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Abstract: A semilinear differential equation of the type

$\dot{u}=Au+f(t, u)$ , $u(a)=z$ $(^{*})$

is considered in locally convex space $X$, for the existence and stability of its
mild solutions. $A$ is assumed to be the generator of an equicontinuous $C_{0-}$

semigroup of linear operators and the function $f(\ell, u)$ satisfies certain condi.
tion in terms of the measure of noncompactness. Existence and stability
results are obtained via fixed point theorem. Examples are given to illustrate
an abstract theory developed here.

1. Introduction.

The main aim in this study is to develop abstract theory of existence and
stability of mild solutions of semilinear differential equations of the form

$\dot{u}=Au+f(t, u)$ (1.1)

$u(0)=z$ (1.2)

where $A$ is closed densely defined operator on a locally convex topological vector
space (LCTVS) $X,$ $z\in X,$ $f:R^{+}\times X\rightarrow X$ and $u;R^{+}\rightarrow X$. The motivation behind
such a study in abstract spaces is mainly because of its successful applications
in the study of partial differential equations (for example see [5], [6], [9]).
Our main tool is the fixed point theorem via the measure of noncompactness in
LCTVS. In this approach we combine the measure of noncompactness of a
bounded set $B\subset X$ and the images $S(t)B,$ $t\geqq 0$ under the $C_{0}$-semigroup { $S(t)$ :
$t\geqq 0\}$ generated by the operator $A$ in (1.1). As per our knowledge, this approach
seems to be new one. In Agase and Raghavendra [2] we have studied (1.1),
(1.2) in case $X$ is a Banach Space. In this work we generalise some results in
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[2] and add some existence and stability results obtained on the lines of Agase
[1] and Yuasa [11]. The generalization does not seem to be trivial because of
complicated structure of LCTVS. For example semigroup $\{S(\ell), t\geqq 0\}$ of transla-
tions is a $C_{0}$-semigroup of contractions generated by $A\equiv d/dx$ in case of a
Banach space but it is not so in LCTVS, (see [8]).

In Section 2, definitions and preliminary results are given. Existence results
are established in Section 3. Conditions sufficient to satisfy our hypothesis on
$A$ are also obtained. Stability theorems are given in Section 4. In Section 5,
two examples of LCTVS are given where in our results may have applications.
The purpose of these examples is theoritical and as such it may not have any
bearing on physical problems.

2. Preliminaries.

Let $X$ be a Hausdorff locally convex topological vector space (LCTVS) and
$\mathcal{P}$ denote a family of seminorms inducing the given topology on $X$. At times
we denote by $q$], (in place of $\mathcal{P}$), the fundamental system of neighbourhoods of
$O\in X$. Let $S=\{S(t):t\geqq 0\}$ denote a $C_{0}$-semigroup of linear operators on $X$, that
is, for each $t\geqq 0,$ $S(t):X\rightarrow X$ is a bounded linear operator with,

$S(t)S(h)=S(f+h)$ ; $S(O)=I$ (2.1)

$\lim_{h\rightarrow\ell}S(h)x=S(t)x$ , $t\geqq 0$ , $x\in X$ (2.2)

$S$ is called a $C_{0}$-semigroup of contractions, (or $\mathcal{P}$-contraction $C_{0}$-semigroup), if
for every $p\in \mathcal{P},$ $x\in X$, and $t\geqq 0$

$p(S(t)x)\leqq p(x)$ . (2.3)

$S$ is said to be an equicontinuous semigroup of class $C_{0}$ if for any $p\in \mathcal{P}$, there
exists a $q\in \mathcal{P}$ such that

$p(S(t)x)\leqq q(x)$ for all $t\geqq 0,$ $x\in X$ . (2.4)

The generator $A$ of $\{S(t):t\geqq 0\}$ is a linear operator with domain $D(A)$ ,

$D(A)=\{x\in X:\lim_{h\rightarrow 0+}\frac{1}{h}[S(h)-I]x$ exists in $X\}$ ,
and

$Ax=\lim_{h\rightarrow 0+}\frac{1}{h}[S(h)x-x]$ for all $x\in D(A)$ .
It is well known that $D(A)$ is dense in $X$.

Let $R^{+}:$ $[0, \infty$), $I=[a, a+T],$ $a\in R^{+},$ $T>0$ . For a function $ u:I\rightarrow X,\dot{u}\equiv$

$\frac{du}{dt}$ is the derivative in the usual sense and $\int_{a}^{t}u(s)ds$ is the integral in the

Riemann sense. Let $D$ be an open subset of $X,$ $f:I\times D\rightarrow X$ and $z\in D$ . For any $A$ ,
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$B\subset X$, cl $B(or\overline{B})$ and co $B$ denote closure of $B$ , convex hull of $B$ respectively,
and $A+B:\{x+y:x\in A, y\in B\}$ . We consider the semilinear differential equa-
tion (SDE)

$\dot{u}=Au+f(t, u)$ , $u(a)=z$ (2.5)

where $A$ is the generator of an equicontinuous semigroup of class $C_{0}$ .
2.1. Definition. A function $u;I\rightarrow X$ is said to be a strong solution of SDE

(2.5) if $u(t)\in D\cap D(A)$ for all $t\in I,$ $u$ is differentiable on $I$ and $u$ satisfies SDE
(2.5) on $I$ . It is easy to see that a solution of SDE (2.5) satisfies the following
integral equation

$u(t)=S(\ell-a)z+\int_{a}^{t}S(t-s)f(s, u(s))ds$ (2.6)

but the converse need not be true,

2.2. Definition. A continuous function $u:I\rightarrow D$ is called a mild solution
of SDE (2.5) if $u$ satisfies the integral equation (2.6).

We use the notion of measure of noncompactness in LCTVS defined by
Yuasa [11] which is the modified form of the definition introduced by S. Reich
[10].

2.3. Definition ([10]). For a bounded subset $B$ of $X$, the measure of non-
compactness, denoted by $M(B)$ , is defined as

$M(B):$ { $U\in qJ;B\subset K+U$ for some precompact set $K\subset X$ }.

2.4. Deflnition ([11]). For a bounded $B\subset X$, the measure of non-precom-
pactness, $Q(B)$ , is defined as (V being fixed):

$Q(B):\{U\in ql$ ; For any $\epsilon>0$ , there exists a precompact set
$K\subset X$, such that $B\subset K+(1+\epsilon)U$ },

It is obvious that $M(B)\subset Q(B)$ . These measures satisfy the properties listed
in the followin$g$ :

2.5. Theorem. Let $X$ be a complete LCTVS and $A,$ $B\subset X$ be bounded. Then
the following hold.

a) If $A\subset B$ then $Q(A)\supset Q(B)$

b) $Q(A\cup B)=Q(A)\cap Q(B)$

c) $Q(A)=qJ$ if and only if $A$ is precompact
d) $Q(A)=Q(c1A)$

e) $Q(B)=Q(coB)=Q$ ($c1$ co $B$ )
f) If $a\geqq b\geqq 0$ then $Q(bA)\supset Q(aA)$
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g) $Q(A)=Q(0\leq _{S1}^{tA)}$

h) $Q(A+B)=Q(A)$ for every Precompacf set $B\subset X$.

Proof. $(a)-(f)$ are proved in Yuasa [11] and (g) in Agase [1]. We prove
(h).

Let $A$ be bounded and $B$ be precompact subset of $X$. If $U\in Q(A+B)$ then
for each $t>0$ there exists a precompact subset $K_{t}\subset X$ such that $A+B\subset K_{t}+$

$(1+t)U$ . Since $K_{t}-B$ is precompact it follows that $U\in Q(A)$ and hence $Q(A+B)$
$\subset Q(A)$ . Reverse inclusion can also be realised in the same way and (h) follows.

We denote the class of all functions $F$ from $X$ into $Y$ (Y–LCTVS), which
map bounded subsets of $X$ into bounded subsets of $Y$ , as $B(X, Y)$ . Further if
$F$ is continuous also then we write $F\in BC(X, Y)$ .

2.6. Diflnition. An operator $F:X\rightarrow X$ is said to be Q-condensing if $ F\in$

$B(X, X)$ and $Q(B)\subset\sim Q(F(B))$ for every bounded $B\subset X$. A function $f:R^{+}\times X\rightarrow X$

is said to be Q-condensing if $f\in B(R^{+}\times X, X)$ and for any closed interval $I\subset R^{+}$

and bounded $B\subset X,$ $Q(B)\subsetneq Q(f(I\times B))$ .
2.7. Theorem. Let $K$ be a $nonemP\ell y$ closed convex subset of a complete

Hausdorff LCTVS. SuppOse $F;K\rightarrow K$ is continuous and has bounded range. If $F$

is Q-condensing then $F$ has a fixed point in $K$.
For the details of the proof see Istratescu ([4] page 185-187).
Let $Y=C[I, X]$ the space of all continuous X-valued functions on $I$ . We

consider the locally convex topology on $Y$ defined by the family of seminorms
$\{q_{a}\}$ , where

$q_{\alpha}(u)=\sup_{t\in I}p_{a}(u(t))$ , for all $u\in Y$ and $p_{a}\in \mathcal{P}$ .

2.8. Lemma. Let $f\in C[I\times X, X]$ and $G$ be defined on $Y$ by

$G(y)(t)=f(t, y(t))$ for all $y\in Y$ and $t\in I$ .
Then

(i) $G:Y\rightarrow Y$

(ii) $G\in C(Y, Y)$

(iii) $G$ and $rf,$ $(0\leqq r\leqq 1)$ , are Q-condensing whenever $f$ is so.

Proof. For (i) and (ii) we refer to Millionscikov [7]. (iii) is proved in
[1] when $f$ is M-condensing. For completeness we give the proof in the pre-
sent situation.

Let $B\subset Y$ be bounded. So that $B(I)$ is bounded subset of $X$ and then
$f(I, B(I))$ is bounded in $X$. Since $f$ is Q-condensing we choose $U_{0}\in qJ$ such that
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$U_{0}\in Q(f(I, B(I)))$ but $U_{0}\not\in Q(B(I))$ .
Let $p_{0}$ denote the Minkowski functional of $U_{0}(p_{0}\in \mathcal{P})$ and $q_{0}$ the corresponding
seminorm on Y. Set $U_{0}^{\prime}=\{y\in Y:q_{0}(y)\leqq 1\}$ . The following claims establish that
$G$ is Q-condensing.

Claim 1. $U_{0}^{\prime}\in Q(G(B))$ .
If the claim is not true then there exists $\delta>0$ such that for any Precompact

$K\subset Y,$ $G(B)\not\subset K+(1+\delta)U_{0}^{\prime}$ . But for this $\delta>0$, by the choice of $U_{0}^{\prime}$ there is a
Precomepact $K_{0}\subset X$ with $f(I, B(I))\subset K_{0}+(1+\delta)U_{0}$ and $B(I)\not\subset K_{0}+(1+\delta)U_{0}$ . Let
$g\in C[I, R]$ be such that $g(l)=1-t\in I$ and write $K_{0}^{\prime}=\{xg;x\in K_{0}\}$ . Then $R_{0}^{\prime}$ is
Precompact subset of Y. Since $G(B)\not\subset K_{0}+(1+\delta)U_{0}^{\prime}$ , there is a $y\in B$ with $G(y)$

$\not\in K_{0}+(1+\delta)U_{0}^{\prime}$ . Thus for some $\ell\in I$,

$G(y)(t)=f(t, y(t))\neq xg(\ell)+(1+\delta)u_{0}^{\prime}(t)$

for all $x\in K_{0}$ and $u_{0}^{\prime}\in U_{0}^{\prime}$ . Since the set $O_{0}$ ; $\{u_{0}g:u_{0}\in U_{0}\}\subset U_{0}^{\prime}$ , it follows that
$G(y)(t)\neq x+(1+\delta)u_{0}$ for all $x\in K_{0}$ and $u_{0}\in U_{0}$ . But this contradicts the choice
of $U_{0}$ and $K_{0}$ .

Claim 2. $U_{0}^{\prime}\not\in Q(B)$ .
From the choice of $U_{0}$ , it is clear that there exists $d>0$ and a precompact

set $K_{0}\subset X$ with $G(I, B(I))\subset K_{0}+(1+d)U_{0}$ but $B(I)\not\subset K+(1+d)U_{0}$ for any Precom-
pact $K\subset X$. Now if the claim is not true then for this $d>0$, there is a precom-
pact set $K^{\prime}\subset Y$ such that $B\subset K^{\prime}+(1+d)U_{0}^{\prime}$ which further shows that $B(I)\subset K^{\prime}(I)$

$+(1+d)U_{0}^{\prime}(I)$ . Since $U_{0}^{\prime}(I)\subset U_{0}$ and $K^{\prime}(I)$ is precompact we arrive at a contradic-
tion to the choice of $U_{0}$ .

For $0<r\leqq 1,$ $rf$ is Q-condensing follows easily and hence the lemma.

2.9. Lemma. Assume that $\{S(t):t\geqq 0\}$ is an equicontinuous semigroup ofclass $C_{0}$ on $X$ such that, for any bounded $B\subset X$

$Q(0_{1}^{S(\ell)B)=Q(B)}$ (2.7)

Let $f\in C[I\times X, X]$ and be Q-condensing. Define a function $F$ on $I\times Y$ by

$F(t, y)(s)=\left\{\begin{array}{ll}S(t-s)f(s, y(s)) & a\leqq s\leqq t\\f(s, y(s)), & t\leqq s\leqq T\end{array}\right.$ (2.8)

Then $F\in C[I\times Y, Y]$ and $F$ is Q-condensing on $I\times Y$.
Proof. Let $B\subset Y$ be bounded. Then $F(I, B)$ is bounded and $ F(I, B)\subset$

$\bigcup_{0\leq 4\leq 1}S(\lambda)G(B)$ where $G$ is as in Lemma 2.8. By using (2.7) and Q-condensing
property of $G$ we have $O(F(I_{-}B))\urcorner O(\Gamma,(R))\supset O(R)$ $\mathfrak{n}r1h_{\rho\eta\rho\rho}fh\sim$ lammo
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2.10. Lemma. Let $\{S(t)\},$ $f$ and $F$ be as in Lemma 2.9. Then for all $l\in I$

and $y\in Y_{t}=C[[a, t],$ $X$],

$\int_{a}^{t}F(\ell, y)(s)ds\in(t-a)$ cl co $(\{F(t, y)(s):s\in(a, \ell]\})$ .

Proof. Obvious from the definition of Riemann integral.

2.11. Lemma. Let $\{S(\ell)\},$ $f$ and $F$ be as in Lemma 2.9. Define the operatOr
$T$ on $Y$ by

$Ty(\ell)=S(t-a)z+\int_{a}^{\ell}S(t-s)f(s, x(s))ds$

for all $t\in[a, a+T],$ $y\in Y$ and $z$ fixed in X. Then
(i) $T\in BC[Y, Y]$

(ii) $T$ is Q-condensing on Y.

Proof. (i) follows easily.

(ii) Let $B\subset Y$ be bounded. Then $B(I)$ is bounded in $X$. For each $y\in B$

and $t\in I$ ,

$Ty(t)\in S(t-a)z+(t-a)$ cl co $(\{F(t, y)(s):s\in(a, t]\})$ .
Hence

$T(B)(I)\supset\bigcup_{\ell\in I}S(t-a)z+\bigcup_{t\in I}(t-a)$ cl co $(\{F(t, B)(I)\})$ .

Since $\bigcup_{\ell\in I}S(\ell-a)z$ is compact, it follows that

$Q(T(B)(I)))\supset Q(0\forall_{\leq 1}^{\lambda}$ cl co $(\{F(I, B)(I)\})=Q(F(I, B)(I))$ .

Following the same procedure as in Lemma 2.9 and using Q-condensing property

of $F$ we obtain that
$Q(T(B))\supset Q(F(I, B))_{\wedge}\supset Q(B)$ .

3. Existence Theorems.

3.1. Theorem. SuPpose that

(i) $A$ is the $\iota nfimtesimal$ generator of an equicontinuous semigroup { $S(t)$ ;

$t\geqq 0\}$ of class $C_{0}$ satisfying condition (2.7).

(ii) $I=[a, a+T],$ $0<T\leqq 1,$ $a\in R^{+},$ $f;I\times X\rightarrow X$ is continuous and there exists
$0<a\leqq T$ and $c>0$ such that $cf$ is Q-condenscng on $[a, a+a]\times X$.

(iii) There is $U_{0}\in qJ$ such that $S(\lambda)f(t, x)\in M_{0}U_{0}$ for all $(\ell, x)\in I\times X,$ $\lambda\in$

$[0,1]$ and some $M_{0}>0$ .
Then $there\ulcorner-ex_{1\circ\urcorner}\sim ists\beta,$

$0<\beta\leqq T$ such that for each $z\in X$, SDE (2.5) has a mild solu-
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Proof. Let $\beta=\min(a, c)$ and $J=[a, a+\beta]$ . We note that since cf is Q-
condensing on $[a, a+\alpha]\times X$, Lemma 2.5 (f) shows that $\beta f$ is Q-condensing. It is
obvious that $\beta f\in B[J\times X, X]$ . Assumption (2.7) now shows that $0\forall_{\leq 1}^{S(\lambda)\beta f(J\times B)}$

is bounded for every bounded subset $B$ of $X$. Further by assumption (iii),
$P_{0}(0\forall_{1}^{S(\lambda)f(\ell}, x))\leqq M_{0}$ where $p_{0}$ is the Minkowski functional corresponding to $U_{0}$.

If $u(t)$ is a mild solution of SDE (2.5) on $J$ then for $t,$ $t^{\prime}\in J$,

$u(\ell)-u(t^{\prime})\in[S(\ell-a)-S(\ell^{\prime}-a)]z+|\ell-t^{\prime}|$ cl co $(\{\nu_{-}^{\prime s(\lambda)f(J}, u(J))\})$ .
Here we have used the fact that for any convex $D\subset X$ and $\alpha,$ $\beta>0,$ $aD+\beta D=$

$(\alpha+\beta)D$ . Then $u(\ell)$ satisfies,

$p_{0}(u(t)-u(\ell^{\prime}))\leqq p_{0}([S(t-a)-S(\ell^{\prime}-a)]z)+|t-t^{\prime}|M_{0}$ (3.1)

From this observation we try to investigate a solution in the subset $H$ of $Y$

given by $H:$ { $u\in C[J,$ $X]:u(a)=z$ and $u$ satisfies inequality (3.1)}. Then $H$ is
nonempty, closed and convex. Define the operator $T:H\rightarrow H$ as in Lemma 2.11.
Then $T$ is continuous, $T$ has bounded range and $T$ is Q-condensing. Theorem
2.7 then assures the existence of a fixed point of $T$ in $H$ which is a required
mild solution on $J$.

3.2. Theorem. If the hyPothesis of Theorem 3.1 is true with $c=1$ and $a=T$
$:h$en for each $z\in X$, SDE (2.5) has a mild solution existing on $I$.

3.3. Theorem. Let $I_{1}=[a, a+\beta],$ $ 0<\beta<\infty$ . Assume $c=1$ and $a=T$ in
Theorem 3.1. Then SDE (2.5) has a mild solution on $I_{0}$ .

Proof of theorems 3.2 and 3.3 are similar to that of Theorems 2 and 3 of [1]
and hence omitted.

In fact we have a more general theorem.

3.4. Theorem. Assume the $hyPothesis$ of Theorem 3.1 with $c=1,$ $I=R^{+}and$

(iii) rePlaced by (iii)*: SuPpose that there exists $ U_{0}\in\eta$ and a continuous function
$G(\ell, r)$ from $R^{+}\times R^{+}$ into $R^{+}$ such that

a) for each $t,$ $G(t, r)$ is nondecreasing in $r$.
b) for $(t, x)\in R^{+}\times X$ and $\lambda>0$,

$P_{0}(S(\lambda)f(t, x))\leqq G(t, p_{0}(x))$

c) for any $z\in X$, there exists a function $g$ defined on $R^{+}$ such that

$g(t)\geqq p_{0}(S(t-a)z)+\int_{a}^{\ell}G(s, g(s))ds$ (3.2)

$g(a)=p_{0}(z)$ . (3.3)
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Then for each $z\in X$, the SDE (2.5) has a mild solution on any compact subinterval
$I=[a,$ $ a+\beta 1,0<\beta<\infty$ .

Proof. Let $g$ be as given. Define a set $H:\{u\in C[R^{+}, X]:p_{0}(u(t))\leqq g(t)\}$ .
Then $H$ is closed and convex. Define $T$ from $H$ into $C[R^{+}, X]$ by

Tu$(t)=S(t-a)z+\int_{a}^{t}S(t-s)f(s, x(s))ds$ (3.4)

for all $u\in H$ and $t\geqq a$ . Then since $p_{0}(Tu(t))\leqq g(t),$ $T:H\rightarrow H$. Rest of the part
now is routine (see Agase [1]).

3.5. Theorem. Assume the hyPothesis of Theorem 3.4 with $p_{0}(S(t-a)z)$ in
(iii)* (b) replaced by any function $u\in C[[a, a+\beta],$ $X$]. Then the integral equation

$w(\ell)=u(t)+\int_{a}^{\ell}S(\ell-s)f(s, w(s))ds$ (3.5)

has a solution $w\in C[[a, a+\beta],$ $X$].

Proof. Follows from the proof of Theorem 3.4.

3.6. Remark. Theorems 3.4 and 3.5 generalise and improve similar theo-
rems in Pazy [9] (page 184) except uniqueness.

Now we restrict $f:I\times D\rightarrow X$ where $D$ is open subset of $X$ and combine
ideas in Yuasa [11] to establish the following theorem.

3.7. Theorem. Assume that;
$C_{1})$ HypOthesis(i) of Theorem 3.1 holds.
$C_{2})$ There exists a closed convex bounded set $F$ with $z\in F\subset D$ such that the set

$B_{0}=clco(t_{0\leq}\forall_{\leq 1}^{S(\lambda)f(I}, F)\}\cup\{0\})$ is bounded and $z+\alpha_{0}B_{0}\subset F$ for some $\alpha_{0}>0$.
$C_{s})$ For any bounded set $B_{1}\subset\overline{B}_{1}\subset D$, there is an interval $I_{1}=[a, a+\beta]\subset I$

and a constant $c>0$ such that $cf$ is Q-condensing on $I_{1}\times B_{1}$ .
Then for each $z\in D$ there exists $0<a<a$ such that SDE (2.5) has a mild

solution on $[a, a+a]$ .
3.8. Remark. We note that when $X$ is a Banach space then condition $C_{2}$

is redundant. $(C_{2})$ follows from Lemma 3.4 of [2].

Proof of Theorem 3.7. Let $z\in D,$ $F\subset D$ and $B_{0}$ be as in $(C_{2})$ . For this $F$

we choose $\beta>0$ and $c>0$ such that cf is Q-condensing on $[a, a+\beta]\times fl$. Now
set $\alpha=\min(\alpha_{0}, \beta, C)$ and $J=[a, a+\alpha]$ . Obviously cf is Q-condensing on $J\times F$.
Define the set $H$ by,

$H=\{u\in C[J, F]:u(a)=z$ and for $t,$ $t^{\prime}\in J$,

$u(t)-u(\ell^{\prime})\in[S(t-a)-S(t^{\prime}-a)]z+|t-t^{\prime}|B_{0}\}$ .
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Then $H$ is closed convex and bounded in $C[J, F]$ . The operator $T:H\rightarrow H$,
defined as in lemma 2.11, is continuous, and Q-condensing (this follows as in
theorem 3.1). Then a fixed point of $T$ , assured by Theorem 2.7, is a required
mild solution of SDE (2.5).

3.9. Remarks. (i) By using arguments similar to the proof of Lemma 2.8
(iii), one can easily verify that the function $F(t, x)$ defined by (2.8) is Q-con-
densing, for each fixed $t\in I$, on $t\times Y_{t}$ where $Y_{\ell}=C[[a, t],$ $X$]. This, together
with equicontinuity of $H$, helps in the arguments similar to Yuasa [11] to get
a fixed point of $T$.

(ii) Theorem 3.7 generalizes Theorem 3.3 in Agase and Raghavendra [2].
(iii) When $A=0$ then $S(t)=I$ for all $t>0$, Theorem 3.7 yields Theorem 2 of

Yuasa [11] and Theorem 3.3 gives theorem 3 of Agase [1]. Further results
on noncontinuability and uniqueness of mild solution of SDE (2.5) can be obtained
on the similar lines. The details are omitted.

(iv) If $f:I\times D\rightarrow X$ is locally Lipschitzian ([11]) then the condition $(C_{s})$ is
satisfied.

We conclude this section by showing that a $C_{0}$-semigroup of contractions
satisfies our assumption (2.7).

3.10. Theorem. If $\{S(t):t\geqq 0\}$ is a $C_{0}$-semigroup of $\mathcal{P}$-contractions on a com-
Plete LCTVS $X$ then for any bounded $B\subset X$

$Q(os_{\leq T}^{S(t})B)=Q(B)$ , $T>0$ .

Proof. Let $B\subset X$ be bounded and write $D=\bigcup_{os\iota sr}S(t)B$ for some $T>0$ .
Since $B\subset D$ it follows that $Q(B)\supset Q(D)$ .

Now let $U\in Q(B)$ and $\epsilon>0$ . There is a precompact set $K=K(\delta)$ such that
$B\subset K+(1+\epsilon/2)U$ . We conclude the theorem via following claims.

Claim 1. There exists $\delta>0$ such that

$ U\in Q(0\leq _{\leq\delta}^{s(\ell)B)}\cdot$

Proof. Clearly $D\subset\bigcup_{05t\leq T}S(t)K+(1+\epsilon/2)U$ . Since $K$ is precompact there exist
points $x_{1},$ $x_{2},$ $\cdots$ , $x_{n}$ such that $K\subset\{x_{\ell}\}_{i=1}^{n}+(\epsilon/4)U$ , that is, $K\subset\bigcup_{i=1}^{n}B(x_{\ell}, p, \epsilon/4)$

where $P$ is the Minkowski functional of $U$ and

$B(x,$ $p,$ $\frac{\epsilon}{4}):\{y\in X:P(x-y)<\frac{\epsilon}{4}\}$ .
Now let $x\in B(x_{i}, p, \epsilon/4)$ and $t>0$. Then
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$p(S(t)x-x_{i})\leqq p(S(t)x-S(\ell)x_{i})+p(S(t)x_{\ell}-x_{\ell})$

$\leqq\frac{\epsilon}{4}+p(S(t)x_{i}-x_{i})$ . (3.6)

By (2.2), there is a $\delta_{\ell}=\delta_{t}(x_{\ell}, p, \epsilon)$ such that for all $t\in[0, \delta_{\ell}],$ $p(S(t)x_{\ell}-x_{\ell})<\epsilon/4$

and hence (3.6) yields that $S(t)x\in B(x_{i}, p, \epsilon/2)$ for all $t\in[0, \delta]$ . Set $\delta=\min_{1Sn}\delta_{\ell}$ .
So that for all $t\in[0, \delta]S(\ell)B(x_{\ell}, p, \delta/4)\subset B(x_{t}, p, \epsilon/2)$ which implies that, for
each $i=1,2,$ $\cdots$ , $n$ ,

$os_{\delta}^{S(\ell)B(X\ell},$ $p,$ $\frac{\epsilon}{4})\subset B(X\ell,$ $p,$ $\frac{\epsilon}{2})$ .

Thus we obtain

$0S_{s\delta}^{S(\ell)K\subset 1_{0}_{\delta}^{S(\ell)[\bigcup_{i\Leftrightarrow 1}^{n}B(X\ell}}p,$ $\frac{\epsilon}{4})\rfloor$

$=cnu[0_{\delta}^{S(t)B(X\ell},$ $p,$ $\frac{e}{4})]$

$=\ell\bigcup_{-}^{n}1B(x_{i},$ $p,$ $\frac{\epsilon}{2})$ .
So that

$0_{\delta}^{S(t)B\subset_{0}_{\delta}^{K+(1+\frac{\epsilon}{2})}}$

$\subset\{x_{i}\}_{i-1}^{n}+\frac{\epsilon}{2}U+(1+\frac{t}{2})$

$=\{x_{\ell}\}_{\ell-1}^{n}+(1+\epsilon)U$ .
Therefore $U\in Q(0_{s\delta}^{s(t})B)$ where $\delta=\delta(x_{1}, \cdots x_{n}, p, \epsilon)$ .

Claim 2. $Q(0_{s\delta}^{S(\ell)B)=Q(\bigcup_{0\leq tn\delta}S(\ell)B)}$ for any positive integer $n$ .

Proof. Take $n=2$. Then by Theorem 2.5 (b)

$ Q(\bigcup_{0\leq t\delta}S(t)B)=Q(0_{\leq\delta}^{S(\ell)B)\cap Q(\bigcup_{\leq 8}S(t)B)}\delta\delta$ (3.7)

Now
$\delta\bigcup_{\ell\leq 1\delta}S(t)B=S(\delta([\delta _{2\delta}^{S(t-\delta)B]}$

$=S(\delta([0_{\leq\delta}^{s(t)B]}\cdot$

Since $S(\delta)$ is a contraction, it follows that

$Q(0_{\leq\delta}^{S(t)B)\subset Q(S(\delta)[}0_{\leq\delta}^{S(\ell)B])}$

$=Q(\delta _{sz\delta}^{S(t)B)}\cdot$
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(3.7) now shows that the claim is true for $n=2$. The claim obviously holds for
any finite $n$ .

We choose $n$ such that $[0, T]\subset[0, n\delta]$ . Since $D\subset\bigcup_{0t\leq n\delta}S(\ell)B$ , $ Q(D)\supset$

$Q(05_{\leq\delta}^{S(t)B)}$ and so that $U\in Q(D)$ . Hence the theorem.

4. Stability Theorems.

4.1. Theorem. Let the hyp0thesis of Theorem 3.4 be true with (iii)* (b)
holding for every $U\in V$ and (iii)* (c) replaced by the following: for each $p_{a}\in \mathcal{P}$

there exists a function $q_{\alpha}$ such that

$q_{\alpha}(t)=p_{\alpha}(S(t-a)z)+\int_{a}^{t}G(S, g_{\alpha}(s))ds$ (4.1)

$g_{a}(a)=p_{\alpha}(z)$ .
If $g_{a}$ is bounded for each $\alpha$, then for every $z\in X$, SDE (2.5) has a bounded mild
solution on $[a, a+T],$ $ 0<T<\infty$ .

4.2. Theorem. Assume that
(i) $A$ is the infim $te\dot{\alpha}mal$ generator of an equicontinuous semigroup of class

$C_{0}$ satisfying (2.7).
(ii) $f;R^{+}\times X\rightarrow X$ be contiuuous and $Q- condens ng,$ $f(t, 0)\equiv 0$ .
(iii) There exists a continuous function $G(t, r)$ from $R^{+}\times R^{+}\rightarrow R^{+}$ such that
(a) $G(t, 0)\equiv 0$, nondecreasing in $r$ for each $t\in R^{+}$ ,
(b) for $(t, x)\in R^{+}\times X$ and $\lambda>0$ ,

$p(S(\lambda(f(t, x))\leqq G(f, p(x))$ $\forall p\in \mathcal{P}$ (4.2)

(d) for any $z\in X$ and $p_{a}\in \mathcal{P}$ there exist functions $g_{\alpha}$
$\ddagger^{+}R\rightarrow R^{+}$ satisfying (4.1).

Then the stabili $ty$ (or asymptotic stability) of the null solution of scalar integral
equations (4.1) for every $a$ implies the stability (or asymptotic stabili $ty$) of the
trivial solution of

$\frac{du}{d\ell}=Au+f(t, u)$ .
Proofs of Theorems 4.1 and 4.2 are almost similar to Theorems 4 and 5 of

Agase [1] and hence omitted.

5. Applications.

5.1. Let $X$ be the space of rapidly decreasing functions on $R$ with the
family of seminorms $\mathcal{P}=\{\overline{p}_{in} : k, n=0, 1, \}$ defined by

$\beta_{kn}(f)=\sup_{t\geq 0}p_{in}(e^{-t}R(t)f)$
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where $[R(t)f](x)=f(\ell+x)\forall t\geqq 0,$ $x\in R$ and $p_{\iota n}(g)=\max_{osfSk}\sup_{x\in R}|x^{f}g^{(n)}(x)|$ . $\mathcal{P}$ in-
duces a locally convex topology on $X$ ([3]).

Consider the differential equation

$\frac{\partial}{\partial t}u(t, x)=\frac{\partial^{l}}{\partial x^{l}}u(l, x)+f(t, u(t, x))$ in $R^{+}\times X$ (5.1)

$u(0, x)=u_{0}(x)$ , $u_{0}\in X$ (5.2)

The operator $A\equiv\partial^{g}/\partial x^{2}$ generates a $\mathcal{P}$-contraction $C_{0}$-semigroup $\{P(s):s\geqq 0\}$

defined by $P(O)=I$ .
$[P(s)f](x)=\frac{1}{\sqrt{2\pi s}}\int_{-\infty}^{\infty}e^{-(x-y)^{2}/g}f(y)dy$

for all $x\in R$ (see [3]). Define $y:R^{+}\rightarrow X$ by $y(\ell)(x)=u(t, x)\forall x\in R$. Then the
’problem (5.1) (5.2) can be written as

$\frac{dy}{d\ell}=Ay+f(t, y)$ in $R^{+}\times X$ (5.3)

$y(0)=u_{0}$ , $u_{0}\in X$ (5.4)

which is of the form (2.5). If $f(t, y)$ is assumed to be locally Lipschitzian with
respect to $\mathcal{P}$ (see [11]) then $f$ satisfies condition $C_{\epsilon}$ of Theorem 3.7. Further
if $(C_{2})$ is also satisfied then Theorem 3.7 assures existence of mild solution of
(5.1) (5.2) on some suitable interval.

5.2. Let $H$ be the space of real valued $C^{\infty}$ functions on $R^{m}$ whose partial
derivatives of all orders belong to $L^{2}(R^{m})$ . It is known (Miyadera [8] or Choe
[3]) that it is a pre-Hilbert space with inner product

$\langle f, g\rangle_{n}=\sum_{Ia|\leq n}\int_{R^{m}}D^{a}f(x)dx$

for all $f,$ $g\in H$. Then for each $n,$ $\langle f, f\rangle_{n}=\Vert f\Vert_{n}^{2}\forall f\in H$, defines a norm $onH$.
For each multiindex $\alpha=(\alpha_{1}, a_{2}, \cdots , a_{m})$ a seminorm $p_{a}$ is defined on $H$ by

$p_{\alpha}(f)=\Vert D^{a}f\Vert_{0}=(\int_{R^{m}}(D^{\alpha}f(x))^{g}d_{X})^{1/2}$

for all $f\in H$. The totality $\Gamma$ of these seminorms $p_{a}$ corresponding to all
multiindices $a$ induces a metrizable LCTVS on $H$.

Consider the Differential Equation

$\frac{\partial}{\partial t}u(\ell, x)=Au(t, x)+f(t, u(t, x))$ in $R^{+}\times R^{m}$ (5.5)

$u(O, x)=u_{0}(x)$ , $u_{0}\in H,$ $x\in R^{m}$ (5.6)

where $A=\sum_{\ell=1}^{m}(\frac{\partial}{\partial x_{i}})^{2}$.
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It is known that ([3]) A generates the $\Gamma$-contraction $C_{0}$-semigroup [$P(s)$ ;
$s\geqq 0]$ on $H$ defined by

$P(0)=I$

$[P(s)f](x)=\frac{1}{(2\pi s)^{m/2}}\int_{R^{m}}e^{-(|x-y|^{2}\prime 2\partial)}f(y)dy$ .
Again a map $y:(0, \infty)\rightarrow H$ such that $y(t)(x)=u(\ell, x)\forall x\in R^{m}$ , reduces (5.5) (5.6)
in the form (5.3) (5.4) and can be studied similarly.

As mentioned in the introduction, at present we do not know any Physical
problem governed by such equations with a Lipschitz or non-Lipschitz $f$ (having
Q-condensing Property). We mention these examples only to illustrate the
abstract theory developed here. In a forthcoming paper we study regularity of
mild solutions of SDE (2.5) in LCTVS.
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