convex functions. Indian J. Pure Appl. Math. 5 (1974), 128-130.
[2] R.M. Goel and N.S. Sohi: On certain classes of analytic functions. Indian J. Pure Appl. Math. 11 (10) (1980), 1308-1324.
[3] T.H. MacGregor: Majorization by univalent functions. Duke Math. J. 34 (1967), 95-102.
[4] M.O. Read: On close-to-convex univalent functions. Mich. Math. J. 3 (1955), 5962.
[5] W. Rogosinski: On the coefficients of subordinate functions. Proc. London Math. Soc. (2), 48 (1943), 48-82.

Deparment of Mathematics Hacettepe University Beytepe-Ankara Turkey

