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1. Introduction.
Let $M$ be an n-dimensional submanifold in a Euclidean $(n+p)$-space $E^{n+p}$.

For any point $q$ in $M$ and any unit vector $t$ at $q$ tangent to $M$, the vector $f$

and the normal space $T_{q}^{\perp}M$ of $M$ at $q$ determine a $(p+1)$-dimensional vector
subspace $E(q, t)$ of $E^{n+p}$. The intersection of $M$ and $E(q, t)$ gives rise to a curve
$\gamma$ (in a neighborhood of q) which is called the normal section of $M$ at $q$ in the
direction of $t$. In general the normal section $\gamma$ is a twisted space curve in
$E(q, t)$ . In particular, $\gamma^{\prime}\wedge\gamma^{\prime}\wedge\gamma^{n}\neq 0$ at $q$ in general. A submanifold $M$ is said
to have pointwise k-planar $(2\leq k\leq p)$ normal sections if each normal section $\gamma$

at $q$ satisfies $\gamma^{\prime}\wedge\gamma^{\prime}\wedge\cdots\wedge\gamma^{(k+1)}=0$ at $q$ for each $q$ in $M$. Let $h$ be the second
fundamental form and $\nabla h$ the covariant derivative of $h$ . The following results
were obtained by B. Y. Chen $(2, 3)$ .

Theorem A. An n-dimensional submanifold $M$ of $E^{n+p}$ has pointwise 2-planar
normal sections if and only if $(\nabla_{\ell}h)(t, t)\wedge h(t, t)=0$, for any $t\in TM$.

Theorem B. An n-dimensional spherical submanifold $M$ of $E^{n+p}$ has Pointwise
$2$-Planar normal sections if and only if $M$ has parallel second fundamental form,
$i.e.,$ $\nabla h=0$ .

Using Theorem A and other results of [3], B. Y. Chen and the author [4]
have classified surfaces with pointwise 2-planar normal sectoins.

In this Paper, we shall study submanifolds with pointwise3- or 4-planar
normal sections and generalize Chen’s results.

The author would like to express his hearty thanks to Professor B. Y. Chen
for many valuable suggestions.

2. Basic formulas.

In this section, we shall derive some formulas involving the second funda-
mental form $h$ . Let $M$ be an n-dimensional submanifold in $E^{n+p}$ . We choose
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a local field of orthonormal frames $(e_{1}, \cdots , e_{n} ; e_{n+1}, \cdots , e_{n+p})$ in $E^{n+p}$ such that,

restricted to $M$, the vectors $e_{1},$
$\cdots$ , $e_{n}$ are tangent to $M$ and $e_{n+1},$ $e_{n+p}$ are

normal to $M$. We denote by $(\theta^{1}, \cdots , \theta^{n+p})$ the field of dual frames. The struc-

ture equations of $E^{n+p}$ are given by

(2.1) $d\theta^{A}=-\sum_{B}\theta_{B}^{A}\wedge\theta^{B}$ , $\theta_{B}^{A}+\theta_{A}^{B}=0$ ,

(2.2) $d\theta_{B}^{A}=-\sum_{c}\theta_{C}^{A}\wedge\theta_{B}^{c}$ , $A,$ $B,$ $C,$ $=1,$ 2, $n+P$ .
Restricting these forms on $M$, we have $\theta^{r}=0,$ $\gamma s,$ $u\cdots=n+1,$ $n+P$ .

Since

(2.3) $0=d\theta^{r}=-\sum\theta_{\ell}^{r}\wedge\theta^{\ell}$ , $i,$ $j,$ $k,$ $l,$ $m,$ $q,$ $=1,2,$ $\cdots$ , $n$ ,

Cartan’s lemma implies

(2.4) $\theta_{\ell}^{r}=\sum_{j}h_{\ell f}^{r}\theta^{f}$ , $hi_{j}=h_{j\ell}^{r}$ .

From these formulas we obtain

(2.5) $d\theta^{\ell}=-\sum_{j}\theta_{j}^{\ell}\wedge\theta^{j}$ , $\theta_{f}^{\ell}+\theta_{i}^{j}=0$ ,

(2.6) $d\theta_{j}^{\ell}=-\sum_{\iota}\theta_{k}^{\ell}\wedge\theta_{f}^{k}+\Omega_{j}^{\ell}$ , $\Omega_{j}^{\ell}=\frac{1}{2}\sum_{k.l}R_{fk\ell}^{\ell}\theta^{k}\wedge\theta^{\iota}$ ,

$R_{jk\ell}^{i}=\sum_{\prime}(h_{\ell k}^{r}h_{jt}^{r}-h_{\ell l}^{r}h_{jk}^{r})$ .

(2.7) $d\theta_{l}^{r}=-\sum_{u}\theta_{u}^{r}\wedge\theta_{l}^{u}+\Omega_{\iota}^{r}$ , $\Omega_{1}^{r}=\frac{1}{2}\sum_{i.j}R_{1\ell j}^{r}\theta^{\ell}\wedge\theta^{j}$ ,

$R_{l\ell f}^{r}=\sum_{k}(h_{ki}^{r}h_{k}^{1}-h_{kj}^{r}h_{ki}^{r})$ .

The Riemannian connection of $M$ is defined by $(\theta_{j}^{\ell})$ . The form $(\theta_{\iota}^{r})$ defines

a connection $D$ in the normal bundle of $M$, then we have $h=\sum_{i.j.r}h_{j}^{r}\theta^{i}\theta^{f}e_{r}$ . We

call $H=(1/n)$ tr $h$ the mean curvature vector of $M$. We take exterior differentia-

tion of (2.4) and define $h_{ijk}^{r}$ by

(2.8) $\sum_{k}h_{jk}^{r}\theta^{k}=dh_{\ell j}^{r}-\sum_{m}h_{mj}^{r}\theta_{\ell}^{m}-\sum_{m}h_{\ell m}^{r}\theta_{j}^{m}+\sum_{l}h_{\ell j}^{\iota}\theta_{\iota}^{r}$
.

Then we have the following equation of Codazzi.

(2.9) $h_{ifk}^{r}=h_{\ell kf}^{r}$ .
We take exterior differentiation of (2.8) and define $h_{ijk\ell}^{r}$ by

(2.10) $\sum_{\ell}h_{\ell jk\iota}^{r}\theta^{\ell}=dh_{ijk}^{r}-\sum_{m}h_{mfk}^{r}\theta^{m}-\sum_{m}h_{\ell mk}^{r}\theta_{j}^{m}-\sum_{m}h_{\ell jm}^{r}\theta_{k}^{m}+\sum_{l}h_{ijk}^{\iota}\theta_{l}^{r}$
.

Then

(2.11) $h_{ijk\ell}^{r}-h_{if\iota k}^{r}=\sum_{m}h_{\ell m}^{r}R_{fkl}^{m}+\sum_{m}h_{mf}^{r}R_{\ell kl}^{m}-\sum_{l}hi_{j}R_{1}^{r_{k\ell}}$ .
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We take exterior differentiation of (2.10) and define $h_{\ell fklm}^{r}$ by

(2.12)
$\sum_{m}h_{\ell fk\ell m}^{r}\theta^{m}=dh_{\ell jkl}^{r}-\sum_{m}h_{mjkl}^{r}\theta_{\ell}^{m}-\sum_{m}h_{imt\ell}^{r}\theta_{j}^{m}$

$-\sum_{m}h_{ijml}^{r}\theta_{k}^{m}-\sum_{ln}h_{\ell fkm}^{r}\theta_{\ell}^{m}+\sum_{l}h_{\ell ji\ell}^{r}\theta_{l}^{r}$ .
Then

(2.13)
$h_{\ell jk\ell m}^{r}-h_{\ell fkm\ell}^{r}=\sum_{q}h_{qjk}^{r}Rf_{\ell m}+\sum_{q}h_{iqk}^{r}R_{f\ell m}^{q}+\sum_{q}h_{\ell jq}^{r}R_{klm}^{q}-\sum_{l}h_{\ell jk}^{l}R_{\iota\ell m}^{r}$ .

If we denote by $\nabla$ and $\theta$ the covariant detivatives of $M$ and $E^{n+p}$ , respec-
tively. Then, for any two vector fields $x,$ $y$ tangent to $M$ and any vector field
$\xi$ normal to $M$, we have
(2.14) $\forall_{x}y=\nabla_{x}y+h(x, y)$ ,

(2.15) $\forall_{x}\xi=-A_{\xi}x+D_{x}\xi$ ,

where $A_{\xi}$ denotes the Weingarten map with respect to $\xi$ . Then
(2.16) $\langle A_{\xi}x, y\rangle=\langle h(x, y), \xi\rangle$ .

For the first three covariant derivatives $\nabla h,$ $Wh$ and VVVh of $h$ , we have
the following, respectively, (see, for instance, (1)).

(2.17) $(\nabla_{x}h)(y, z)=D_{x}(h(y, z))-h(\nabla_{x}y, z)-h(y, \nabla_{x}z)$ ,

(2.18) $(\nabla_{w}\nabla_{x}h)(y, z)=D_{w}((\nabla_{x}h)(y, z))-(\nabla_{x}h)(\nabla_{w}y, z)$

$-(\nabla_{x}h)(y, \nabla_{w}z)-(\nabla_{\nabla_{w}x}h)(y, z)$ ,

(2.19) $(\nabla_{u}\nabla_{w}\nabla_{x}h)(y, z)=D_{u}((\nabla_{w}\nabla_{x}h)(y, z))-(\nabla_{w}\nabla_{x}h)(\nabla_{u}y, z)$

$-(\nabla_{w}\nabla_{x}h)(y, \nabla_{u}z)-(\nabla_{\nabla_{u}w}\nabla_{x}h)(y, z)-(\nabla_{w}\nabla_{\nabla_{u}x}h)(y, z)$ ,

where $x,$ $y,$ $z,$ $w,$ $u\in TM$. Comparing (2.8) with (2.17), (2.10) with (2.18), and
(2.12) with (2.19), respectively, we have
(2.20)

$\sum_{r}h_{\ell jl}^{r}e_{r}=(\nabla_{k}h)(e_{\ell}, e_{j})$ ,

(2.21)
$\sum_{r}h_{\ell jkl}^{r}e_{r}=(\nabla_{\iota\ell}\nabla_{\epsilon_{k}}h)(e_{i}, e_{j})$ ,

(2.22)
$\sum_{r}h_{ijk\ell m}^{r}e_{r}=(\nabla_{\epsilon_{m}}\nabla_{e\ell}\nabla_{e_{k}}h)(e_{\ell}, e_{j})$ .

3. Derivatives of normal sections.

Throughout.his setion and the followings, we assume that $t$ is a unit vector
tangent to $M$ and $\gamma(s)$ is the normal section of $M$ at $q$ in the direction of $t$ with
$s$ as its length and $\gamma(0)=q$ . We denote by $T=\gamma^{\prime}(s)$ the unit vector tangent to
the normal section $\gamma(s)$ . We choose a local field of orthonormal frame ( $e_{1},$ $e_{n}$ ;
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$e_{n+1},$ $e_{n+p}$) as in Section 2 and assume that, .restricted to the normal section $\gamma$ ,

$T=e_{1}$ . Then we have

(3.1) $\gamma^{\prime}(s)=T=e_{1}$ .
By differentiating (3.1) and using (2.4), we have

(3.2) $\gamma^{\prime}(s)=\forall_{T}T=\sum_{l}\theta_{1}^{\ell}(e_{1})e_{i}+\sum_{r}h_{11}^{r}e_{r}$ .
(3.3) $\gamma^{m}(s)=\forall_{T}9_{r}\tau=\sum_{\ell}e_{1}(\theta_{1}^{\ell}(e_{1}))e_{\ell}+\sum_{\ell.j.r}\theta_{\ell}^{i}(e_{1})[\theta_{i}^{j}(e_{1})e_{j}+\theta i(e_{1})e_{r}]$

$+\sum_{r}e_{1}(h_{11}^{r})e_{r}+\sum_{\ell_{1}r.\iota}h_{11}^{r}[\theta_{r}^{i}(e_{1})e_{\ell}+\theta_{r}^{\iota}(e_{1})e.]$

$=\sum_{\ell}(e_{1}(\theta_{1}^{\ell}(e_{1}))+\sum\theta_{1}^{j}(e_{1})\theta_{i}^{\ell}(e_{1})-\sum_{r}h_{11}^{r}h_{1i}^{r}]e_{\ell}$

$+\sum_{r}[hf_{11}+3\sum_{\ell}h_{1\ell}^{r}\theta_{1}^{\ell}(e_{1})]e_{r}$ .
By differentiating (3.3) and using (2.4), $(2.8)-(2.10)$ , we have

(3.4) $\gamma^{iv}(s)=\tilde{\nabla}_{T}\forall_{T}\forall_{T}T=\sum_{i}[e_{1}^{2}(\theta_{1}^{\ell}(e_{1}))+\sum_{\ell}e_{1}(\theta_{1}^{j}(e_{1})\theta_{j}^{\ell}(e_{1}))$

$-\sum_{r}e_{1}(h_{11}^{r}hi_{\ell})]e_{\ell}+\sum_{\ell}[e_{1}(\theta_{1}^{\ell}(e_{1}))+\sum_{j}\theta_{1}^{f}(e_{1})\theta_{j}^{\ell}(e_{1})$

$-\sum_{r}h1_{1}h_{1\ell}^{r}][\sum_{k}\theta_{\ell}^{k}(e_{1})e_{k}+\sum_{1}\theta_{\ell}^{1}(e_{1})e.]$

$+\sum_{r}[e_{1}(h_{111}^{r})+3\sum_{i}e_{1}(hi_{i}\theta_{1}^{\ell}(e_{1})]e_{r}+\sum_{r}[h_{111}^{r}$

$+3\sum_{t}h_{1\ell}^{r}\theta_{1}^{\ell}(e_{1})][\sum_{\iota}\theta_{r}^{k}(e_{1})e_{l}+\sum_{l}\theta_{r}^{1}(e_{1})e_{\iota}]$

$=\sum_{\ell}[e_{1}^{2}(\theta_{1}^{\ell}(e_{1}))+2\sum_{j}e_{1}(\theta_{1}^{j}(e_{1}))\theta_{j}^{\ell}(e_{1})$

$+\sum_{j}\theta_{1}^{f}(e_{1})e_{1}(.\theta_{j}^{i}(e_{1}))+\sum_{f.k}\theta_{1}^{k}(e_{1})\theta_{k}^{j}(e_{1})\theta_{j}^{\ell}(e_{1})-2\sum_{r}h_{111}^{r}h_{1\ell}^{r}$

$-5\sum_{j.k}h_{1}^{r}h_{1j}^{r}\theta_{1}^{j}(e_{1})-\sum_{r}h;_{1}h_{11\ell}^{r}-\sum_{J^{r}}h_{11}^{r}hf_{j}\theta_{1}^{j}(e_{1})]e_{\ell}$

$+\sum_{r}[4\sum_{\ell}e_{1}(\theta_{1}^{\ell}(e_{1}))h_{1}^{r}+4\sum_{\ell.j}h_{1\ell}\theta_{j}^{\ell}(e_{1})\theta_{1}^{j}(e_{1})+h_{1111}^{r}$

$-\sum_{\ell.\iota}h_{1\ell}^{r}h_{11}^{1}h_{1\ell}^{1}+6\sum_{\ell}hi_{1\ell}\theta_{1}^{\ell}(e_{1})+3\sum_{j}h_{\ell j}^{r}\theta_{1}^{j}(e_{1})\theta_{1}^{\ell}(e_{1})]e_{r}$ .
In this paper, we shall also need the normal component $(\gamma^{v}(s))^{\perp}$ of $\gamma^{v}(s)$ . So

similarly, by differentiating (3.4), we have

(3.5) $(\gamma^{v}(s))^{\perp}=(\forall_{T}\forall_{T}\nabla_{r}\tilde{\nabla}_{T}T)^{\perp}=\sum_{\ell.u}[e_{1}^{2}(\theta_{1}^{\ell}(e_{1}))+2\sum_{j}e_{1}(\theta_{1}^{j}(e_{1}))\theta_{j}^{i}(e_{1})$

$+\sum_{j}\theta_{1}^{j}(e_{1})e_{1}(\theta_{j}^{i}(e_{1}))+\sum_{j.k}\theta_{1}^{k}(e_{1})\theta_{k}^{j}(e_{1})\theta_{j}^{\ell}(e_{1})-2\sum_{r}h;_{11}h_{1\ell}^{r}$

$-5\sum_{j.r}h_{1\ell}^{r}hi_{J}\theta_{1}^{f}(e_{1})-\sum_{r}h_{11}^{r}h_{11\ell}^{r}-\sum_{j.r}h_{11}^{r}h_{\ell j}^{r}\theta_{1}^{j}(e_{1})]\theta_{l}^{n}(e_{l})e_{u}$

$+\sum_{r}[4\sum_{\ell}e_{1}^{2}(\theta_{1}^{i}(e_{1}))h_{1i}^{r}+4\sum_{\ell}e_{1}(\theta_{1}^{i}(e_{1}))e_{1}(hi_{\ell})$
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$+4\sum_{\ell.j}e_{1}(h_{1\ell}^{r}\theta_{f}^{\ell}(e_{1}))\theta_{1}^{j}(e_{1})+4\sum_{\ell.j}h_{1\ell}^{r}\theta_{j}^{i}(e_{1})e_{1}(\theta_{1}^{f}(e_{1}))$

+6 $\Sigma e_{1}(h_{11\ell}^{r})\theta f(e_{1})+6\Sigma hi_{1\ell}e_{1}(\theta_{1}^{\ell}(e_{1}))$

$+3\sum_{j}e_{1}(h_{\ell j}^{r}\theta_{1}^{f}(e_{1})\theta_{1}^{t}(e_{1}))-F_{l}^{e_{1}(h_{1\ell}^{r}h_{11}^{1}h_{1}^{l})+e_{1}(hi_{111})]e_{r}}$

$+\sum_{r.u}[4\sum_{\ell}e_{1}(\theta_{1}^{\ell}(e_{1})h_{1\ell}^{r}+4\sum_{\ell.j}h_{1\ell}^{f}\theta_{j}^{\ell}(e_{1})\theta(1je_{1})+6\sum_{l}h_{11j}^{r}\theta f(e_{1})$

$+3\sum_{\ell.j}h_{\ell j}^{r}\theta_{1}^{f}(e_{1})\theta_{1}^{\ell}(e_{1})-\sum_{\ell.l}h_{11}^{1}h_{1\ell}^{1}hi\ell+h_{1111}^{r}]\theta_{r}^{u}(e_{1})e_{u}$ .
Since $\gamma(s)$ is the normal section of $M$ at $q$ in the direction $t$, at $\gamma(0)=q$,

$\gamma^{\prime}(0),$ $\gamma^{n}(0),$ $\gamma^{iv}(0)$ and $\gamma^{v}(0)$ all lie in the $(p+1)$-space $E(q, \ell)$ . We recall that
$E(q, t)$ is spanned by $t$ and $T_{q}^{\perp}M$, thus (3.2) and (3.3) give

(3.6) $\theta_{1}^{\ell}(t)=0$ , $i=1,$ $\cdots$ , $n$ .
(3.7) $\gamma^{\prime}(0)=\sum_{r}hi_{1}e_{r}$ ,

(3.8) $e_{1}(\theta_{1}^{\ell}(e_{1}))_{q}=\sum_{r}h_{11}^{r}h_{1\ell}^{r}$ , $i=2,$ $\cdots$ , $n$ .
(3.9) $\gamma^{n}(0)=-\sum_{r}(h_{11}^{r})^{2}f+\sum_{r}h_{111}^{r}e_{r}$ .
And (3.4) gives, with the help of (3.6) and (3.8),

(3.10) $e_{1}^{2}(\theta_{1}^{\ell}(e_{1}))_{q}=\sum_{r}[2hi_{11}hi\ell+h_{11\ell}^{r}h_{11}^{r}+2\sum_{j}h_{11}^{r}h_{\ell j}^{r}\theta\{(e_{\ell})]$ , $i=2,$ $\cdots$ $n$ .
(3.11) $\gamma^{iv}(0)=\sum_{r}[-3h_{11}^{r}hi_{1}+2\sum_{\iota}h_{11}^{r}h_{11}^{*}\theta_{l}^{r}(e_{1})]\ell+\sum_{r}[h_{1111}^{r}$

$+3\sum_{\ell.l}h_{11}^{l}h_{1\ell}^{\iota}h_{1\ell}^{r}-2\sum_{l}h_{11}^{l}h_{11}^{l}h_{11}^{r}]e_{r}$ .
Lastly, (3.5) gives, with the help of (3.6), (3.8) and (3.10),

(3.12) $(\gamma^{v}(0))^{\perp}=\sum_{r}[7\sum_{i.*}hi_{11}h_{1\ell}^{\iota}h_{1\ell}^{r}+3\sum_{i.l}h_{11\ell}^{l}h_{11}^{\iota}h\{+9\sum_{l}hi_{1\ell}h_{11}^{1}h_{1}^{\iota}$

$+h_{11111}^{r}-15\sum_{l}h_{111}^{l}h_{11}^{l}h_{11}^{r}-10\sum_{l}h_{11}^{1}h_{11}^{2}h_{111}^{r}]e_{r}$ .
Then from (3.7), we have

(3.13) $\gamma^{\prime\prime}(0)=h(t, t)$ .
APplying (2.20) to (3.9), we have

(3.14) $\gamma^{m}(0)=-\langle h(t, t), h(t, t)\rangle t+(\nabla_{t}h)(t, t)$ .
From (2.16), we have

(3.15) $A_{h(t.t)}t=\sum_{\ell}\langle A_{h(t.t)}t, e_{\ell}\rangle e_{\ell}$

$=\sum_{i}\langle h(t, t), h(t, e_{\ell})\rangle e_{\ell}=\sum_{\ell.l}hi_{1}h_{1i}^{\iota}e_{\ell}$ .
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Then applying (2.20), (2.21) and (3.15) to (2.11), we obtain

(3.16) $(\gamma^{iv}(0))^{\perp}=(\nabla_{t}\nabla_{\ell}h)\ell,$ $t$) $+3h(\ell, A_{h(\ell.\ell)}t)-2\langle h(\ell, t), h(t, \ell)\rangle h(\ell, \ell)$ .
We recall that a submanifold $M$ of $E^{n+p}$ is said to be isotropic (in the sense

of O’Neill [7]), if for each point $q$ in $M$ and each unit vector $\ell$ tangent to $M$

at $q$ , the length of $h(t, t),$ $\Vert h(t, t)\Vert$ , depends only on $q$ , not on $\ell$ at $q$ . In par-
ticular, when $\Vert h(t, \ell)\Vert$ is also independent of the point $q$ in $M$, then $M$ is said
to be constant isotropic. It is known (see (7)) that the submanifold $M$ is iso-
tropic at $q$ if and only if $h$ satisfies

(3.17) $\langle h(x, x), h(x, y)\rangle=0$ ,

for any orthogonal vectors $x,$ $y$ of the tangent space $T_{q}M$, where $\langle, \rangle$ denotes
the inner product of $E^{n+p}$ . If $M$ is isotropic, from (3.17), we have

(3.17) $\sum_{l}h_{11}^{1}h_{1\ell}^{1}=0$ , $i=2,$ $\cdots$ , $n$ .
Differentiating (3.17) and using (2.8), (2.9), (3.6) and (3.17), we have

(3.18) $0=e_{1}(\sum_{\iota}h_{11}h_{1\ell})=\sum_{1}e_{1}(h_{11}^{l})h_{1\ell}^{1}+\sum_{l}h_{11}^{1}e_{1}(h_{1i}^{1})$

$=\sum_{1}h_{111}^{1}h_{1\ell}^{1}+2\sum_{j.\iota}h_{1j}^{\iota}\theta_{1}^{j}(e_{1})h_{1\ell}^{1}+\sum_{1.u}h_{11}^{u}\theta_{u}^{\iota}(e_{1})h_{\ell}^{\iota}+\sum_{l}h_{11}^{1}h_{11\ell}^{\iota}$

$+\sum_{j.1}hi_{1}hi_{j}\theta_{2}^{j}(e_{1})+_{j}\sum hf_{1}h_{\ell j}^{l}\theta_{1}^{j}(e_{1})-\sum_{\iota.u}h_{11}^{1}h_{1i}^{u}\theta_{u}^{l}(e_{1})$

$=\sum_{l}h_{111}^{\iota}h_{1\ell}^{\iota}+\sum_{1}h_{11}^{l}h_{11i}^{\iota}$ , $i=2,$ $\cdots$ , $n$ .
From (2.16), we have

(3.19) $A_{(\nabla_{t}h)(\ell,t)}t=\sum_{\ell}\langle A_{(\nabla h)(t.t)}\ell, e_{\ell}\rangle e_{\ell}$

$=\Sigma\langle(\nabla_{\ell}h)(t, \ell), h(\ell, e_{\ell})\rangle e_{\ell}=\sum_{\ell.l}h_{111}^{*}h_{1\ell}^{l}e$ ,

then applying $(3.17^{\prime})-(3.19)$ to (3.12) and using $(2.20)-(2.22)$ , we have

(3.20) $(\gamma^{v}(0))^{\perp}=\sum_{r}[4\sum_{i}h_{111}^{1}h_{1}^{1}h_{1\ell}^{r}+h_{11111}^{r}-\sum_{l}h_{11}^{1}h_{11}^{1}h_{111}^{r}-15\sum_{1}h_{111}^{\iota}h_{11}^{1}h_{11}^{r}]e_{r}$

$=(\nabla_{t}\nabla_{\ell}\nabla_{t}h)(t, \ell)+4h(\ell, A_{(\nabla_{\ell}h)(\ell.t)}t)$

$-\langle h(\ell, \ell), h(t, \ell)\rangle(\nabla_{t}h)(\ell, t)-15\langle(\nabla_{t}h)(\ell, \ell), h(\ell, \ell)\rangle h(t, \ell)$ .

4. Submanifolds with pointwise 3- or 4-planar normal sections.

In this section we shall study submanifolds with 3- or 4-planar normal sec-
tions. First we give the following.

Lemma 1. An n-dimensional submanifold of $E^{n+p}$ has pointwise 3-planar
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normal sections if and only if
(4.1) $[(\nabla_{\ell}\nabla_{t}h)(\ell, \ell)+3h(t, A_{h(t.\ell)}t)]\wedge(\nabla_{\ell}h)(\ell, \ell)\wedge h(\ell, \ell)=0$ .
for any $t\in TM$.

Proof. From (3.13), (3.14) and (3.16), we have

(4.2) $\gamma^{\prime}(0)\wedge\gamma^{\prime}(0)\wedge\gamma^{M}(0)\wedge\gamma^{iv}(0)$

$=\ell\wedge h(t, \ell)\wedge(\nabla_{\ell}h)(\ell, \ell)\wedge[(\nabla_{t}\nabla_{t}h)(\ell, \ell)+3h(l, A_{h(t.t)}l)]$ .
Since $\ell$ lies in $T_{q}M$, by the definition of submanifolds with pointwise 3-planar

normal sections, we get immediately from (4.2) the conclusion of the lemma.
If $M$ is isotropic, substituting (3.17) into (3.15), we have

(4.3) $A_{h(t.t)}\ell=\langle h(t, t), h(\ell, \ell)\rangle t$ .
Then from Lemma 1, using (4.3), we could obtain the following.

Collary [5]. An n-dimensional isotroPic submanifold $M$ of $E^{n+p}$ has Pointwise
3-planar normal sections if and only if
(4.4) $(\nabla_{\ell}\nabla_{t}h)(\ell, \ell)\wedge(\nabla_{\ell}h)(t, \ell)\wedge h(f, \ell)=0$ ,

for any $\ell\in TM$.
Lemma 2. An n-dimensional isotroPic submamfold $M$ of $E^{n+p}$ has Pointwise

$4$-planar normal sections if and only if
(4.5) $[(\nabla_{t}\nabla_{t}\nabla_{t}h)(\ell, \ell)+4h(t, A_{(\nabla_{t}h)(t.t)}t)]\wedge(\nabla_{t}\nabla_{t}h)(\ell, \ell)\wedge(\nabla_{t}h)(t, t)\wedge h(\ell, \ell)=0$ ,

for any $\ell\in TM$.
Proof. From (3.13), (3.14), (3.16) and (3.20), we have, with the help of (4.4),

(4.6) $\gamma^{\prime}(0)$ A $\gamma^{\nu}(0)$ A $\gamma^{n}(0)\wedge\gamma^{\ell v}(0)$ A $\gamma^{v}(0)$

$=t\wedge h(l, t)\wedge(\nabla_{t}h)(\ell, t)\wedge(\nabla_{\ell}\nabla_{t}h)(t, t)\wedge[(\nabla\nabla_{t}\nabla_{t}h)(\ell, \ell)+4h(l, A_{(\nabla_{\ell}h)(t.\ell)}\ell)]$ .
Since $t$ lies in $T_{q}M$, by the definition of submanifolds with pointwise 4-planar

normal sections, the lemma follows (4.6) directly.
If $M$ is constant isotropic, we have

(4.7) $\sum_{l}hf_{1}h;_{1}=const$ .

Differentiating (4.7) and using (2.8) (3.17), we have

(4.8) $0=e_{i}(\sum_{\iota}h_{11}^{l}h_{11}^{1})=3\sum_{*}e_{\ell}(hi_{1})h_{11}^{l}$

$=2\sum_{1}h_{11\ell}^{\iota}h_{11}^{\iota}+4\sum_{j.1}h_{1f}^{\iota}\theta_{1}^{f}(e_{\ell})h_{11}^{\iota}-2\sum_{u.l}h_{11}^{u}\theta_{u}^{j}(e_{\ell})h_{11}^{l}$
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$=2\Sigma h_{11}^{1}h_{11\ell}^{1}$ , $i=1,$ $n$ .
since $\sum_{u.l}h_{11}^{u}\theta_{u}^{l}(e_{i})h_{11}^{*}=0$ . Combining (3.18) and (4.8), we have

(4.9) $\sum_{\iota}h_{111}^{\iota}h_{1\ell}^{1}=0$ , $i=2,$ $\cdots$ $n$ .
Thus (3.19) becomes

(4.10) $A_{(\nabla_{\ell}\hslash)(\ell.t)}t=(\sum_{1}h_{111}^{1}h_{11}^{1})t$

$=\langle(\nabla_{\ell}h)(t,.t), h(t, t)\rangle t$ .
Substituting (4.10) into (4.5), we get the following.

Corollary. An n-dimensional constant isotropjc submanifold $M$ of $E^{n+p}$ has
p0intwise 4-planar normal sections if and only if
(4.11) $(\nabla_{\ell}\nabla_{\ell}\nabla_{t}h)(t, t)\wedge(\nabla_{\ell}\nabla_{\ell}h)(t, t)\wedge(\nabla_{t}h)(t, t)\wedge h(t, t)=0$ .
for any $t\in TM$.

5. Spherical submanifolds with poinwise 3- or 4-planar normal sections.

In this section, we shall generalize Chen’s results [31 concerning spherical

submanifolds. We assume that $M$ is an n-dimensional spherical submanifold of
$E^{n+p}$ . Without loss of generity, we may assume that $M$ lies in a unit hy-

persphere $S^{n+p-1}$ of $E^{n+p}$ . We choose a local field of orthonormal frame
$(e_{1}, \cdots , e_{n} ; e_{n+1}, \cdots , e_{n+p})$ as in Section 2 and moreover we may choose $e_{n+p}$ as
the unit outerward normal of $S^{n+p-1}$ in $E^{n+p}$ . Then we have

(5.1) $h_{\ell j}^{n+p}=5_{\ell j}$ ,

where $\delta_{\ell j}$ is Kronecker delta, and

(5.2) $D_{x}e_{n+p}=\sum_{l}\theta_{n+p}^{l}(x)e_{l}=0$ .
Differentiating (5.1) and using (2.8), (5.1) and (5.2), we have

(5.3) $0=e_{k}(h_{if}^{n+p})=h_{\ell jk}^{n+p}+\sum_{m}h_{mj}^{n+p}\theta_{\ell}^{m}(e_{k})+\sum_{m}h_{im}^{n+p}\theta_{j}^{m}(e_{k})-\Sigma hi_{j}\theta_{1}^{n+p}(e_{i})=h_{\ell jk}^{n+p}$ .
Similarly, we may obtain

(5.4) $h_{ijk}^{n+}?=0$ ,

and
(5.5) $h_{\ell fk1m}^{n+p}=0$ .

Theorem 1. Let $M$ be an n-dimensional sPhencal submanifold of $E^{n+p}$ . If $M$

is constant isotroPic, then $M$ has pointwise $4$-Plamr normal sections if and only if
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(5.6) $(\nabla_{t}\nabla_{\ell}\nabla_{\ell}h)(\ell, t)\wedge(\nabla_{\ell}\nabla_{t}h)(t, \ell)\wedge(\nabla_{\ell}h)(\ell, t)=0$ ,

for any $t\in TM$.

Proof. Let $M$ be an n-dimensional spherical submanifold of $E^{n+p}$ and con-
stant isotropic If $M$ has pointwise 4-planar normal sections, according to the
corollary of Lemma 2, we have (4.11), which implies

(5.7) $\alpha(\nabla_{\ell}\nabla_{\ell}\nabla_{t}h)(\ell, \ell)+\beta(\nabla_{l}\nabla_{\ell}h)(\ell, t)+\gamma\sigma_{\ell}h)(t, \ell)+\zeta h(t, t)=0$ ,

where functions $\alpha,$ $\beta,$
$\gamma$ and $\tilde{\delta}$ are not all zero. In particular, we have

(5.8) $ah_{11111}^{n+p}+\beta h_{1111}^{n+p}+\gamma h_{111}^{n+p}+\delta h_{11}^{n+p}=0$ .
Substituting (5.1) and $(5.3)-(5.5)$ into (5.8), we obtain $\delta=0$ . Thus there are func-
tions $\alpha,$ $\beta$ and $\gamma$ not all zero such that

(5.9) $\alpha(\nabla_{t}\nabla_{\ell}\nabla_{t}h)(t, t)+\beta(\nabla_{t}\nabla_{t}h)(t, t)+\gamma(\nabla_{\ell}h)(t, t)=0$ ,

for any $t\in TM$. Consequently we get (5.6). The converse of this is trivial,
Similar to Theorem 1, we may get the following.

Theorem 2. Let $M$ be an n-dimensional spherical submanifold of $E^{n+p}$ . If
$M$ is isotropic, then $M$ has pointwise3-planar normal sections if and only if
(5.10) $(\nabla\nabla_{t}h)(t, t)\wedge(\nabla_{l}h)(t, t)=0$ , for any $\ell\in TM$ .

Proof. Let $M$ be an n-dimensional spherical submanifold of $E^{n+p}$ and iso-
tropic. If $M$ has pointwise 3-planar normal sections, by the corollary of Lemma
1, there are functions $a,$ $\beta$ and $\gamma$ not all zero such that

(5.11) $a(\nabla_{\ell}\nabla_{t}h)(t, t)+\beta(\nabla_{t}h)(\ell, t)+\gamma h(t, t)=0$ .
In particular, we have

(5.12) $ah_{1II1}^{n+p}+\beta h_{111}^{n+p}+\gamma h_{11}^{n+p}=0$ .
Substituting (5.1), (5.3) and (5.4) into (5.12), we obtain $\gamma=0$ . Then we may get
(5.10). The converse of this is trivial.

Theorem 3. Let $M$ be an n-dimensional sPherical submamfold. If $M$ is con-
stant isotroPic, then $M$ has pointwise2-planar normal sections if and only if the
second fundamental form is parallel, $i.e.,$ $\nabla h\equiv 0$ .

Proof. Let $M$ be an n-dimensional spherical submanifold of $E^{n+p}$ and con-
stant isotropic. Then we have (4.8). In particular, we have

(5.13)
$\sum_{l}hi_{1}h_{111}^{*}=0$ .
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Differentiating (5.13) and using (2.8), (2.10), (4.7) and (4.8), we obtain

(5.14) $0=e_{1}(\sum_{l}h_{11}^{l}h_{111}^{1})=\sum_{l}e_{1}(h_{11}^{\iota})h_{111}^{1}+\sum_{l}h_{11}^{1}e_{1}(h_{111}^{\iota})$

$=\Sigma h_{111}^{\iota}h_{111}^{1}+2\sum_{\ell.i}h_{1\ell}^{\iota}\theta_{1}^{i}(e_{1})h_{111}^{\iota}-\sum_{u.1}h_{11}^{u}\theta_{u}^{1}(e_{1})h_{111}^{\iota}$

$+\sum_{l}h_{11}^{l}h_{1111}^{1}+3\sum_{l}h_{11}^{\iota}h_{11i}^{1}\theta_{1}^{i}(e_{1})-\sum_{\iota.u}h_{11}^{1}h_{11}^{u}\theta_{u}^{\iota}(e_{1})$

$=\sum_{\iota}h_{111}^{\iota}h_{111}^{\iota}+\sum_{1}h_{11}^{l}h_{1111}^{\iota}$ .
If $M$ has pointwise 3-planar normal sections, by Theorem 2, there are two func
tions $a$ and $\beta$ not all zero such that

(5.15) $\alpha h_{1111}^{r}+\beta h_{111}^{r}=0$ , $r=n+1,$ $\cdots$ $n+h$ .
Combining (5.14) and (5.15), we have, with the help of (5.13),

(5.16) $a\sum_{l}h_{111}^{*}h_{111}^{1}=0$ .

If $\alpha\equiv 0$ , from (5.15) we have $h_{\iota\ell\ell}^{r}=0,$ $r=n+1,$ $\cdots$ , $n+P$ , since $\alpha$ and $\beta$ are not

all zero. If $\alpha\not\equiv 0$ , from (5.16), we also have $h_{111}^{r}=0,$ $r=n+1,$ $\cdots$ , $n+P$ . Thus

we obtain

(5.17) $(\nabla_{t}h)(t, t)=0$ , for any $\ell\in TM$ .
According to Theorem 2 of (2), it implies $\nabla h\equiv 0$ . The converse of this is trivial.

A pointwise k-planar normal section $\gamma$ is said to be proper pointwise k-

planar if, locally, $\gamma$ is not pointwise $(k-1)$-planar. By Theorem $A$, we know

that in Theorem 3, $M$ must be a submanifold with pointwise 2-planar normal
sections. Thus we have the following.

Corollary 1. There is no constant isotroPic spherical submanifold with Proper

pointwise 3-planar normal sections in Euclidean space.

Corollary 2. There is no constant $isotrof\dot{fi}c$ surface in Euclidean space with

Proper pointwise $3$-Plamr normal sections, if its mean curvature vector is Parallel.

Proof. Let $M$ be a constant isotropic surface in a $E^{2+P}$ with parallel mean
curvature vector. From a result of Chen [6], $M$ is one of the followings:

(i) an open portion of a 2-plane or a 2-sphere of a $E^{\epsilon}$ in $E^{2+p}$ ;
(ii) a minimal surface in a $S^{p+1}$ of $E^{2+p}$ with $\Vert H\Vert^{2}\geq 3K$, where $K$ is the

Gauss curvature of $M$. The equality holds if and only if $M$ is a Veronese
surface.
In Case (i), $M$ has $\nabla h\equiv 0$ obviously. In Case (ii), if $M$ has pointwise 3-planar

normal sections, by Theorem 3, $M$ has $\nabla h\equiv 0$ . Thus from Theorem $A,$ $M$ must
$b,ve$ nnintwise $2$-olanar normal sections and the corollary is obtained.
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