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§0. Introduction.

Gevrey classes of ultradifferentiable functions on an open domain QCR* of
type s (s>1) and their dual spaces are extensively studied by Professor H.
Komatsu ([I], [2]). In the case of one point support, J. P. Ramis ([7], [8]) has
studied Gevrey classes of functions of type s (—oo<s<+o0). It is known from
the definition that for s<1, these functions are analytic so that the usual tech-
nique of functional analysis breaks down. That is why Ramis uses formal
power series to overcome some of these difficulties.

In this paper, we study Gevrey classes of ultradifferentiable functions of
type s (—oo<s<+oo) on the unit circle T. We characterize these functions by
growth conditions on their Fourier coefficients. It turns out that for s<0, ultra-
differentiable functions are only constant functions but we do have analytic
cases for s<1. Since the space T is compact, we can still use the method of
functional analysis to define and estimate the Fourier coefficients of dual elements
i.e., ultradistributions of generalized sense. Following Ramis, we denote the
space of Gevrey-Roumieu ultradifferentiable functions of type s by C,(T) and
that of Gevrey-Beurling ultradifferentiable ones of type s by C(T). Then, for
example, C(T)=A(T) is the space of all analytic functions on T so that the
dual space C,(T')"=8(T) is the space of Sato-hyperfunctions. For C,(T), this
space can be identified with the space of all holomorphic functions on C\{0}
and hence the dual space C,(T)" is the space of Morimoto’s cohomological
ultradistributions [6].

The main result (Theorem 3.3) characterizes the Gevrey-Roumieu ultra-
differentiable functions by means of their Fourier coefficients. For s=1, such a
result is already proved by Kothe [4] and possibly by others. Usual proof of
this kind of results uses associated functions {M,} of Mandelbrojt (see for ex-
ample Komatsu [1], I) but we use associated pairs which can be taken as smooth
(i, e. C=) functions making calculations more transparent.

Another main result deals with the Fourier coefficients of
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elements of the dual spaces C(T)" and C¢,,(T)" for any s:0<s<oo i.e., ultra-
distributions. We use Koéthe’s theory of perfect spaces and of echelon spaces to
complete the proof.

These main results are already used in our forthcomming paper [11].

The author would like to thank the referee for his valuable comments which
improved greately the presentation of this paper.

§1. Gevrey classes C(T) and C,)(T) (—oo<s<+00).

Let S! be the unit circle in the complex plane C, i.e., S'={z=C||z|=1}.
We identify S* with T=R/2xZ by the usual transformation: z=e* (=+/—1)
so that we think of a function f on S! as a function on R of period 2zx. In
particular fe C=(T) means that fe C>(R) and has period 2z. We denote f™(t)
=d™f(t)/dt" for the n-th derivatives.

Definition 1.1. Gevrey-Roumieu class C(T) is the totality of functions fe
C=(T) satisfying that for some A>0 and C>0,

Iflle=sup| f ()| <C- A" (n 1)’

for any integer n>0. feC,(T) is called a ultradifferentiable function of Gevrey-
Roumieu class of type s.

Definition 1.2. Gevrey-Beurling class C»(T) is the totality of functions
feC=(T) satisfying that for any A>0 there exists C,>0 such that

1f ™ u< Cyr AP+ (n 1)

for any integer n>0. feC(T) is called a ultradifferentiable function of Gevrey-
Beurling class of type s.

§2. Associated pair (F(x), G()).

Definition 2.1. Let F(x), G(r) be real valued functions on x>0, r>0 re-
spectively. Then F(x) and G(r) are associated if they are connected by the
following formulas:

inf F(x)-»r~*=G(r) and supG@#)-r*=F(x).
>0 >0
W call (F(x), G(r)) an associated pair.

Diffinition 2.2. Let (F(x), G{)), (F(x), 5(7’)) be two associated pairs, then
we call them equivalent if there exists A>0 such that

B(x)=A®.F(x) for all x>0 and 6(r>=c(-%) for all r>0.
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Example 2.3. For each s (0<s< o),
F(x)=x*3(x>0) and G@)=e-o™*(y>0)

are associated hence (x*%, e~¢*/®"*/*) js an associated pair.

§3. Fourier coefficients of ultradifferentiable functions of Gevrey classes.
Definition 3.1. For any feC=(T), we define its j-th Fourier coefficient
f°() by
=g | renat
7= 27 Jo

for any integer jeZ.
It is well known that for any f<C=(T), the Fourier series

2 fR()ett
jez

converges everywhere to f(t). We quote also a well known estimate with its
ingeneous proof (e.g. [3]):

Lemma 3.2. For any feC>(T), we have
LD <inf | f ™/ 1717
for any jeZ, j+0.
Proof. We know that for any fe C>(T), we have
f""(t)=§f‘(j)(z’j)"e”‘ for all n>0.
Hence

S: f™(De dt=2x f*(j)Gj)*  for any jeZ and n>0,

From this we have
(7 —1- o ) n) |n
DS gapze), F DI @)/ 1]

for any jeZ, j+0 and n>0, hence the required estimate.

Theorem 3.3. For any s (0<s<o0), we have
(R): feC,(T) if and only if for some B>0 and K >0,

[fT(DI<K-e-B11Y® tor any jEZ.
B): feCu(T) if aud only if for any B>0 there exists Kz>0 such that
| DN <Kp-e B9 for any jeZ.
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Proof of (R). Only if part. Suppose f&Cy(T). From Definition 1.1 and
nl<n® we have for some C>0 and A>0, |f™|.<C-A"-n*". Using

3.2, we have

LN <inf [ [/ |71 u<C-inf A™-n®"| |77
nxz0 nz0
for any jeZ, j#0. Now recall that (x*7, e-¢/ort%) is an associated pair i.e.,

inf x*%.p-T=g-wrorl? »>0).
x>0

For a given r>0, there exist some x,>0 and n,eN={0, 1, 2, ---} such that
n,<xo<n,+1 and ix;f)x"‘-(r/4’)'”=x3’°-(r/4')"0,
x
The case of n,>0: Using the following inequalities

ngro - ot L xiT0. %0 for any r>1

and
(n+1)*+1<4m.n" for any n>0,
we have ,
(n°+1)s(no+1) .r~(no+1)£4mo . nano ,r-(no+1)$x5zo, (7/43)—.:0
so that

inf n#n.p=n <L g8 (r/48)~Fo=g= 8/ OTADIT,
n>0

Letting r=|j|/A, we get
| F2()| < C-inf A™-nn|f| < C-g-@/oiatatss
nzo

for all j&Z; |j|=A. Defining

B=(s/4e)A1*>0
and then
K=Max(C, | f ()| -eB'"*; jeZ and |j|<A)>0,

we get the required inequality:
[Fr(DI<K e B for all jeZ.

The case of n,=0: Denoting 0°=1 in the two inequalities at the beginnihg in
the previous case, we can similarly get the required inequality.

Proof of (R). If part. Suppose that there are B>0 and K>0 such that

L (DILK-e" B for any jeZ.
We have to show that feC(T). Now,

F0)=| B e | <2K - B 11ren

<2K - S:(x—i-l)"e'“”’dx .
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The integral in the last term, denoted by I, is evaluated in the following form :
ISL-Z"-S:x"-e‘“”‘dx for some integer L>0.

Changing variables: x=y* and then y=(1/B)-z, the integral I is estimated as
follows, i.e., for some integer L >0,

ISL-2% s aron-temrde= 208 pnp1y).

Using the Stirling’s formulas

I'2)~+/2x/z -2*+2"* for z large
and

(n+1) I~/ 28(n+1)-(n+1)"+.e=+D  for n large,
the integral I is more estimated as follows:
I<L-2%-(2m)0-9/2. 512 (n 4 1)~ 4072 (5 ) B)sn+D((n 4-1) )2,
Using the fact (n+1)!<2".n! and | f"(#)| <2KI we have
[ fMDI<2K- L-27-(2m)4-0/2. sY2. (n 1)~ #9012 ((s/ B)*)((s/ B))™(2*)"(n 1)*
for large n. Since (n+1)-U+9/2<1 so by defining -

A=2-(2s/B)*
and
C>2KL-(2m)-»/2.512.(5/B)*

big enough to majorize | f"(¢)| for small n, we get
[f ™)L C-A(n 1)* for all n>0,
i.e., by definition, feC(T) as required.
Proof of (B). Only if part. Suppose f€C(T). For a given B>0 define

A>0 by solving B=(s/4e)-A-"*. Then define Kz by C or sufficiently large
positive number, then as in the case of (R), we have

| fT(NI<Kg-e B9 for all jeZ.

Proof of (B). If part. For a given A>0, define B>0 by solving A=
2(2s/B). Then, take C,>2KL-(2x)*-»/2.51/%(s/B)* big enough as in the case of
(R), we get

[ f™)e<Cyx-A™(n))*  for any n>0.

Proposition 3.4. f<Cy(T) if and only if there exists A>0 such that

| /7N1=0  for all |j|>A,
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that is, f is a trigonometric polynomial on T :

fi= 3 F (e

Proof. From Definition 1.1, feC(T) implies that
f™)<C- A for al] n>0
with suitable C>0 and A>0. Since by Lemma 3.2,
| £ (DI<inE | f /1 51"<C-inf (A/171)"

and
inléfo(fl/lj'l)":O for |j1>A, we get |f°(5)|=0 for |j|>A.

Conversely, if
fh= 2 f (e
1j1s4
for some A>0, we have
) A Y PR ~(, n
IfPWI< T 1G] 11" <max| £()| @A+ DA
that is, feC|(T).

Proposition 3.5. If f&C(T), then | f~(j)|=0 for all |j1>0, that is, f is
a constant function on T.

Proof. By Definition 1.2, if f€Cw(T), for any A>0 there exists C,>0
such that

™)< C4- A" for any n>0.
Take A such that 0<A<1. Then, by Lemma 3.2,
If‘(J')ISCA-ng(A/IJ'I)" for any |j|>1,

so that | f~(;)|=0 for any |j|>1. That is, f(t)=/"(0) is a constant function.

Proposition 3.6. For any s<0,
C(T)=C(T)=C
the space of constant functions on T.
Proof. From Definitions 1.1 and 1.2, we have for any s<s’
Cio(THCC(TYTC,(T).

From the preceeding proposition, C¢,(T)=C, hence we get the results.
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§4. Ultradistributions C,(T)", C(T)" for any s, 0<s<oo.

From the theorem 3.3, the spaces C,(T), C(T) are identified with sequence
spaces over Z. After Kothe we define:

Definition 4.1. Let E be a sequence space over Z, i.e., ECC?. The dual
(a-dual in the sense of Kothe) is defined as

E‘={vECZI;|vj| |uj]<oco for all uE}.

E is called perfect if E*"=E. The normal topology on a sequence space E is
a locally convex topology defined by the family of semi-norms of the form:

;bu(u)=2jllvj| |y
for all veE".

Definition 4.2. We identify C(T), C(T) with sequence spaces using
Fourier coefficients of their elements. We consider normal topologies on them.
Then, veC(T)" (resp. vEC(T)) if and only if it defines a linear continuous
functional on C,(T) (resp. on C¢,(T)). More precisely, if we define the Fourier
coefficient v~(j) as usual by

vV()=v(et), e teCy(T) (resp. €Cw(T))
then (e.g. [5], [9]):
Proposition 4.3. veC(T)" if and only if, for any fecCT),
Dl (DI<e0,

t.e., C(T)" is the dual of C,T) as a sequence space. Similarly for C.»(T) and
Co(T)".

We now prove another main result:

Theorem 4.4. For any s, 0<s<co,
(R): vecl T)" if and only if for any B>O0, there exists Kg>0 such that

lv;| <Kg-eB9*  for all jeZ.
B): vel»(T)" if and only if there are B>0 and K>0 such that
lv;| <K-eB9Y*  for all jeZ.

As a first step, we prove:

Lemma 4.5. veC(T)" if and only if for any B>O0,
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Slvyle B <oo,
J

Proof. If veC,(T)", for any feC(T) we have
Zjllvjl L (D <eo.
From [Theorem 3.3, for any B>0,
f(t)=;e“’"'”’e‘”ec,(T)

hence,
Slvsle B <o,
J

Let, conversely, fC,(T). Then there are some B>0 and K>0 such that

|f ()| <K-e B9 for any jeZ.
Hence
ol 1£°G) SK-Slujle?9* <oo.

We now prove
Proof of (R). If part. Let B>0 be given. Define B’=B/2 and Ky >0}s0

that

lv;| <Kge®9*  for any jeZ.
Then

| vjl e"B"”mSKBr ) PR AFIEA

7 7
Since

e~ Bt i1-t for |j| large,
we have for some K>0,

S lule P < K K- B 1< 00,
that is veCy(T)" by the preceeding lemma.

Proof of (R). Only if part. Let 3,|v;le"B¥°<oo for any B>0. Take
70>0 so that for any j, 171>,

lvgle"BY <1, e, || <eBU,
Accordingly, there exists some Kp>0 such that
lv;| <Kg-e®)'Y*  for any jeZ.
For the proof of (B), it is enough to show:
Lemma 4.6. v C»(T)" if and only if, for some B>0

;lvjle‘mj‘m<00.
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Proof. For any B>0, we consider so-called an echelon space:
EB={a=(aj)|A?Jlajle_Bljll“<°°}.
Since, Ep=~I' by a diagonal transformation, its dual space Ep =/ is given by
Eg"={b=(b,)|for some K>0, |b;| <Ke B/},
By we know that
felC.(T) if and only if (f‘(j))elQo Eg.

We now use Kothe’s theory (5], §30.8 (1)) relating echelon and coechelon
spaces to obtain the dual space: :

veEC,,(T)" if and only if (v,)e})joEB

i.e., for some B>0,
2 lvylem2i < oo,
7

Remarks. (1) shows in particular that for any s, 0<s<co,
the spaces C,(T), Cu(T) are perfect in the sense of Kéthe. C(T)=C is not
perfect but Co(T)=the space of trigonometric polynomials ~(C® =the space of
all finite sequences is perfect with the dual space Co(T)"=the space of all formal
trigonometric series ~C?Z.

(2) C(T) =2(T) is the space of Sato-hyperfunctions on 7. In fact, ve
C(T)" if and only if for any B>0 there exists Kz>0 such that

|vy| < KgeB! for any jeZ.
Consider the power series v=3;v,;z/ with z&C then
lirlr}lsup‘f'\/lv,l < Eim 's/Kg-eB  for any B>O0,
00 {Jl =00

that is, lim sup'/'4/Tv;] <1. We conclude that the series v*=33,,0v;2’, v =2 cov;2’
are convergent inside and outside of the unit circle respectively and v represents
a boudary value i.e., a Sato-hyperfunction.

(3) Cu(T)" may be considered the space of Morimoto’s cohomological ultra-
distributions [6]. In fact, the series vt*=20v52’ converges for z, |z]<e 2<1
and the series v-=3,,v;z’ converges for z, |z|=e¢?>1 for some B>0 with
v=v*t+v~ for any velCuy(T)".
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