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1. Introduction.

Let M be an n-dimensional submanifold in a Euclidean (n+ p)-space E"™*?,
For any point ¢ in M and any unit vector ¢ at g tangent to M, the vector ¢
and the normal space T¢M of M at ¢ determine a (p+1)-dimensional vector
subspace E(g, t) of E™*?, The intersection of M and E(g, ?) gives rise to a curve
7 (in a neighborhood of ¢) which is called the normal section of M at g in the
direction of . In general the normal section v is a twisted space curve in
E(g, t). In particular, ' Ay” Ay”+0 at ¢ in general. A submanifold M is said
to have pointwise k-planar 2<k< p)‘ normal sections if each normal section r
at ¢ satisfies y’Ay” A - Ay**P=0 at ¢ for each ¢ in M. Let h be the second
fundamental form and VA the covariant derivative of A. The following results
were obtained by B.Y. Chen (2, 3).

Theorem A. An n-dimensional submarifold M of E™? has pointwise 2-planar
normal sections if and only if (N.h)(t, )AA(t, t)=0, for any teTM.

Theorem B. An n-dimensional spherical submanifold M of E™*?® has pointwise
2-planar normal sections if and only if M has parallel second fundamental form,
i.e., Vh=0. :

Using Theorem A and other results of [3], B.Y. Chen and the author
have classified surfaces with pointwise 2-planar normal sectoins.

In this paper, we shall study submanifolds with pointwise 3- or 4-planar
normal sections and generalize Chen’s results.

The author would like to express his hearty thanks to Professor B. Y. Chen
for many valuable suggestions.

2. Basic formulas.

In this section, we shall derive some formulas involving the second funda-
mental form h. Let M be an n-dimensional submanifold in E**?. We choose
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a local field of orthonormal frames (es, ***, €n; €n+1, =" » Cntp) in E™*? such that,
restricted to M, the vectors ey, '+, e, are tangent to M and en4y, *** €nsp BI€
normal to M. We denote by (8%, ---, 8**7) the field of dual frames. The struc-

ture equations of E™*? are given by

2.1) d04=——§ 04NG6%, 04+0%

0,
(2.2) d0§=—20_,"‘ 04N 065, A B C,=1,2,-,n+p.

Restricting these forms on M, we have 9 =0, r, s, u-- =n+1, -+, n+p.
Since

(2'3) 0=d07=—‘20¥/\01’ i, j) k; l; m, g, =1, 2, e, n,
Cartan’s lemma implies

(2.4) ‘ 05=; hi,0°,  hi=hj.

From these formulas we obtain

(2.5) do'=—3 0N, 61+6{=0,

@6 d0j=— 617 03+, 9;:%%3;“0*/\01,

| Riu=3 (hishji—huh3s).

@7 405=—3 02N 01+, 9‘=‘lz‘¢  Ri0*A 0",

R's'tjf‘-; (hghi—hishio -
The Riemannian connection of M is defined by (8%). The form (0} defines
a connection D in the normal bundle of M, then we have h=‘§‘_, hi;0*0’e.. We

call H=(1/n)tr h the mean curvature vector of M. We take exterior differentia-
tion of and define h%;; by

2.8) ?hﬁ,ﬁ":—dhﬁ—% hI,.,OT——% h§m0§"+? h$,0%.
Then we have the following equation of Codazzi.
(2.9) hija=hlz;.
We take exterior differentiation of and define Al by
@100 Shim0'=dhin— 2 baspbT =T hins0F — T him0F + 3105
Then
2.11) Rini—hine=2 hmeﬁz‘F; h?an%'ir—A?« hi;Rik1.
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We take exterior differentiation of and define A%, by
(2.12) T Hinm0™ =R =S h i 07— himu0F
-2 hfjmzel";g h’ijkmaf"‘l‘;) hisai65.
Then _
@13 Rinim—hiprmi=E hygs Riim+ 3 h;,,;Rg“,,+%: PiseRYim—3 hijsRitm

If we denote by V and ¥ the covariant detivatives of M and En+, respec-
tively. Then, for any two vector fields x, y tangent to M and any vector field
§ normal to M, we have

(2.14) Vey=Vey+h(z, 3),

(2.15) V.6=—Aex+D,8,

where A; denotes the Weingarten map with respect to & Then
(2.16) (Aex, y>=Ch(x, ), &.

For the first three covariant derivatives Th, Y94 and TI94 of h, we have
the following, respectively, (see, for instance, (1)).

@17 (Nzh)y, 2)=D(h(y, 2)—h(V.y, 2)—h(y, V;2),
2.18)  (VuV.h)y, 2)=DwW((V:h)(y, 2)— k) (Vwy, 2)
~(=h), Vu2)—Toeh)y, 2),
219 WV Vh)y, 2)=D (V.Y k), Z))-(VwV;h)(Vuy, z)
—(VuV=h)(¥, Vu2)— Vo, V=80, 2)—(TuVe, k), 2),

where x, y,z, w, us TM. Comparing 2.8) with (2.17), with (2.18), and
with (2.19), respectively, we have

(2'20) ) ; h"t-jke-r:(V¢kh)(ei, ej) ’
(2.21) 2 hisuier=e,Ve,h)es, €)),
(2-22) ; h’i'jklmer=(vemvelvekh)(et» ej) .

3. Derivatives of normal sections.

Throughout .his setion and the followings, we assume that 7 is a unit vector
tangent to M and y(s) is the normal section of M at ¢ in the direction of ¢ with
s as its length and y(0)=g. We denote by T =p'(s) the unit vector tangent to
the normal section y(s). We choose a local field of orthonormal’ frame (ey, - en:
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@n+1, €nep) as in Section 2 and assume that, .restricted to the normal section 7,

T=e,. Then we have

3.1) 2(s)=T=e,.

By differentiating and using [2.4), we have

(3.2) 7(5)=T:T=3 0iedec+ hse.

(3.3) =3 T =S ex0f(eect 3 Olledloiedes+0iee,]

+Zehier+ T hL[0Hedetb3ene.]
S 6O+ 3 e 0}(e)— T ALhT e
+2 [hiu+33 hiibi(e)]e. .
By differentiating and using [2.4), (2.8)-(2.10), we have
(3.4) r‘”(sjzf‘?rf?r‘?rT =3 [eHOHe))+3 el_(O{(el)ﬂﬁ(e;))
- —Sehnhilect S [e81eN)+3 6i(e)0(e)
— D hLALIIZ Oeder+2 ieses]
+ 3 [ +3 T exhiibienle, + B Lhin
+33 'hiﬁﬁfkel)][kZ 0¢(e1)‘ek+§j B (es)e.]
S 0ie)) +2 T eiBleN e
+33 0f(eex(O3(e)+ 3, 64e0e)03(e)—2 T Hinhis
—5 3 hiuh,04(e)— 3 Kishis— 3 Rishi,0(e]es
+ 3 (43 e OHeNATH4 T hauBi(eO(e)+ R
— 5 hidhlshtiH6 3 hiuOie)+3 T hiybi(enbitenler

In this paper, we shall also need the normal component (r°(s)* of y*(s).

similarly, by differentiating [3.4), we have |

(3.5) (=99, T) = 3 [el(Bi(en)+2 T ex(Bi(e)0(er)
+33 6i(eden(O(e+ 3 O ALY CAR DI O
—5 3 Hichi,Bile)— E Alkluu— 5 KihT;0H(ep 10 eew

+ 2[4 eOiehT+4 T ex(Blle)es(hi)

So
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+4 F ex(h5.0(e:)0ie:)+4 3 hiu8(es)ex(B{(en)
+6 T ew(hiu)Bi(e)+6 D hluen(Oiler))
+3 T eu(ht01(e0Ke)— T ex(hihtiht)+exhunle,
+ S 4T e Ol(enhli+4 T hisb)(e)0(e)+6 T hT, 01(e)
3T hO1(e)0}e)— B Atibiuhie+ R 0¥ edew.

Since y(s) is the normal section of M at ¢ in the direction ¢, at '.r(o)=q,
r"(0), 7"(0), r'(0) and 7"(0) all lie in the (p+1)-space E(g, t). We recall that
E(g, t) is spanned by t and T3 M, thus (3.2) and give

(3.6) - D=0, i=1, -, n.

(3.7 7" (0= hise,,

3.8 01(0f(81))q=§ hLh%:,  1=2, 0, m.
3.9) T”(o)::—; (h’{l)’t+‘f‘_, hine,.

And gives, with the help of [3.6) and [3.8),
(3.10) ei’(of(ex))q=§ [ZhTuhIt+thhI1+2§hIxh?ﬂ{(e;)], 1=2, 0, 1
3.11) r"’(0)=Zfl [—3hLh+2% hhhhoi(ea)]i--k; (AT
+3§ hih§ihi—2 ; hihihide,.
Lastly, gives, with the help of 3.8) and (3.10),
(3.12) (o) = [7Z hluhlihic+3 T hluhishic+9 T hiuhishis
+hl111—15 Z‘) h$hthT—10 ? hihiikhinle,.

Then from we have
(3.13) r"(0)=h(t, t).
Applying to [3.9), we have
(3.14) 7"(0)=—<h(t, 1), h(@, t)Ht+NLA)E, t).

From [2.16), we have
3.15) Aot =3 A, ot, edes

=§ <h(t, 1), h(t, ei)>et=‘2‘ hf;hftet-
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Then applying [2.20), [2.21) and [3.15) to [2.11), we obtain
(3.16) VNt =N}, )+3h(t, Anc,est)—2<h(, 1), h(t, )Hh(, t).

We recall that a submanifold M of E"*? is said to be isotropic (in the sense
of O’Neill [7]), if for each point ¢ in M and each unit vector ¢ tangent to M
at ¢, the length of A(t, ), ||h(z, t)]|, depends only on ¢, not on ¢ at ¢. In par-
ticular, when ||h(¢, t)|| is also independent of the point ¢ in M, then M is said
to be constant isotropic. It is known (see (7)) that the submanifold M is iso-
tropic at ¢ if and only if h satisfies

(3.17) , <h(x, x), h(x, y)>=0,

for any orthogonal vectors x, y of the tangent space T ,M, where {, )Idenotes
the inner product of E**?, If M is isotropic, from [3.17), we have

3.17%) ? hiihi=0, =2, , M.
Differentiating (3.17”) and using [2.8), (2.9), and (3.17’), we have
(3.18) 0==e1(§'3 huh“)=$ el(hh)hh+2'} h$ie,(hii)
=; hi,hi+2 JE' h§,0{(e1)h{¢+.'2mL h;‘lﬁf,(ex)hit+§ hihiy
+§ h?1h3101(81)+§ hhhiﬂf(ex)—g hi:hti0%(ey)
=Z.) hfuhfg-i-Z‘} hiihiy, i=2, -, n.
From we have
3.19) A(v,h)u,nt'-;z‘.) (A, oty eve;
=Z‘} <NLh)E, t), A, e;)}e;=§ hishieq,
then applying (3.17/)-(3.19) to and using (2.20)-(2.22), we have
(3.20) ()= [42.;: hinhishiithiun—2 hishfih—18 2 hiuhiihisle,
=TV Vh)E, 1)+4hE, Aw,nce ob)
—<ht, B, ht, X(VLR)(E, H—15(NLR)(E, 1), h(t, DA, t).

4. Submanifolds with pointwise 3- or 4-planar normal sections.

In this section we shall study submanifolds with 3- or 4-planar normal sec-
tions. First we give the following.

Lemma 1. An n-dimensional submanifold of E™*? has pointwise 3-planar
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normal sections if and only if
4.1 [(VNA)E, O+3R(E, Ance, u)IANLRXE, AR, )=0.
for any te TM.
Proof. From [(3.13), [3.14) and [3.16), we have
4.2) r’OAT" (@) AT"(0) A7 (0)
=tAh(t, YA, OALTNLA)E, )+3h(t, Anc,o)].

Since t lies in T,M, by the definition of submanifolds with pointwise 3-planar
normal sections, we get immediately from (4.2) the conclusion of the lemma.
If M is isotropic, substituting (3.17’) into {3.15), we have

4.3) Ance.nt=<h(t, 1), h(t, t)Ht.
Then from Lemma 1|, using [4.3), we could obtain the following.

Collary [5]. An n-dimensional isotropic submanifold M of E™*? has pointwise
3-planar normal sections if and only if

4.4) NN, OANLRE, ARG, =0,
for any te TM.

Lemma 2. An n-dimensional isotropic submanifold M of E™*? has pointwise
4-planar normal sections if and only if

@5 (VTR O+4h(t, Agnre. o IATIAE, t)A(Vzh)(t, t)Ah(t, )=0,

for any teTM.
Proof. From [(3.13), [(3.14), [3.16) and (3.20), we have, with the help of [4.4),
CXY I L OVNUOVNLOVN SOV O]
=tAht, DATLRYE, AT, HOALQNNRE, 8)+4h(t, Acna.ob)].

Since t lies in T,M, by the definition of submanifolds with pointwise 4-planar
normal sections, the lemma follows (4.6) directly. -
If M is constant isotropic, we have

4.7 Z‘) h$,h$,=const.
Differentiating [(4.7) and using (3.17), we have
4.8) 0=et(; h§1hf1)=3§ei(hf1)hh

=23 hfuhh+4jE' hi0{(e)hii—2 2 hi10i(eht,
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=22.3 hhh:]t, 1=17 e, N

since "Z'h}‘loa(ei)hh:O. Combining [3.18) and [4.8), we have

(4'9) ?h:llhhzoy ‘=2; e, n
Thus becomes
(4.10) A(v,n)(t.t)t=(z hinhint

—((Vzh)(t 1), h(t, )Ht.
Substituting [(4.10) into (4. 5), we get the following.

Corollary. An n-dimensional constant isotropic submanifold M of - E™*P has
pointwise 4-planar normal sections if and only if

4.11) @920, OATR)E HDANRE, HAREL, 1)=0,
for any teTM.

5. Spherical submanifolds with poinwise 3- or 4-p1anar normal sections.

In this section, we shall generalize Chen’s results [3] concerning spherical
submanifolds. We assume that M is an n-dimensional spherical submanifold of
E™*?, Without loss of generity, we may assume that M lies in a unit hy-
persphere S®+?-! of E"*?, We choose a local field of orthonormal frame

(es, =+, @n} @ns1, ", €n+p) @s in Section 2 and moreover we may choose Cnip @S
the unit outerward normal of S**?-! in E"*P, Then we have
(5.1 h3?=64;,

where 8;; is Kronecker delta, and

(5.2) Daeniy=3 Ohes(x)e,=0. -

Differentiating [5.1) and using (2 2.8 , [5.1) and ( ?ﬂ we have
(5.3) O=ex(h?)= hijkp“l“zh pem(ekH‘Eh pa?(eh)—'? hua:”p(eh) h?j"ip

Similarly, we may obtain

(5.4) h4P=0,
and
(55) h?jl’c{m=0 .

Theorem 1. Let M be an n-dimensional spherical submans fold of E**?, If M
is constant isotropic, then M has pointwise 4-planar normal sections if and only i f
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(5.6) W, AR, HANRXE, H=0,
for any te TM.
Proof. Let M be an n-dimensional spherical submanifold of E™*? and con-

stant isotropic If M has pointwise 4-planar normal sections, according to the

corollary of Lemma 2, we have [4.11), which implies

6.7 a(vtvtvth)(t; t)-}-ﬁ(V;V;h)(t, t)"l‘T(vch)(t, t)+Lht, 1)=0,
where functions «, 8, y and § are not all zero. In particular, we have
(5.8 ahﬁtﬁ+,Bh?1+ff+7‘hﬁtp+5hﬁ+p=0-

Substituting and (5.3)-(5.5) into we obtain §=0. Thus there are func-
tions a, 8 and y not all zero such that

(5.9 a(NN R, D+ BTNA)E, O+7(TLh)E, 1)=0,
for any tTM. Consequently we get [5.6). The converse of this is trivial,
Similar to [Theorem 1, we may get the following.
Theorem 2. Let M be an n-dimensional spherical submanifold of E™*?. If
M is isotropic, then M has pointwise 3-planar normal sections if and only if
(5.10) R, OANA)E, =0, for any teTM.
Proof. Let M be an n-dimensional spherical submanifold of E**? and iso-

tropic. If M has pointwise 3-planar normal sections, by the corollary of Lemma
1, there are functions @, B and y not all zero such that

G.1D) a(T.h)E, 1)+ BELA)E, t)+7h(t, 1)=0.
In particular, we have
(6.12) ahliP+BhNE? +rhiP =0,

Substituting (6.1), (56.3) and (5.4) into (5.12), we obtain y=0. Then we may get
(56.10). The converse of this is trivial.

Theorem 3. Let M be an n-dimensional spherical submanifold. I f M is con-
stant isotropic, then M has pointwise 2-planar normal sections if and only if the
second fundamental form is parallel, i.e., Yh=0.

Proof. Let M be an n-dimensional spherical submanifold of E™*? and con-
stant isotropic. Then we have [4.8)]. In particular, we have

(5.13) ’ ) ; hflhfu-——'o.
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Differentiating (5.13) and using [2.8), (2.10), [4.7) and (4.8), we obtain
(5.14) 0291(2‘: hhhfu)"—-'z‘: 31(hh)h{u+$ hiiei(his)

=? h{uh{n+2‘Z‘) hh0§(e1)h{u-§ h#0%(e))hin
+; h§1hf111+3‘2‘ h{lhgliog(el)—"zuh:lhﬂ 0i(ey)
=2‘: hf11h§11+§': hflhfm .

If M has pointwise 3-planar normal sections, by there are two func
tions @ and B not all zero such that

(5.15) ah’l-111+ﬁh1£u=0, r=n+1, *rty, n+h.
Combining and [5.15), we have, with the help of (5.13),
(5-16) ' a? h{uh;u-'-_—o.

If a=0, from we have h7,;=0, r=n+1, -, n+p, since @ and B are not
all zero. If az0, from [5.16), we also have hl,=0, r=n+1, .-, n+p. Thus

we obtain
5.17) §.h)¢, =0, for any teTM.

According to of (2), it implies YA=0. The converse of this is trivial.

A pointwise k-planar normal section y is said to be proper pointwise k-
planar if, locally, 7 is not pointwise (k—1)-planar. By Theorem A, we know
that in M must be a submanifold with pointwise 2-planar normal
sections. Thus we have the following.

Corollary 1. There is no constant isotropic spherical submanifold with proper
pointwise 3-planar normal sections in Euclidean space.

Corollary 2. There is no constant isotropic surface in Euclidean space with
proper pointwise 3-planar normal sections, i f its mean curvature vector is parallel.

Proof. Let M be a constant isotropic surface in a E**? with parallel mean
curvature vector. From a result of Chen [6], M is one of the followings:

(i) an open portion of a 2-plane or a 2-sphere of a E® in E**?;

(ii) a minimal surface in a S?** of E**? with |H|*>3K, where K is the
Gauss curvature of M. The equality holds if and only if M is a Veronese
surface.

In Case (i), M has Yh=0 obviously. In Case (ii), if M has pointwise 3-planar
normal sections, by Theorem 3, M has VA=0. Thus from Theorem A, M must
have pointwise 2-planar normal sections and the corollary is obtained.
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