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1. Introduction.

For the Riemann zeta function {(s) defined, when Re(s)>1, by
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Landau’s formula (c¢f. [1, p. 274, Equation (3)]; see also [5, p. 33, Equation
(2.14.1)]

1.2) c<s>=1+s1 Sy (S

. ) (n+1)

is capable of providing the analytic continuation of {(s) over the whole s-plane.
Here, for convenience,

(1.3) (s)e=1 and (s)p=s(s+1)(s+2)-- (s+n—1), n=l1, 2,3, ---.

Another formula, which can be used in a similar way, is attributed to Ramaswami
(cf. [3, p. 166]; see also [5, p. 33, Equation (2.14.2)]):
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Motivated by these well-known results [(1.2) and (1.4)] in the theory of the
Riemann zeta function {(s), which obviously is meromorphic everywhere in the
s-plane except for a simple pole at s=1 (with residue 1), Singh and Verma
have recently derived the following infinite series involving {(s):
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The proofs of [1.5) and [1.6) by Singh and Verma [4, Sections 2 and 3]
depend rather heavily upon the integral representation [5, p. 14, Equation (2.1.4)7
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In our attempt to give relatively simple proofs of [1.5) and [(1.6), without using
the integral representation (1.7), we are led naturally to an interesting unifica-
tion (and generalization) of [(1.5) and [1.6) involving the generalized (Hurwitz’s)
zeta function defined usually by (c¢f. [5, p. 36])

_ _ 1 i 1 —9 ..
(1.8 (s, a)= nZ_} nta)y Re(s)>1; a+0, —1, -2, -,
so that, obviously,

(1.9) s, D=L0s),  LCs, 2)=8(s)—1, C(s, %)=(2’—1)C(S).

The elementary techniques employed here are shown to apply also to the deriva-
tion of numerous other results for {(s, a) including, for example, some useful

analogues of [(1.2) and [(1.4).

2. Derivation of the main result.

The derivation of our unification (and generalization) of and is
based simply upon the familiar binomial expansion:

(2)n

2.1) E z"=(1—2)"*, |z]<1.

Indeed it follows readily from and the definition that (cf., e.g., [6, p.
90, Equation (1)])

(2.2) (z)n

C(l+n aj*=L@, a—t), |t|<lal,

which holds true, by the analytic continuation of {(s, a), for all values of 1#1.
Now replace the summation index in by n+2, set A=s—1, and divide
both sides of the resulting equation by #*. We thus observe from that
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={8(s—1, a—)—L(s—1, a)}t*—(s—1)(s, a)t™*,  O0<It[<]al.

Differentiating both sides of with respect to ¢, and noticing from the de-

finitions [1.3) and [(1.8) that
@) —Dare=(s—Dans, o Gs—1, a=DI=(s—DX(s, a—1),

we have

§{(s+n+1, a)

&, N(8)a+ n-1
25 X 121 —&s+n+1, a)t

={{(s, a—t)+{(s, a)}t7*—
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For t=—1, (2.5) readily yields the desired unification (and generalization) of

K1.5) and [1.6) in the form:
26 U a=a(G+ )+ 5 B (-1

n(S)n+1
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provided that the series converges.

3. Applications.

In the special case of our main result when a=1, the series converges
if Re(s)<1, and we immediately obtain [1.5). Furthermore, in view of the
first two identities in [(1.9), our formula with a=2 is precisely the known
result [(1.6).

It may be of interest to remark here that alternative proofs of the well-
known results and [1.4), based upon the integral representation [5, p. 18,
Equation (2.4.1)]

3.1) S“—f—'——l— dx, Re(s)>1,

C(S)“m
were given by Menon [2]. As a matter of fact, both [I.2) and [T.4) can be
deduced fairly easily from [2.2).

Replacing the summation index » in by n+1, and setting A=s—1, we
have

2 (S
(3.2) P2 (n+1)!

where we have made use of the first identity in (2.4).
By virtue of the definition [(1.8), (3.2) with t=1 assumes the form:

(a e - O
3.3) {(s, a)= —1 Z=) @ +1)|
which, in view of the second identity in [1.9), yields Landau’s formula [1.2) for
a=2. On the other hand, (3.2) with t=1/2 (and s replaced by s+1) or
with t=1/2 (and A=s) similarly yields

Ustn, aprvi=—r (Gs—1, a=D—Ls—L, 0}, ItI<]al,

L(s+n, a),

3.4 s, 2a—D)-2-1(s, )= 5, S Hotn O

which, in view of the first identity in [1.9), leads us immediately to Ramaswami’s
formula upon setting a=1.
For t=-—1, (3.2) yields
(S
(n+1)!
and (3.2) with t=—1/2 (and s replaced by s+1) or with t=—1/2 (and A=s)
gives

L(s+n, a),

3.5 s, =22
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{(s+n, a)

28+1l

@.6) 4(s, 2a)—24(s, @)=— ,g(—l)”" (;);*

Formulas with ¢=2 and with ¢=1 provide interesting analogues of
1.2) and [(1.4), respectively; in fact, this indicated analogue of [that is,
with a=1] was also given by Ramaswami [3, p. 166]. It is not difficult
to deduce as a natural consequence of

Numerous other consequences of the general results [2.2), and (3.2
can be deduced by suitably specializing the parameter ¢ in a manner detailed
above,
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