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\S 1. Introduction.

A classical result of Nielsen [N] states that a map $g$ of a (closed, orientable)
surface $F$ to itself such that the nth iterate $g^{n}$ is homotopic to the identity is
homotopic to a homeomorphism whose nth iterate is equal to the identity. In
this paper we prove an analogous theorem for irreducible, sufficiently large 3-
manifolds.

Nielsen’s Theorem is a solution of a special case of the following realization
problem: Let $M$ be a compact n-dimensional manifold, let $\phi$ : Homeo $(M)\rightarrow ff(M)$

be the homomorphism that assigns to each homeomorphism of $M$ its isotopy
class in the homeotopy group of $M$. Let $H$ be a finite subgroup of $\ovalbox{\tt\small REJECT}(M)$ .
Does there exist a subgroup $G$ of Homeo $(M)$ such that $\phi|G$ is an isomorphism
of $G$ onto $H$?

For the 2-dimensional case various partial results have been obtained (see
the discussion in [Z]), and a full solution has been given by Kerckhoff [K].
For 3-dimensional Seifert fiber spaces the problem was solved in [H. T.] for the
case when $H$ is the cyclic group of order 2, and subsequently in [Z. Z.] for an
arbitrary finite group $H$. Using the Splitting Theorem of Jaco-Shalen and
Johannson and Thurston’s work on hyperbolic manifolds, we obtained in [H. T.
II] the solution for the case that $M$ is an orientable Haken manifold and $H=Z_{2}$ .
B. Zimmermann following the same approach, has generalized them ethods of [Z. Z.]
to obtain the solution in this case for an aribtrary finite group $H$. The approach
of Zieschang-Zimmermann differs drastically from ours, since the former use
the theory of crystollographic groups on the universal cover of $M$ while we
use methods from the topology of 3-manifolds. Still another proof for the case
of Seifert fiber spaces has been given by W. Neumann and F. Raymond in an
unpublished manuscript.

In the present paper we generalize the methods of [H. T.] and [H. T. II] to
obtain a proof for the case when $H$ is a finite cyclic group and $M$ is an orien-
table Haken manifold. Our proof proceeds according to the following outline.
First we obtain a relative version of the Nielsen Theorem for the case that $M$

is a sufficiently large Seifert fiber space.
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Theorem 1. If $g$ is a map of a compact, orientable, irreducible Seifert fiber
space $M$ with nonempty boundary such that $g^{n}\simeq 1re1\partial M$ then there is a homeomo-
rphism $h$ of $M$ such that $h\simeq gre1\partial M$ and $h‘‘=1$ .

The idea of the proof of Theorem 1 is to deform $g$ such that afterwards

for an essential annulus $A$ in $M,\hat{A}=\cup g^{\ell}(A)$ is a system of disjoint annuli and
$g^{n}$ is homotopic to the identity by a homotopy that is constant on $\partial M\cup\hat{A}$ . Then

splitting $M$ along the annuli of $\hat{A}$ we consider $g$ restricted to the components

of $M$ split along $\hat{A}$ and use an induction argument to show that $g$ can be de-

formed $re1\partial M$ to the desired homeomorphism $h$ .
Next we consider the case that $M$ is a (possibly closed) Seifert fiber space.

Theorem 2. Let $M$ be a $comPact$ , orientable, irreducible Seifert fiber sPace
which contains an incompressible fibered torus and let $g$ be a map of $M$ to itself
such that $g^{n}$ is homotoPic to the identity. Then $g$ is homotoPic to a homeomorPhism
$h$ with $h^{n}=1$ if and only if Obs $(Z_{n}, \pi_{1}(M),$ $\Psi$) $=0$ .

The obstruction that appears in the statement of Theorem 2 is interpreted

geometrically in Lemma 6. We show that if it vanishes then we can find an
essential torus $T$ in $M$ and a deformation of $g$ such that afterwards $g^{n}\simeq 1$ rel $T$ .
Then we proceed as in the proof of Theorem 1.

The next step is to prove a relative version of the Nielsen Theorem for

certain simple manifolds (Thm 3), by using the absolute version given by

Thurston’s and Mostow’s work. Finally, to treat the general case when $M$ is

a closed Haken manifold we use the Splitting Theorem to split $M$ along incom-
pressible tori into simple 3-manifolds and Seifert fiber spaces and deform $g$ such

that afterwards $g^{n}\simeq 1$ by a homotopy that is constant on the splitting tori, and
obtain the following result.

Theorem 4. Let $M$ be a closed Haken manifold that is not a Seifert fiber
space. $SuPPose$ that $g$ is a map of $M$ to itself such that $g^{n}$ is homotoffic to the
identity. Then $g$ is homotoPic to a homeomorphism $h$ with $h^{n}=1$ .

We will work in the PL-category throughout this paper. A surface $F$ in $M$

is usually assumed to be Properly embedded, $i.e$ . $F\cap\partial M=\partial F$. The terms ir-
reducible, parallel, essential, sufficiently large, are standard (see [H] or [J]) and
are also defined in [H. T., \S 1]. Similarly the terms Seifert ffier space, fibered
solid torus, orbit surface, fiber-Preserving, are well-known (see $e.g$ . [S. T.]) and
are recalled in [H. T., \S 1]. A homotopy $G:M\times I\rightarrow M$ is also denoted by $G_{t}$ ,

where $G_{0}=G|M\times 0$ and $G_{1}=G|M\times 1$ . The notation $G:f\simeq g$ rel $F$ is used to

mean that the homotopy $G$ from $f$ to $g$ is constant on $F,$ $i.e$ . $G(x, t)=f(x)=$

$g(x)$ for $x\in F$ and all $t\in I$ . If $g:M\rightarrow M$ and $A\subset M$ then we let $\hat{A}=\forall^{g^{i}(A)}$ .



ON NIELSEN’S THEOREM FOR 3-MANIFOLDS 3

\S 2. Periodic maps on surfaces and liftings of isotopies.

Let $F$ be a compact surface. An essential arc in $F$ is a proper arc that is
not homotopic $re1\partial F$ to an arc on $\partial F$. An essential curve in $F$ is a simple closed
noncontractible curve.

Lemma 1. Let $f:F\rightarrow F$ be a homeomorPhism of periOd $n\geq 2$ . Assume $F$ is
different form $S^{2},$ $D^{g},$ $P^{t}$ . If $\partial F\neq\emptyset$ then there is an essential arc $c$ in $F$ such
that $\{\cup f^{\ell}(c)\}$ is a union of $p\dot{\alpha}rwlse$ disjoint arcs. If $\partial F=\emptyset$ then there is an
essential curve $c$ in $F$ such that either (i) $\{\cup f^{\ell}(c)\}$ is a union of pairwise disjoint
$\alpha mple$ closed curves or (ii) the orbit surface $F/f$ is a 2-sphere with three branch
Points, $c$ intersects each $f^{\ell}(c)$ transversally and each compOnent of $F-\{\cup f^{\ell}(c)\}$ is
an open disk.

Proof. Let $p:F\rightarrow F/f$ be projection onto the orbit surface and let $B\subset F/f$

be the set of branch points. If $F/f$ differs from $S^{2},$ $D^{2},$ $P^{2}$ we can lift an es-
sential arc (if $\partial F/f\neq\emptyset$ ) or an essential curve (if $\partial F=\emptyset$ ) that misses the zero
dimensional components of $B$ , to obtain the desired $c$ .

(a) If $F/f=D^{2}$ , observe that l-dimensional components of $B$ can only occur
in $\partial D^{2}$ and since $F\neq S^{2},$ $D^{2}$, there are either no such components or at least two.
In the former case $B$ consists of at least two points and we find an essential
arc $c$ by lifting an arc on $F/f$ that separates points of $B$ . In the latter case
we get $c$ by lifting an arc joining two l-dimensional components of $B$ .

(b) If $F/f=P^{2}$ there are at least two branchpoints (since otherwise $F=S^{g}$

or $P^{2}$). We obtain $c$ by lifting a simple closed curve on $F/f$ that bounds a disk
containing two branchpoints.

(c) If $F/f=S^{2}$ there are at least three branchpoints. If there are more than
three, we obtain $c$ as in case (b). Thus assume that $B$ consists of three points.
The surface $p^{-1}(F/f-U(B))$ , where $U$ is a regular neighborhood of $B$ , is not
planar and thus contains an essential curve $d$ that is not homotopic to a product
of boundary curves of $F$. Now $p(d)$ is homotopic in $F/f-U(B)$ to a curve $\alpha$

that is a product of two simple closed curves $a$ and $b$ that are generators of
$\pi_{1}(F/f-U(B))$ . If $P^{-1}(a)$ is a simple closed curve, then we let this be $c$ .
Otherwise $P^{-1}(\alpha)\simeq(wc_{1}w^{-1})c_{2}$ where $w$ is an arc starting at the basepoint of
$\pi_{1}(F),$ $c_{1}$ is a simple closed curve and $c_{2}=wc_{\theta}$ (for some arc $c_{s}$ ) is a closed curve.
Since $p^{-1}(\alpha)\simeq d$ , at least one of $wc_{1}w^{-1}$ or $c_{2}$ is not homotopic to a product of
boundary curves of $F$. If this is true for $wc_{1}w^{-1}$ we let $c=c_{1}$ . Otherwise we
repeat this process using $c_{2}$ in place of $p^{-1}(\alpha)$ . Eventually we must find a simple
closed subloop $c$ of $p^{-1}(\alpha)$ with the desired property. In either case $c$ is essential
in $F$ (since $F$ is obtained from $p^{-1}(F/f-U(B))$ by filling in the boundary curves
with disks) and $F/f-p(c)$ consists of three disks, each containing a branchpoint.
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Lemma 2. Let $F$ be a torus. If $f:F\rightarrow F$ has Period $n$ and if $a$ is a simPle
closed curve on $F$ with $f(a)$ homotopic to $a$ , then there is a simple closed curve $\beta$

homofofflc to $a$ such that $\hat{\beta}=\cup f^{i}(\beta)$ is a system of simPle closed curves.

Proof. Define a Riemannian metric on $F$ with respect to which $f$ is an
isometry. Since in every homotopy class of simple closed curves there is a
geodesic, we can choose a geodesic simple closed curve $\beta$ that is (freely) homo-
topic to $a$ . Since $f^{\ell}(\beta)\simeq f^{j}(\beta)$ then if $ f^{\ell}(\beta)\cap f^{j}(\beta)\neq\emptyset$ and $f^{\ell}(\beta)\neq f^{f}(\beta)$ there is
a disk $D$ on $F$ with $\partial D$ a union of an arc on $f^{\ell}(\beta)$ and an arc on $f^{f}(\beta)$ . But
then by replacing one of these arcs by an arc of shorter length in $D$ we could
construct a simple closed curve of shorter length in the homotopy class of $a$ , a
contradiction. Thus $f^{\ell}(\beta)=f^{j}(\beta)$ or $ f^{\ell}(\beta)\cap f_{j}(\beta)=\emptyset$ .

We now use Nielsen’s Theorem and the method of [H. T. II, Theorem 2] to

derive the following relative version of Nielsen’s Theorem.

Proposition 3. If $g:F\rightarrow F$ is a map such that $g^{n}\simeq 1$ rel $\partial F$ there is a
homeomorPhism $h\simeq gre1\partial F$ such that $h^{n}=1$ .

Proof. Since $g$ induces an isomorphism on the fundamental group we can
assume that $g$ is a homeomorphism.

Case (1) $F$ is an annulus, $F=S^{1}\times I$ .
Without loss of generality, we may assume that $g$ is standard on $\partial F$. Thus,

suppose $g|\partial F(z, \epsilon)=(\alpha(z), \lambda(\epsilon))$ , where $a(z)=\overline{z}$ or $zz_{0}$ for some fixed $z_{0}\in S^{1},$ $\epsilon=0$

or 1, and $\lambda(t)=t$ or $1-t$ . Let 1 denote the arc $\{1\}\times I$ . Observe that the homo-
topy class $re1\partial F$ of any map $g;F\rightarrow F$ is determined by $g|\partial F\cup l$ . Since $ g(l)\simeq$

$\{(a(1)e^{2\pi\ell q\ell}, \lambda(t))|0\leq t\leq 1\}re1\partial F$ for some integer $q$ , it follows that $g\simeq hre1\partial F$,

where $h(z, t)=(\alpha(z)e^{8\pi iqt}, \lambda(t))$ with $\alpha,$ $q$ and $\lambda$ determined by $g$ . Clearly $h^{n}\simeq 1$

$re1\partial F$ implies $h^{n}=1$ .
Case (2) $F$ is not an annulus.
By a homotopy of $g$ , constant on $\partial F$, we may assume that there is a

neighborhood $U=\partial F\times I$ such that $g(U)=U$ and the homotopy $G:g^{n}\simeq 1$ carries $U$

to itself at each stage. Let $F^{\prime}=F\backslash \dot{U}$. By Nielsen’s Theorem [N] there is a
homeomorphism $h^{\prime}$ of $F^{\prime},$ $h^{\prime}\simeq g|F^{\prime}$ and $(h^{\prime})^{n}=1$ . By Baer’s Theorem [Z], $h^{\prime}$

is isotopic to $g|F^{\prime}$ . Extend this isotopy to an isotopy of $F$ constant on $\partial F$ to

get a map $h;F\rightarrow F$ such that $g\simeq h$ rel $\partial F$, $h^{\prime}=h|F^{\prime}$ and $h|\partial F$ are maps of
period $n$ , and $h^{n}\simeq 1$ rel $\partial F$ by a homotopy $G$ with $G(U\times I)=U$ . Let $h‘‘=h|U$ .
By case (1) it suffices to show that there is a homotopy $G_{1}$ : $(h^{\prime})^{n}\simeq 1$ rel $\partial U$.

To see this, assume that $\partial F$ is connected (otherwise the construction aPplies

to each component) and note that $h^{n}(x_{0})=x_{0}$ , for a basepoint $x_{0}\in\partial F^{\prime}\subset\partial U$ , and
that the trace $\tau$ of the cyclic homotopy $G|F^{\prime}\times I:h^{;n}\simeq 1$ represents an element
of the center of $\pi_{1}(F^{\prime})$ , which is trivial. Hence we can assume by a 2-dimen-
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sional version of lemma 7 that $\tau=x_{0}$ . Thus we now have $h^{\prime}|\partial U$ is periodic
and $G^{\prime}=G|U\times I$ is a homotopy $(h^{\prime})^{n}\simeq 1$ rel $(\{x_{0}\}\cup\partial F)$ with $G_{t}^{\prime\prime}(\partial F^{\prime})\subset\partial F^{\prime}$ . The
homotopy $G^{\prime}=G_{0}$ is now deformed by a homotopy $H:U\times I\times I\rightarrow U$ to a desired
homotopy $G_{1}$ by $H|U\times I\times\{0\}=G_{0},$ $H(x, 0, t)=(h^{\prime})^{n}(x)$ , and $H$ is constant on

$\partial F\times I\times I\cup U\times\{1\}\times I\cup\partial F^{\prime}\times I\times\{1\}\cup\{x_{0}\}\times I\times I$ .
Thus $H$ is defined on the boundary of the 3-cell $(\partial F^{\prime}-\{x_{0}\})\times I\times I$ and can be
extended over this 3-cell. Now $H$ is defined on $U\times I\times\{0\}\cup\partial(U\times I)\times I$ and ex-
tends over $U\times I\times I$ to give the desired $G_{1}=H|U\times I\times\{1\}$ .

The next proposition is a lifting theorem for Seifert fiber spaces. For such
a space $M$ let $p:M\rightarrow M^{*}$ be the projection onto its orbit surface, let $E$ be the
set of exceptional fibers and $E^{*}=p(E)$ .

Proposition 4. Let $M$ be a sufficiently large Seifert fiber sPace. Let $h^{*}:$ $M^{*}$

$\rightarrow M^{*}be$ a map isotopic to the identity rel $(\partial M^{*}\cup E^{*})\ovalbox{\tt\small REJECT}$ . Then there is a map $h:M$
$\rightarrow M$ that is isotoPic to the identity rel $(\partial M\cup E)$ such that $ph=h^{*}p$ .

Proof. Case (a) $\partial M\neq\emptyset$ : $The$:proof is by induction on the length of a
hierachy for $M$ defined by fibered essential annuli reducing $M$ to solid tori. If
$M^{*}=D^{g}$ and $ E^{*}=\emptyset$ the assertion is trivial. If $M^{*}=D^{g}$ and $E^{*}$ consists of one
Point, let $l$ be an arc from a point on $\partial M^{*}$ to $E^{*}$ and proceed in a way. similar
to what follows. In any other case there is an essential arc $l$ in $M*\backslash E^{*}$ such
that $l$ and $h^{*}(l)$ are in general position. Then $l$ is isotopic to $h^{*}(l)$ rel $(\partial M^{*}\cup E^{*})$

and $A=P^{-1}(l)$ is an essential annulus isotopic rel $(\partial M\cup E)$ to $P^{-1}(h^{*}(l))$ by a fiber
preserving isotopy that is constant on the fibers of $A\cap P^{-1}(h^{*}(l))$ . Thus there
is a fiber preserving isotopy $k:M\rightarrow M$, constant on $\partial M\cup E$ , with $k^{*}h^{*}(l)=l$ .
Now there is a fiber preserving isotopy $j:M\rightarrow M$, constant on $\partial M\cup E$ , with
$j^{*}k^{*}h^{*}|U(l)$ the identity on a regular neighborhood $U$ of $l$ . But then (by the
argument below in case $(b))j^{*}k^{*}h^{*}$ is isotopic to the identity by an isotopy
constant on $\partial M^{*}\cup E^{*}\cup U(l)$ . By induction there is a fiber preserving $f:M\backslash \dot{U}(A)$

$\rightarrow M\backslash \mathring{U}(A)\circ$ with $f^{*}|(M^{*}\backslash U^{Q}(l))=j^{*}k^{*}h^{*}|(M*\backslash \mathring{U}(l))$ and $f$ isotopic to the identity
rel $(\partial(M\backslash U(A))\cup E)$ . Extend $f$ over $U$ by the identity to get $f:M\rightarrow M$. Then
$k^{-1}j^{-1}f$ induces $h^{*}$ .

Case (b) $\partial M=\emptyset$ : First suppose $M$ contains an incompressible fibered torus
$T$ . We wish to apply the argument of case (a) to $l=p(T)$ and we obtain fiber
preserving isotopies $k$ and $j$ , constant on $E$ , with $j^{*}k^{*}h^{*}|l$ the identity on $l$

and $j^{*}k^{*}h^{*}$ isotopic to the identity by a homotopy $G:M^{*}\times I\rightarrow M^{*}$ , rel $E^{*}$ . To
proceed with the proof in case (a), we wish to replace $G$ by a homotopy that
is constant on $E^{*}\cup l$ . If we pick the basepoint $x_{0}$ on $l$, the trace $\tau=G(x_{0}\times I)$

commutes with $l$ in $\pi_{1}(M^{*}\backslash E^{*})$ . Thus, if $M^{*}\backslash E^{*}$ is not a torus, it is homotopic
to a $DoWer$ of 1 and $G$ can be $d_{P}fnrmer1\eta parJQ\cap rb+af\mathfrak{t}ar\tau xrarl\{\circ\Gamma/J\vee\Gamma 1-J$
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and then by a further deformation of $G$ we can assume that $G$ is constant on $l$ .
If $M^{*}\backslash E^{*}$ is a torus we let $t$ be a simple closed curve that meets $l$ transversely

in one point. Then $j^{*}k^{*}h^{*}(t)$ is isotopic to $t$ by an isotoPy. fixed on $l$ and

clearly this isotopy lifts. Thus we can assume that $j^{*}k^{*}h^{*}|t$ is the identity on
$t$ . But now $j^{*}k^{*}h^{*}$ is isotopic to the identity by an isotopy constant on $t\cup l$ .

If $M$ does not contain an incompressible fibered torus, we have $M^{*}=S^{\epsilon}$ and

$E^{*}$ consists of 3 points. By an isotopy of $M$ we can assume that $h^{*}\simeq 1$

rel $U(E^{*})$ . By case (a) there is a lift $h^{\prime}$ : $M\backslash p^{-1}(U)\rightarrow M\backslash p^{-1}(U)$ of $h^{\prime*}=h^{*}|(M^{*}\backslash U)$

that is (fiber) isotopic to the identity rel $\partial U$ . Extend $h^{\prime}$ over $U$ by the identity

to obtain a lift $h$ of $h^{*}$ .

Corollary 5. Let $M$ be a sufficiently large Seifert fiber space and let $f:M$

$\rightarrow M$ be a homeomorPhism such that the diagram

$p_{NN}MM\downarrow\underline{f^{*}}\downarrow p\underline{f}$

commutes. If $f^{*}$ is isotopic to $h^{*}$ rel $(\partial M^{*}\cup E^{*})$ then there is a lift $h$ of $h^{*}$ such

that $h$ is isotopic rel $(\partial MUE)$ to $f$.

Proof. Apply proposition 4 to get a lift $g$ of $(f^{*})^{-1}h^{*}$ and let $h=fg$ .

\S 3. Making homotopies constant on surfaces.

In this section, given a homeomorphism $g:M\rightarrow M$ of a Haken 3-manifold and

a homotopy $G:g^{n}\simeq 1$ rel $\partial M$, and an essential annulus or torus $F$ in $M$ such

that $P=\cup g^{\ell}(F)$ is a union of disjoint annuli or tori, we would like to deform

$g$ and $G$ so that afterwards $G:g^{n}\simeq 1$ rel $(\partial MuP)$ .
Let $g:M\rightarrow M$ be normalized by a homotopy such that a basepoint $X_{0}$ of $M$

is fixed by $g$ . Then $g$ induces an automorphism $g_{*}$ of $\pi=\pi_{1}(M, x_{0})$ . Let $\Psi:Z_{n}$

$\rightarrow Out\pi=Aut\pi/Inn\pi$ be $\Psi(k)=[g_{*}^{k}]$ . Recall that a necessary condition for $g$ to

be homotopic to a map $h$ of period $n$ is that the abstract kernel $(Z_{n}, \pi, \Psi)$ has

an extension (see [H. T.] \S 2 or [C. R.]).

Lemma 6. Suppose center $(\pi)\simeq Z$ , and let $\tau(t)=G_{t}(x_{0})$ be the trace of the

homotoPy $G:g^{n}\simeq 1$ . Then Obs $(Z_{n}, \pi, \Psi)=0$ if and only if $G$ can be chosen such

that $ g_{*}(\tau)=\tau$ .

Proof. If Obs $(Z_{n}, \pi, \Psi)=0$ there is an extension $E$ of the abstract kernel
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$1\rightarrow\pi-E\rightarrow Z_{n}\rightarrow 1$

$\downarrow$ $\downarrow\mu$ $\downarrow\Psi$

$ 1\rightarrow$ Inn $\pi\rightarrow Aut\pi\rightarrow Out\pi\rightarrow 1$

and we can choose $e\in E$ such that $\mu(e)=g_{*}$ (where $\mu(\alpha)$ is the inner auto-
morphism $a^{-1}()a)$ . Then $\mu(e^{n})=g_{*}^{n}=\mu(\tau)$ . Thus there exists $c\in center(\pi)$ such
that $e^{n}=\tau c$ . It follows that $g_{*}(\tau c)=\mu(e)(\tau c)=\mu(e)(e^{n})=e^{n}=\tau c$ . Since $M$ admits
an action of $S^{1}$ with center $(\pi)$ generated by a principal orbit, there is a cyclic
homotopy $H:1\simeq 1$ with trace $c$ (namely $H(x, t)=\alpha(t)x$ , where $\alpha(t)$ is a path in
$(S^{1},1)$ with $f_{*}^{x_{0}}([\alpha])=c$ for the evaluation map $f^{x_{0}}$ : $S^{1}\rightarrow M$). Composing $G$ with
this cyclic homotopy yields a homotopy $g^{n}\simeq 1$ with trace $\tau c$ .

Conversely, suppose $ g_{*}(\tau)=\tau$, and $g_{*}^{n}=\mu(\tau)$ . We define $\phi(S)=g_{*}(0\leq s<n)$ ,

where $Z_{n}=\{\overline{r}|0\leq r<n\}$ , and $f(\overline{r},\overline{s})=\{0\tau ifif\gamma\gamma I_{s\geq n}^{s<n}$ .
It is easily checked that the identities of lemma 8.1 in $[McL]$ are satisfied

and hence that $(Z_{n}, \pi, \Psi)$ has an extension.

LCmma 7. Let $G:M\times I\rightarrow M$ be a homotopy of pajrs $(M, F)$ , where $F$ is a
surface properly embedded in M. Suppose $G_{0}(x_{0})=G_{1}(x_{0})=x_{0}\in F$ and $\tau^{\prime}$ is a $looP$

in $F$ homotopic to $G_{\ell}(x_{0})$ rel $x_{0}$ in F. Then there is a homotopy $H:M\times I\rightarrow M$ of
pairs $(M, F)$ such that $H_{0}=G_{0},$ $H_{1}=G_{1},$ $H$ agrees with $G$ outside a neighborhood
of $F$ and $H$ has trace $\tau^{\prime}$.

Proof. This is lemma 3.1 of [H. T.].

Lemma 8. Let $P$ be a system of incomPressible surfaces in $M$ and $suPPose$

that $f:M\rightarrow M$ is a homeomorPhism with $f(fl)=P$ and $f\simeq 1$ . SuPpose a) or b)
holds.

a) $ F^{\prime}\cap\partial M=\partial F^{\prime}\neq\emptyset$ for each component $F^{\prime}$ of ff and $f\simeq 1$ rel $\partial M$.
b) Each comPonent of $P$ is closed and there is a homotopy $H:f\simeq 1$ such that

for some points $x_{1},$ $\cdots$ , $x_{m}$ (one in each compOnent of $P$) the traces $\tau_{i}(t)=H(x_{\ell}, t)$

are constant.
Then there is a homotopy $G:f\simeq 1$ (constant on $\partial M$ in case $(a)$ ) such that

$G(F\times I)\subset ff$ . Furthermore, if $f|P=id|ff$ then $G$ can be taken constant on $P$.
Proof. Case (a) is just lemma (4.4) of [H. T.]. We give the proof in case

(b) which is similar:
Let $F$ be the component of $P$ containing $x_{1}$ and let $h_{0}=H|F\times I:F\times I\rightarrow M$.

We first define $h_{1}$ : $F\times I\rightarrow F$ as follows. Let $c_{1},$
$\cdots$ , $c_{k}$ be based simple closed

curves on $F$ that cut $F$ into a disk and that are mutually disjoint, except that
they meet at $x_{1}$ . $H$ defines a based homotopy from $f(c_{\ell})$ to $c_{\ell}$ . Since $F$ is in-
compressible, there is a based homotopy from $f(c_{i})$ to $c_{\ell}$ on $F$ (if $f$ is the
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identiy on $F$ , we choose this homotopy constant) and we let $h_{1}:\cup c_{\ell}\times I\rightarrow F$ be

this homotopy. On $(F-\cup c_{\ell})\times\{1\}$ we let $h_{1}$ be the identity and $ h_{1}|(F-\cup c_{i})\times$

$\{O\}=f|F-\cup c_{\ell}$ . Now $h_{1}$ is defined on the boundary of the 3-cell $(F-\cup c_{\ell})\times I$

and can be extended over this 3-cell, since $F$ is aspherical.

Now we show that $h_{0}$ and $h_{1}$ : $F\times I\rightarrow F\subset M$ are homotopic rel $(\{x_{1}\}\times I)$ .
Using $h_{0}$ and $h_{1},define$ this homotopy $K:F\times I\times I\rightarrow M$ on $F\times I\times\partial I$. On $\{x_{1}\}\times I$

$\times I$ let $K$ be constant and let $K(x, 0, t)=f(x),$ $K(x, 1, t)=x(x\in F)$ . Now $K$ is
defined on $\partial(c\wedge x_{0}\times I\times I)$ , where $c_{i}\backslash x_{0}$ is a l-cell. Since $M$ is aspherical we can
extend $K$ over $\cup c_{\ell}\times I\times I$, and having $K$ defined on the boundary of the 4-cell
$(F-\cup c_{\ell})\times I\times I$ we can extend $K$ again over all of $F\times I\times I$ .

Finally, we extend the homotopy from $h_{0}=H|F\times I$ to $h_{1}$ to a homotopy

from $H$ to. a homotopy $G:M\times I\rightarrow M$ with $G|F\times I=h_{1}$ .

Lemma 9. Let $F$ be an essential surface in $M,$ $g:M\rightarrow M$ a homeomorPhis$m$

such that $g^{n}\simeq 1$ and $P=\cup g^{\ell}(F)$ is a umon of disjoint surfaces.
(i) If $\partial F\neq\emptyset$ and if $g^{n}\cong 1$ rel $\partial M$ then there is a homeomorPhism $h\simeq g$

rel $\partial M$ such that $h(fi)=g(fl)$ and $h^{n}\simeq 1$ rel $(P_{U}\partial M)$ .
(ii) If $F$ is closed and Obs $(Z_{n}, \pi, \Psi)=0$ , then there is a homeomorPhism $h\simeq g$

such that $h^{n}\simeq 1$ rel 1” and $h(F^{\prime})\cong g(P)$ where $P^{\prime}=\cup h^{\ell}(F)$ is a system of disjoint

surfaces. In either case, if $M$ is a Seifert fiber space and $F$ is a union offibers,

and $g$ is fiber preserving, then $h$ can be taken to be fiber preserving.

Remark. If $M$ does not fiber over $S^{1}$ with $F$ isotopic to a fiber, we can
choose $P^{\prime}=P$ in case (ii).

Proof. Case (i) Let $m$ denote the smallest positive integer such that
$g^{fn}(F)=F$ and let $p=n/m$ . By lemma 8 (a) there is a homotopy $G:(g^{m})^{p}\simeq 1$

such that $G(P\times I)\subset P$ . By the relative Nielsen Theorem (Prop. 3) there is a
homeomorphism (fiber preserving if $F$ is a fibered annulus) $f:F\rightarrow F$ such that
$f^{p}=1$ and $f\simeq g^{m}|F$ rel $\partial F$. Let $K:(fl\cup\partial M)\times I\rightarrow ff\cup\partial M$ be an isotopy such that
$K_{t}|(P\backslash F)\cup\partial M$ is the identity and $K|F\times I$ is a homotopy from the identity to
$f\circ g^{-m}|F$ rel $\partial F$. We can extend $K$ to $M\times I\rightarrow M$ so that $K$ is constant outside
a regular neighborhood $U$ of $F$ and $K_{1}$ : $M\rightarrow M$ is a homeomorphism. Let $h=$

$K_{1}\circ g$ . Then $(h|F)^{m}=f$ and $(h|F)‘‘=1|F$. But then $(h|P)^{n}$ is the identity on
$p,$ $S\dot{i}$ce $h^{-\ell_{\circ}}(h^{n}|h^{\ell}(F))^{o}h^{\ell}|_{F}=(h|F)^{n}=1|F$. By lemma 8 (a), $h^{n}\simeq 1$ rel $(Pu\partial M)$ .

Case (ii) First we normalize the homotopy $G:g^{n}\simeq 1$ by composing it with

a suitable cyclic homotopy as follows: Let $x_{0}\in F$ and let $y_{0}\in M-fl$ and tem-

porarily choose $h\simeq g$ rel $\{g^{\ell}(x_{0})\}_{\ell\approx 0}^{n-1}$ such that $h(y_{0})=y_{0}$ . Thus $h^{n}\simeq g^{n}$ rel $\{g^{\ell}(x_{0})\}_{\ell-0}^{n-1}$ .
Consider $h^{n}\simeq g^{n}\simeq 1$ . Since Obs $(Z_{n}, \pi, \Psi)=0$ we can apply lemma 4 to find a

cyclic homotopy $L$ such that for the trace $\gamma$ of $y_{0}$ under $K:h^{n}\simeq g^{n}\simeq 1\simeq 1GL$ we
have $ h(\gamma)\simeq\gamma$ (rel $y_{0}$). Let $\tau_{i}$ denote the $trace\cdot ofg^{\ell}(x_{0})$ under $L\circ G:g^{n}\simeq 1$ and
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note that $\tau_{\ell}$ is also the trace of $g^{\ell}(x_{0})$ under the homotopy $K$. For a path $\lambda$

from $x_{0}$ to $y_{0}$ we obtain, by restricting $K$ to the path $h^{\ell}(\lambda)$ , that $\gamma\simeq h(\lambda^{-1})\tau_{0}\lambda$

(rel $y_{0}$) and $\gamma\simeq h^{n+\ell}(\lambda^{-1})\tau h^{\ell}(\lambda)$ (rel $y_{0}$). Applying $h^{\ell}$ to the first homotopy we
obtain $\gamma\simeq h^{\ell}(\gamma)\simeq h^{n+\ell}(\lambda^{-1})h^{i}(\tau_{0})h^{\ell}(\lambda)$ , and comparing this with the second homo-
topy we get $h^{\ell}(\tau_{0})\simeq\tau_{\ell}$ (rel $g^{\ell}(x_{0})$). Since $g^{i}\simeq h^{\ell}$ rel $\{g^{f}(x_{0})\}_{j\approx 0}^{n-1}$ , we have $g^{\ell}(\tau_{0})\simeq\tau_{\ell}$

rel $g^{\ell}(x_{0})$ .
Now we follow the proof of Theorem 7.1 case 4 in [W] and Lemma 3.3

[H. T.] to deform $g$ to a map $g^{\prime}$ for which there exists an isotopy from $g^{\prime n}$ to
the identity which carries $P$ onto itself at each stage. A sketch of this proof
follows: Let $\overline{F}$ be a surface homeomorphic to $g^{i}(F)$ and let $f:\overline{F}\times I\rightarrow M$ be
$G|g^{i}(F)\times I$ . We can assume (by a small homotopy of g) that $f^{-1}(g^{i}(F))\cap U(\overline{F}\times\partial I)$

$=\overline{F}\times\partial I$ (where $U$ is a regular neighborhood of $\overline{F}\times\partial I$). By transversality, there
is a homotopy of $f$ , constant on $U(\overline{F}\times\partial I)$ , after which $f^{-1}(g^{\ell}(F)\cap(\overline{F}\times I^{\backslash }-$

Int $U(F\times\partial I))$ is a system of incompressible surfaces, each parallel to $F\times O$ . Any
two adjacent components bound a domain $\overline{F}\times I^{\prime}$ and there is a lift $f;\overline{F}\times I\rightarrow M^{\prime}$

of $f|F\times I^{\prime}$ , where $M^{\prime}$ is $M$ cut along $g^{i}(F)$ . Applying Waldhausen’s homeomor-
phism theorem (6.1) of [W], it follows that there is a homotopy of $f$ , constant
on $f^{-1}(g(F))$ , such that either $f(\overline{F}\times I)\subset g^{\ell}(F)$ (the desired case) or $M$ is fibered
over $S^{1}$ with fiber $F$ (cf. [W], $p,$ $84$). In the latter case we can deform $g$ so
that $g(F)=F$ and $g(x_{0})=x_{0}$ , for a base point $x_{0}\in F$. As before, we can assume
that $ g(\tau)\simeq\tau$ rel $x_{0}$ , where $g$ is the trace of $x_{0}$ under $G:g^{n}\simeq 1$ . By an isotopy
of $g$ which slides $F$ around, we get $g\simeq g^{\prime}$ and an isotoPy $G:g^{\prime n}\simeq 1$ whose trace
represents an element of $\pi_{1}(F, x_{0})$ . Let $q:F\times R^{1}\rightarrow M$ be the infinite cyclic cover
corresponding to $\pi_{1}(F, x_{0})$ , let $I:F\times I\rightarrow p\times R^{1}$ be the lift of $f=G|F\times I$ , and let
$\Gamma_{\iota}$ be a strong deformation retraction of $F\times R^{1}$ onto the componcent ff of $p^{-1}(F)$

that contains $1(F\times\{0\})$ and $f(F\times\{1\})$ . Then $ q\circ\Gamma,\circ$;is a homotopy of $f$ , con-
stant on $F\times\partial I$ , to a map $f^{\prime}$ : $F\times I\rightarrow F\subset M$, as desired.

Thus we can now assume that $G:g^{n}\simeq 1$ is a homotopy with $G(P\times I)\subset P$

and such that for the trace $\tau_{\ell}$ of $g^{\ell}(x_{0})$ under $G$ we have $g(\tau_{0})\simeq\tau_{\ell}$ rel $g^{\ell}(x_{0})$ .
This implies $(g^{m}|F)^{p}\simeq 1|F$ where $m$ is the smallest positive integer such that
$g^{m}(F)=F$ and $n=p\cdot m$ .

Subcase (a) $m=n$ .
Let $U_{\ell}=g^{\ell}(F)\times[-1,1]$ a regular neighborhood of $F=g^{\ell}(F)(i=0, \cdots , n-1)$

and let $f_{\ell}=g|F_{\ell}$ : $F_{i}\rightarrow F_{i+1}$ . We can assume that

$g(x, s)=(f_{\ell}(x), s)$ for $(x, s)\in U_{i},$ $i=0,$ $\cdots$ , $n-1$

and
$G_{t}(x, s)=(k(x, t),$ $s$ ) for $(x, s)\in U_{0}$

where $k$ is an isotopy $k:g^{n}\simeq 1$ on $F_{0}=F$. Note that $ g^{n}(x, s)=(f_{i-1}\cdots f_{0}.i_{n-1}\cdots$

$f_{i}(x),$ $s$ ) on $U_{\ell}$ Deform $g$ to $g_{1}$ by
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$g_{t}(x, s)=\left\{\begin{array}{ll}g(x, s) & off U_{0}\\(f_{\overline{\iota}^{1}}\cdots f_{\overline{n}-1}^{1}k(x, (1-|s|)t), s) & on U_{0}\end{array}\right.$

observe that $g_{1}^{n}(x, s)=(f_{\ell}^{-1}\cdots f_{\overline{n}-1}^{1}k(f_{n-1}\cdots f_{i}(x), 1-|s|),$ $s$ ) on $U_{\{}$ , in particular
$g_{1}^{n}|F=1|F$ , and define $H_{\ell}$ : $g_{1}^{n}\simeq 1$ by

$H_{t}|M\backslash O=\left\{\begin{array}{ll}g_{1}^{n} & for t\leq 1/2\\G_{tt-1} & for t\geq 1/2\end{array}\right.$

and

$H_{\ell}|_{U_{i}}(x, s)=\left\{\begin{array}{ll}f_{\ell}^{-1}\cdots f_{\overline{n}-1}^{I}k(f_{n-1}\cdots f_{i}(x), (1-|s|)(1-2t)), s) & for t\leq 1/2\\G_{2t-1}(x, s) & for t\geq 1/2\end{array}\right.$

Observe that the trace of $g(x_{0})$ under the homotopy $H_{\ell}$ is homotopic (rel $g^{\ell}(x_{0})$)

to the product of the paths $g^{\ell}(\tau_{0}^{-1})\tau_{\ell}$ , which is homotopic to $0$ rel $g^{i}(x_{0})$ . By
lemma 7 we can therefore find a homotopy $K:g_{1}^{n}\simeq 1$ with $K(P\times I)\subset P$ and such
that the traces $K(g_{1}^{\ell}(x_{0}), t)$ are constant. Now lemma 8(b) can be applied to
finish the proof in this case.

Ssubcase (b) $m\neq ni.e$ . $p>1$ .
By Nielsen’s Theorem for 2-manifolds there is a homeomorphism $g^{\prime}$ : $F\rightarrow F$

with $(g^{\prime})^{p}=1$ and an isotopy $G^{\prime}$ : $F\times I\rightarrow F$ from the identity to $g^{\prime}g^{-m}|F$. We
extend $G^{\prime}$ to an isotopy of $M$, constant outside a regular neighborhood of $F$.
Let $h^{\prime}=G_{1}^{\prime}g$ . Writing again $g$ instead of $h$ we now have $g(P)=F,$ $(g|ff)^{n}=$

$1|P,$ $G:g^{n}\simeq 1$ , where $G(P\times I)\subset P$ . As before let $U_{i}=g^{\ell}(F)\times[-1,1]$ and let
$f_{\ell}=g|F_{\ell}$ : $F_{\ell}\rightarrow F_{\ell+1}$ for $i=0,$ $\cdots$ , $m-1$ , and assume that

$g(x, s)=(f_{\ell}(x), s)$

$G_{\ell}(x, s)=(h_{\ell}(x, t),$ $s$ ) for $(x, s)\in U_{\ell}$ .
Let $k_{\ell}=f_{\ell-1}\cdots f_{0}f_{m-1}\cdots f_{\ell+1}f_{\ell}$ and observe that $g^{n}(x, s)=(kf(x), s)=(x, s)$ on $U_{\ell}$ .
In particular, $h_{\ell}$ : $F_{\ell}\times I\rightarrow F_{\ell}$ is a cyclic homotopy and the trace $\tau_{\ell}$ under $h_{\ell}$ lies
in the center of $\pi_{1}(F_{\ell})$ . Consider first $h_{0}$ . If $\tau_{0}\neq 0$ it follows that $F$ is a torus
and $\tau_{0}\simeq\gamma^{f}$ for some simple closed curve $\gamma$ on $F_{0}=F$. Since Obs $(Z_{n}, \pi, \Psi)=0$ we
can by lemma 6 assume that $k_{0}(\tau_{0})=g^{m}(\tau_{0})\simeq\tau_{0}$ rel $x_{0}$ and hence $ k_{0}(\gamma)\simeq\gamma$ . By

lemma 2 we can furthermore choose $\gamma$ so that $\cup k_{0}^{f}(\gamma)$ is a system of simple

closed curves. There is a homotopy $ B:1_{F_{0}}\simeq\beta$ , where $\beta:F_{0}\rightarrow F_{0}$ is a homeomor-
phism such that $\beta^{p}=1,$ $\beta k_{0}=k_{0}\beta$ , and the trace of $x_{0}$ under $B$ is $\gamma^{+r/p}$ . To

see this, parametrize $F_{0}=S^{1}\times S^{1}$ such that $\gamma\simeq 1\times S^{1}$ and $k_{0}(z_{1}, z_{t})=(z_{1}^{a}z_{g}^{b}e^{\frac{t\pi i\lambda}{p}}$,

$z_{1}^{c}z_{2}^{a}e^{\frac{g\pi\ell}{p}A})$ , where $\left(\begin{array}{l}ab\\cd\end{array}\right)=1$ . Since $ k_{0}(\gamma)\simeq\gamma$ we have $\left(\begin{array}{l}ab\\cd\end{array}\right)\left(\begin{array}{l}0\\1\end{array}\right)=\left(\begin{array}{l}0\\1\end{array}\right)$ , hence
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$a=\pm 1$ , $d=1,$ $b=0$ . Let $\beta(z_{1}, z_{2})=(z_{1},$ $z_{8}e^{\frac{g_{if}\ell r}{p})}$ and observe that there is an

obvious homotopy $ B:1\simeq\beta$ with trace $\gamma^{t/p}$ .
Now deform $g$ to $g_{1}=H_{1}$ by the homotopy

$H_{t}(x, s)=\left\{\begin{array}{ll}g(x) & off U_{0}\\(f_{0}B(x, (1-|s|)t), s) & for (x, s)\in U_{0}.\end{array}\right.$

Note that $ g_{1}|F_{0}=f_{0}\beta$ and $(g_{1}|F_{0})^{n}=(k_{0}\beta)^{p}=k\#\beta^{p}=1|F_{0}$ . Furthermore the homo-
topy form $g$ to $g_{1}$ induces a homotopy $H^{\prime}=g_{1}^{n}\simeq g^{n}$ with trace of $x_{0}$ homotopic
to $\gamma^{-}‘.$ Thus the trace of $GH^{\prime}$ : $g_{1}^{n}\simeq 1$ is homotopic to $\gamma^{-f}\cdot\gamma^{f}\simeq 0$ . By lemma 7
we can assume that $g_{1}^{n}\simeq 1$ with trace of $x_{0}$ constant.

Repeat this construction for $i=1,$ $\cdots$ , $m-1$ to get a homeomorphism $h\simeq g$ ,
$(h|ff)^{n}=1|ff$ and $h^{n}\simeq 1$ rel $(x_{0}\cup\cdots\cup x_{m-1})$ . Again lemma (8a) can now be ap-
plied to obtain $h^{n}\simeq 1$ rel $P$ .

\S 4. Nielsen’s Theorem for Seifert fiber spaces and simple 3-manifolds.

We first prove a relative version of Nielsen’s Theorem for Seifert fiber
spaces.

Lemma 10. Let $M$ be a compact, orientable, irreducible Seifert fiber space
with nonempty boundary. If $g$ is a fiber preserving map of $M$ with $g\simeq 1$ rel $\partial M$

then there is a homeomorPhism $h$ of $M$ with $h\simeq g$ rel $\partial M$ and $h^{n}=1$ .

Proof. The proof proceeds by induction on $c(M)$ , the sum of the number of
exceptional fibers in $M$ together with the minimal length of a hierarchy of $M$

defined by fibered annuli reducing $M$ to solid tori.
By [W] we can assume that $g^{n}$ is isotopic to the identity by a fiber isotopy

rel $\partial M$. Thus we obtain a commutative diagram

$M^{*}\rightarrow M^{*}M^{\underline{g}}M\downarrow\downarrow g^{*}$

where $(g^{*})^{n}\simeq 1$ rel $\partial M^{*}\cup E^{*}$ . Now $g^{*}$ permutes the points of $E^{*}$ and we assume
that $g^{*}$ is the identity on $E^{*}$ (the case when $g^{*}$ is not constant on $E^{*}$ is
similar). Thus we find a regular neighborhood $U$ of $E^{*}$ such that $g$ maps each
component $D$ of $U$ to itself and such that the isotopy $(g^{*})^{n}\simeq 1$ maps $D$ to itself
at each stage. Apply the relative Nielsen Theorem (Prop. 3) to $g^{*}|(M^{*}\backslash IntU)$

to obtain a homeomorphism $f^{*}:$ $(M^{*}\backslash IntU)\rightarrow(M^{*}\backslash IntU)$ of period $n$ such that
$f^{*}\simeq g^{*}|(M^{*}\backslash IntU)$ rel $\partial M^{*}$ . For each component $D$ of $U,$ $f^{*}|\partial D$ is a rotation
and we extend $f^{*}$ over $D$ by coning from $D\cap E^{*}$ . The isotopy from $f^{*}|(M^{*}\backslash $
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Int $U$) to $g^{*}|(M^{*}\backslash IntU)$ can now easily be extended to an isotopy from $f^{*}$ to $g^{*}$

that is constant on $E^{*}$ . By Corollary 5 we can lift $f^{*}$ to get a fiber preserv-
ing map that is homotopic to $g$ by a homotopy constant on $\partial M$. If we denote
this new map again by $g$ , we now have $g^{n}\simeq 1$ rel $\partial M$ and $g_{*}^{n}=1$ .

Applying lemma 1 we lift an essential arc in $M^{*}\backslash E^{*}$ to obtain an essential
annulus $A$ in $M$ such that $\hat{A}=\{\vee g^{\ell}(A)\}$ is a system of disjoint annuli. By

lemma 9 there is a homeomorphism $f\simeq g$ rel $\partial M$ such that $f(A)=\hat{A}$ and $f^{n}\simeq 1$

rel $(A\cup\partial M)$ .
Let $M_{\ell}$ be the components of $M$ split along \^A ($i=1,$ $\cdots$ , q) and let $\bigcup_{\ell=1}^{q}M_{j}=$

$\ell^{\bigcup_{-1}^{f}\hat{M}_{j}}$ where $\hat{M}_{j}=\{\cup^{n}f^{\iota}(M_{j})\}$ .
If $f|M$ : $M_{\ell}\rightarrow M_{\ell}$ then $(f|M_{\ell})^{n}\simeq 1$ rel $\partial M_{i}$ and by induction or lemma ll(a)

below (since $c(M_{\ell})<c(M)$) there is an isotopy $k_{t}^{\ell}$ of $M_{\ell}$ , constant on $\partial M_{\ell}$ , such
that $(k_{1}^{i}\circ f|M_{\ell})‘‘=1|M$ , and we extend $k_{\ell}^{\ell}$ by the identity on $M\backslash M_{\ell}$ to an iso-
topy of $M$. Otherwise, let $m_{\ell}$ be the smallest positive integer such that $f^{m\ell}(M_{\ell})$

$=M_{\ell}$ and let $p_{\ell}=n/m_{i}$ . Since $((f|M)^{m\ell})^{p}\simeq 1$ rel $\partial M_{\ell}$ we find again an isotopy
$k_{\ell}^{\ell}$ of $M$, constant on $M\backslash M_{\ell}$ , such that $(ki^{\circ}(f|M_{\ell})^{m\ell})^{p}=1$ . Let $h=k_{1}^{r}\cdots k_{1}^{1}\cdot f$ and
observe that $h\simeq f$ rel $\partial M$ and $h^{n}=1$ since for eaeh $i,$ $j,$ $h^{n}|M_{i}=(k_{1}^{\ell}(f|M_{i})^{m})^{p}$

and $h^{n}|f_{1}^{f}(M_{\ell})=f^{j}(k_{1}^{\ell}f^{m\ell})^{p}f^{-j}|f^{j}(M_{\ell})=1|f^{f}(M_{\ell})$ .

Lemma 11. Let $M$ be a disjoint union of any of the following spaces:
(a) $D\times S^{1}$

(b) $S^{1}\times S^{1}\times I$

(c) the orientable S’-bundle over the Moebius band.
If $g$ is a map of $M$ such that $g^{n}\simeq 1$ rel $\partial M$ then there is a homeomorPhism

$h\simeq g$ rel $\partial M$ such that $h^{n}=1$ . Furthermore, $h$ is fiber preserving for some fiber
ing of M. In case $(a)$ , if $g|\partial M$ is fiber preserving for a given Seifert fibering
of $M$ then $h$ can be chosen to be fiber preserving.

Proof. As in the proof of lemma 10 it suffices to deal with the case when
$M$ is connected. Also we can assume that $g$ is a homeomorphism.

(a) Let $a$ be a meridian curve on $\partial M^{1}$ Since $ g(a)\simeq\alpha$ there is by lemma 2
a simple closed curve $\beta\simeq\alpha$ with $\vee^{\prime}g^{i}\langle\grave{\beta}$ ) a system of simple closed curves. Let

$\{D_{\lambda(\ell)}\}$ be a family of pairwise disjoint disks in $M$ such that $D_{\lambda(\ell)}\cap\partial M=\partial D_{\lambda(t)}$

$=g^{\ell}(c)$ , where $\lambda(i)=\lambda(j)$ if $g^{\ell}(c)=g^{f}(c)$ . Define $h$ by taking $h|\partial M=g|\partial M$, then
extending $h$ over the meridian disks $D_{\lambda(\ell)}$ by coning, and finally extending $h$

over the rest of $M$ which is a disjoint union of open 3-cells. It is easy to see
that $h$ can be constructed so as to preserve fibers, if $g|\partial M$ is fiber preserving.

(b) We consider only the case that $g(S^{1}\times S^{1}\times 0)=S^{1}\times S^{1}\times 0$ , since the
other case is similar. We parametrize $S^{1}\times S^{1}\times\{0\}$ so that for $j=0$ the homeo-
morphism $g|\partial M$ has the following form:
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$g|_{S^{1}xS^{1}x\dagger jI}$ : $(z_{1}, z_{g}, j)\rightarrow(z_{1}^{a}z_{2}^{b}\exp(2\pi i\alpha_{f}/n), z_{1}^{c}z_{2}^{a}\exp(2\pi i\beta_{j}/n),$ $j$)

where $a,$ $b,$ $c,$ $d,$
$\alpha_{j},$

$\beta_{j}$ are integers, $z_{1},$ $z_{2}$ , are points of $S^{1}$ considered as unit
sphere in the complex plane, and the matrix $\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ has order $n$ .

Since $g$ defines a homotopy between $g|S^{1}\times S^{1}\times\{0\}$ and $g|S^{1}\times S^{1}\times\{1\}$ , we
find an isotopic pair of coordinate curves on $S^{1}\times S^{1}\times\{1\}$ with respect to which
$g|S^{1}\times S^{1}\times\{1\}$ has the above form for $j=1$ . We extend these parametrizations
to a poduct structure on $M=S^{1}\times S^{1}\times I$ .

Let $1=(1,1)\times I\subset M$. If $h$ is a homeomorphism of $M$ such that $h|\partial M=$

$g|\partial M$ then observe that $g\simeq h$ rel $\partial M$ if and only if $g(l)\simeq h(l)$ rel $\partial M$. (This is
because $(M, l\cup\partial M)$ has a relative cell-decomposition into open 2- and 3-cells and
therefore all obstructions to defining the homotopy $h\simeq g$ rel $\partial M$ vanish.) Using
this observation we can now define the desired periodic homeomorphism $h\simeq g$

rel $\partial M$ as follows. Choose integrs $P$ and $q$ so that the arc

$\{$($\exp 2\pi i((p+\frac{a_{1}-\alpha_{0}}{n})t+\frac{\alpha_{1}}{n})$ , exp $(2\pi i(q+\frac{\beta_{1}-\beta_{0}}{n})t+\frac{\beta_{1}}{n}),$ $t$) $;t\in I\}$

is homotopic rel $\partial M$ to the arc $g(l)$ . Then define $h$ by

$h(z_{1}, z_{2\prime}t)=(z_{1}^{a}z_{2}^{b}$ exp $(2\pi i((p+\frac{\alpha_{1}-\alpha_{0}}{n})t+\frac{\alpha_{1}}{n}))$ ,

$z_{1}^{t}z_{2}^{d}$ exp $(2\pi i((q+\frac{\beta_{1}-\beta_{0}}{n})t+\frac{\beta_{1}}{n})),$ $t)$ .
Thus, by construction $h|\partial M=g|\partial M$ and $h(l)\simeq g(l)$ rel $\partial M$. Moreover, $h^{n}(z_{1}, z_{2}, t)$

$=$ ($z_{1}$ exp $(2\pi iu(t)),$ $z_{2}$ exp $(2\pi iv(t)),$ $t$) where $u,$ $v$ are linear functions of $t$ . Hence
$h^{n}=1$ .

(c) $M$ can be fibered over $S^{1}$ with fiber an annulus $A$ . Moreover $M$ con-
tains a Seifert fibered annulus and any two properly embedded essential annuli
are isotopic. Thus $g(A)$ is isotopic to $A$ and $g(\partial A)\simeq\partial A$ on $\partial M$. By lemma 2
we can assume (after an isotopy of $A$ ) that $g(\partial A)=\partial A$ or $ g(\partial A)\cap\partial A=\emptyset$ . Thus
we can define a Seifert fibering of $M$ so that $A$ is a union of fibers and $g|\partial M$

is fiber preserving. By [W] we can then deform $g$ relative to $\partial M$ to make it
fiber preserving on all of $M$. Now lemma 10 applies.

Theorem 1. Let $M$ be a compact, orientable, irreducible Seifert fiber space
with nonempty boundary. If $g$ is a map of $M$ such that $g^{n}\simeq 1$ rel $\partial M$ then there
is a homeomorphism $h$ of $M$ such that $h\simeq g$ rel $\partial M$ and $h^{n}=1$ .

Proof. If $M$ is not one of the three spaces of lemma 11 then by [W], $g$

is isotopic to a fiber preserving homeomorphism, If $T$ is a boundary component
of $M$ invariant under $g$ then a fiber on $T$ is isotopic to $g(\alpha)$ on $T$ . Thus by
lemma 2 we can assume, after an isotopy of the fibering of $M$ near $T$ , that
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$ g(\alpha)=\alpha$ or $ g(a)\cap a=\emptyset$ , and then that $g|T$ is fiber preserving. If $T$ is a
boundary component of $M$ not invariant under $g$ and if $m$ is the smallest posi-

tive integer such that $g^{m}(T)=T$ , we isotope the fibering near $T$ so that $g^{m}$ is

fiber preserving on $T$ and choose the fibering on $g(T),$ $\cdots$ , $g^{m-1}(T)$ to be induced

by $g$ . Thus we can assume that $g|\partial M$ is fiber preserving and by [W] we can
further deform $g$ , by an isotopy constant on $\partial M$, such that afterwards $g$ is

fiber preserving on $M$. Now lemma 10 applies.

We now consider the case that $\partial M=\emptyset$ .

Lemma 12. Let $M$ be one of the following sPaces.
(a) $S^{1}\times S^{1}\times S^{1}$ .
(b) A sufficiently large Seifert fiber space with orbit surface $S^{g}$ and with ex-

actly three exceptiOnal fibers.
(c) The orientable S’-bundle over the Klein bottle.
(d) The union of two twisted I-bundles over the Klein bottle identified along

the two boundary compOnents via an involution interchanging the factors of $S^{1}\times S^{1}$ .
Let $g$ be a maP of $M$ with $g^{n}\simeq 1$ rel $\partial M$. In cases $(b)$ and $(c)$ assume that

Obs $(Z_{n}, \pi, \Psi)=0$ . Then there is a homeomorPhism $h$ of $M$ with $h\simeq g$ rel $\partial M$

and $h^{n}=1$ .

Proof. (a) Let the matrix of $g*on\pi_{1}(M)=Z\oplus Z\oplus Z$ be $(a_{tj})$ and define
$h:S^{1}\times S^{1}\times S^{1}\rightarrow S^{1}\times S^{1}\times S^{1}$ by $h(z_{1}, z_{2}, z_{8})=(z_{1}^{a_{11}}z_{2}^{a_{18}}z_{8}^{a_{18}}, z_{1}^{a_{21}}z_{2}^{a_{22}}z_{s}^{a_{28}}, z_{1}^{a_{81}}z_{2}^{agg}z_{s}^{a_{S8}})$ .
Then $h_{*}=g_{*}$ hence $h\simeq g$ , and $h^{n}=1$ .

(b) $M$ contains an incompressible two-sided surface $F$ that is not a fibered

torus and therefore does not carry the infinite cyclic center of $\pi_{1}(M)$ . It follows

that $M$ can be fibered over $S^{1}$ with $F$ as fiber $ M\approx M_{\phi}=F\times I/\phi$ where $\phi_{*}^{i}$ is an
inner automorphism for some integer $k$ . By Nielsen’s theorem we may assume
$\phi^{k}=1$ . If the image of the center $z$ of $\pi_{1}(M)$ has rank 1 in $H_{1}(M)$ we can
apply [H. T. lemma 6.2] to choose $F$ such that $g(F)\simeq F$. In any other case
$\pi_{1}(F)\cap z\neq 1$ and $F$ is a torus. But periodic homeomorphisms $\phi:S^{1}\times S^{1}\rightarrow S^{1}\times S^{1}$

are classified in $[H;12.3]$ and an element of $\pi_{1}(F)\cap z$ is fixed by $\phi*\cdot$ The only

orientation preserving $\phi$ for which $\phi*leaves$ a nontrivial element fixed is $\phi=1$ ,

which yields $M_{\phi}=S^{1}\times S^{1}\times S^{1}$ , which is not homeomorphic to $M$. Thus in any

case $g$ can be deformed so that $g(F)=F$. By lemma 9 (ii) we can further
isotope $F$ and $g$ so that afterwards $g^{n}\simeq 1$ rel $F$, where $P=\nu g^{\ell}(F)$ is a system

of surfaces. Now we can apply lemma 11 (b) to $M$ cut along $P$ to finish the

proof.
(c) $M$ can also be represented as $ M=S^{1}\times S^{1}\times I/\phi$ , where $\phi(x, y)=(\overline{x}, g)$ .

Therefore the argument of (b) applies.
(d) This manifold is the Seifert fiber space $\{-1;(n_{a}, 1);(2,1), (2,1)\}$ known

as the ”Hantzsche-Wendt” manifold and is discussed as Example 1 in Charlap



ON NIELSEN $S$ THEOREM FOR 3-MANIFOLDS 15

and Vasquez [C. V.]. They show that Out $\pi\cong group$ of Affinities of $M$, where
$M$ is viewed as a flat Riemannian manifold. In fact they calculate Out $\pi$ ex.
plicitely and show that it has order 96. A different proof of this is given in
[M].

Theorem 2. Let $M$ be a compact, orientable, irreducible Seifert fiber $sPace$

which contains an incompressjble fibered torus. SuPpose that $g$ is a map of $M$ to
itself such that $g^{n}$ is homotoffic to the identity. Then $g$ is homotoffic to a homeo-
morPhism $h$ of Period $n$ if and only if Obs $(Z_{n}, \pi_{1}(M),$ $\Psi$) $=0$ . Furthermore, if
$M$ is not one of the exceptiOnal cases considered in lemmas 11 and 12, then $h$ can
be chosen to be fiber preserving.

Proof. We exclude those manifolds covered by lemmas 11 and 12. Thus
we may assume that $g$ is fiber preserving and $g^{n}\simeq 1$ by a fiber isotopy, by [W].
If $\partial M\neq\emptyset$ we can apply lemma 9 (ii) to obtain a homeomorphism $g_{1}\simeq g$ such
that $g_{1}^{n}\simeq 1$ rel $\partial M$ and the result follows from Theorem 1. Thus assume that
$M$ is closed.

Let $p;M\rightarrow M^{*}$ be the projection onto the orbit surface and $E^{*}=p(E)$ the
set of exceptional points. Since $g$ and $G$ are fiber preserving they induce
$g^{*}:$ $M^{*}\rightarrow M^{*}$ and $G^{*}:$ $(g^{*})^{n}\simeq 1$ rel $E^{*}$ . By Nielsen’s Theorem we find a homeo-
morphism $\overline{g}^{\prime}\simeq g^{*}relE^{*}$ such that $(\overline{g}^{\prime})^{n}=1$ . Therefore, looking at the lift of
$\overline{g}^{\prime}$ (Corollary 5) we can now assume that $(g^{*})^{n}=1$ .

Since $M$ contains an incompressible fibered torus, it follows that $M^{*}\backslash E^{*}$ is
different from $S^{2},$ $D^{2}$ and $P^{2}$ .

Case (1) $M$ has no exceptional fibers, $i.e$ . $ E^{*}=\emptyset$ : By lemma 1, we can
lift a simple closed curve in $M^{*}$ to a fibered essential torus $F$ in $M$ such that
either

(a) $P=\{\cup g^{\ell}(F)\}$ is a union of disjoint tori, or
(b) $g^{\ell}(F)$ meets $F$ transversally in fibers and $M^{*}\backslash \cup(g^{*})^{i}(F)$ is a union of

disjoint open disks.
In case (a) after applying proposition9 (ii) we can assume that $g^{n}\simeq 1$ rel $P$.

Then splitting $M$ along $P$, we obtain a Seifert fiber space $M^{\prime}$ with boundary
and a fiber preserving homeomorphism $g^{\prime}=g|M^{\prime}$ with $(g^{\prime})^{n}\simeq 1$ rel $\partial M^{\prime}$ . For
components of $M^{\prime}$ that are invariant under $g^{\prime}$ we apply Theorem 1 or lemma
10 to change $g^{\prime}$ by a homotopy constant on $\partial M^{\prime}$ to a (fiber preserving) homeo-
morphism $h^{\prime}$ of period $n$ . For the other components we repeat the construction
at the end of the proof of lemma 10 to obtain $h^{\prime}\simeq g^{\prime}$ rel $\partial M^{\prime}$ and $(h^{\prime})^{n}=1$ . In
either case we extend $h^{\prime}$ to the desired homeomorphism $h$ by $h|P=g^{\prime}|p$.

In case (b) let $X=\cup\{g^{\ell}(F)\cap g^{j}(F)|g^{i}(F)\neq g^{j}(F)\}$ , a finite set of fibers, and
let $\hat{A}=P\backslash \hat{X}$, a finite set of disjoint open annuli. By lemma 6 and its $pr\ovalbox{\tt\small REJECT} f$ we
can assume that the trace $\tau$ of a basepoint $x_{0}\in\dot{F}\cap\hat{X}$ under the fiber isotopy
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$G:g^{n}\simeq 1$ has the property that $ g(\tau)\simeq\tau$ . Now $G$ induces a cyclic homotopy

$G^{*}:$ $(g^{*})‘‘=1\simeq 1$ of $M^{*}$ with trace $\tau^{*}=P(\tau)$ . Since $\tau^{*}$ represents an element of

the center of $\pi_{1}(M^{*})$ , it follows that either $\tau^{*}\simeq 0$ or $M^{*}$ is a projective plane,

a Klein bottle, or a torus. The first case has been excluded and in the second
and third case $M$ is an S’-bundle over a Klein bottle or torus and can be given

the structure of a torus bundle over $S^{1}$ . These latter cases are included in

lemma 12 (b). Thus we can assume that $\tau^{*}\simeq 0$ and therefore $\tau\simeq\beta^{i}$ rel $x_{0}$ , where
$\beta$ is an (ordinary) fiber of $M$ containing $x_{0}$ . Since $ g(\tau)\simeq\tau$ rel $x_{0}$ , either $\tau\simeq 0$ or
$ g(\beta)\simeq\beta$ rel $X_{0}$ . In the second case we can isotope $g$ along fibers (thus keeping

$g^{*}$ fixed) so that afterwards $\tau\simeq 0$ , and by lemma 7 we can now assume that in
any case $\tau$ is the constant path at $x_{0}$ . By lemma 8(b) (applied to $F$ and $g^{n}$ )

we can now assume that $G:g^{n}\simeq 1$ rel $x_{0}$ and $G(F\times I)\subset F$. Recall that $g^{n}$ is
fiber preserving and $F$ is a fibered torus. Waldhausen’s proof [W] that there

is a fiber preserving $H:g^{n}\simeq 1$ proceeds by deforming $G$ to be fiber preserving

on $F$. Thus we already have this step in Waldhausen’s proof and we can there-

fore assume that $G$ is fiber preserving. Since $G$ leaves the fiber through $x_{0}$

invariant we can assume (by a fiber isotopy of $G$ ) that all fibers of $F$ remain
invariant under $G$ .

Observe that (by the proof of lemma 1) no component of $\hat{X}$ is invariant
under $g^{\ell}$ for each $i\neq 0$ mod $n$ . Thus it is easy to fiber isotope $g$ (without chang-

ing $g^{*}$) so that $(g|\hat{X})^{n}=1|\hat{X}$.
Note that the trace $\tau^{\prime}$ for. any base point on $\hat{X}$ is homotopic to $\beta^{k}$ , for a

fiber $\beta$ , and is carried by that fiber. Pick a component $X$ of $\hat{X}$ in each orbit

{X, $g(X),$ $\cdots$ , $g^{n-1}(X)$ }. If $g:X\rightarrow g(X)$ reverses the orientation of the fiber then
$g(\beta)\simeq\beta^{-1}$ and $g(\tau^{\prime})\simeq\tau^{\prime}$ implies that $k=0$ , hence $\tau^{\prime}\simeq 0$ and we can find a fiber
homotopy $G$ of $g^{n}\simeq 1$ that is constant on $X$. If $g$ preserves the fiber orienta-
tion, we can slide $g$ around in a fiber neighborhood of $X$ to get afterwards
$g^{n}\simeq 1re1\cup g^{i}(X)$ .

Thus we can now assume that $g^{n}\simeq 1$ rel $\hat{X}$. Following the proof of theorem
9 (i) taking $m=n,$ $p=1$ , and $0$ a “tapered neighborhood” of $\hat{A}$ (see Fig. 1) we
can now deform $g$ over the annuli $\hat{A}$ to obtain a (fiber preserving) homeo-
morphism $h^{\prime}\simeq g$ and a (fiber) isotopy $H^{\prime}$ such that $H^{\prime}$ : $(h^{\prime})^{n}\simeq 1$ rel $(\hat{X}\cup\hat{A})$ . Each
component $M^{\prime}$ of ($M$ split along $\hat{X}U\hat{A}$) is a solid torus and $H^{\prime}$ induces an iso-
topy $(h^{\prime}|M^{\prime})^{n}\simeq 1$ rel $\partial M^{\prime}$ . Thus by lemma 10 we can further change $h^{\prime}$ by an
isotopy constant on $\partial M^{\prime}$ to get a homeomorphism $h\simeq h^{\prime}\simeq g$ with $h^{n}=1$ .

Case (2) $M$ contains exceptional fibers: Since $g$ is fiber preserving $r=$

$\cup\{g^{\ell}(\gamma)\}$ is a union of disjoint exceptional fibers, for each exceptional fiber $\gamma$

of $M$.

Case $a$ If there is an exceptional fiber $\gamma$ such that $ g(\gamma)=\gamma$ , we let $U$ be a
fibered solid torus neighborhoood of $\gamma$ and let $F$ be a torus in $U$ that is parallel
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to $\partial U$ and such that FU $ g(F\rangle$ $\subset U$ . Since $F$ and $g(F)$ are parallel to $\partial U$ in $ M\backslash \gamma$ ,
we find a fiberisotopy of $g$ after which $g(F)=F$. Now $F$ is the boundary of a
fibered regular neighborhood $V$ of $\gamma$ and since the fiber isotopy $G$ leaves $\gamma$ in-
variant, we can assume that $V$ is invariant under $G$ . We now repeat the $pr\ovalbox{\tt\small REJECT} f$

of lemma 5.2 of [H. T.] to show that after a deformation of $g$ the isotopy $G$

can be chosen to leave a base point $x_{0}\in F$ fixed: First deform $g$ (keeping $F$

invariant) such that $g(x_{0})=x_{0}$ . Since Obs $(Z_{n}, \pi_{1}(M),$ $\Psi$) $=0$ we may assume
that $ g(\tau)\simeq\tau$ for the trace $\tau$ of $X_{0}$ under $G$ . If $h\in\pi_{1}(M)$ denotes the element
represented by the fiber $\beta$ containing $x_{0}$ and if $q\in\pi_{1}(M)$ denotes the element
represented by a cross-sectional curve to the fibers in $F$ we have $q^{\alpha}=h^{-\beta}$ for
some integers $\alpha>\beta>0$ and $[\tau]=h^{a}q^{b}$ . Suppose $b\neq 0$ . Now $g_{*}(h)=h^{f1}$ and
$g_{*}[\tau]=[\tau]$ implies that $g_{*}(q^{b})=q^{b}h^{(a}$ ‘ $a$ ) Since $g(F)=F$ it follows that $g_{*}(q)=$

$q^{b}h^{c}$, hence $g_{*}(q^{b})=q^{ba}h^{bc}$ . Comparing we see that $d=+1i.e$ . $g_{*}(q)=qh^{c}$ . It
follows that on the orbit surface $M^{*}$ the path $\tau_{*}$ winds around the circle $p*b$

times and that $g^{*}(\tau^{*})\simeq\tau^{*}relx_{0}^{*}$ on $F^{*}$ . Therefore, deforming $g^{*}$ along $F^{*}$ and
lifting, we obtain a fiber isotopy of $g$ , keeping $F$ invariant, after which we
have $\tau^{*}\simeq 0$ rel $x_{0}^{*}$ in $F^{*}$ , hence $\tau\simeq\beta^{n}$ rel $x_{0}$ for some integer $n$ . If $b=0$ then
we already have $\tau\simeq\beta^{n}$ rel $x_{0}$ . Therefore, $ g(\beta)\simeq\beta$ and as before we can slide
$g$ around $\beta$ (by a fiber isotopy of $M$ keeping $F$ invariant) so that afterwards we
have a fiber isotopy $G:g^{n}\simeq 1$ rel $x_{0}$ such that $G(F\times I)\subset F$. As in the proof of
lemma 9 (ii), after applying Nielsen’s Theorem for 2-manifolds, we can also as-
sume that $(g|F)^{n}=1|F$. By the proof of lemma 8 (a) [ $[H$ . T.], (3.4)] (which
does not use incompressibility of $F$), we now obtain an isotopy $G:g^{n}\simeq 1$ rel $F$

and finish the proof as before, by applying Theorem 1 or lemma 10 $to_{J}M$ cut
along $F$.

Case $b$ There is no exceptional fiber $\gamma$ such that $ g(\gamma)=\gamma$ . Since $G$ is fiber
preserving we find a fibered neighborhood $V$ of $\gamma$ such that for $F=\partial V,$ $G(P\times I)$

$\subset P$. We use the first paragraph in the proof of lemma 9 (ii) to obtain fur-
thermore $g^{2}(\tau_{0})\simeq\tau_{\ell}$ rel $g^{\ell}(x_{0})$ , where $\tau_{j}$ is the trace of $g^{j}(x_{0})$ under the isotopy
$G$ , and $x_{0}$ is a basepoint on $F$. Following then that proof from the third para-
graph we obtain a homotopy $K:g^{n}\simeq 1$ rel $(Ug^{\ell}(x_{0}))$ such that $K(P\times I)\subset P$ and
furthermore $(g|F)^{n}=1|F^{n}$ . Because of this last property, the proof of lemma
8 (b) shows that we can in fact choose $K$ so that $K:g^{n}\simeq 1$ rel $P$ . Now the
proof proceeds as before by splitting $M$ along $P$.

Recall that a Haken mainfold is simPle if every rank 2 free abelian sub-
group of $\pi_{1}(M)$ is peripheral. If $\partial M$ consists of tori only, Thurston’s Uniform-
ization Theorem [T] gives a hyperbolic structure of finite volume on the in-
terior of $M$ and Mostow’s Rigidity Theorem [T] implies that every homeo-
morphism $g$ of $M$ for which $g^{n}\simeq 1$ is isotopic to a homeomorphism $h$ such that
$h^{n}=1$ . Using this fact, we now prove a relative version of this result.
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Theorem 3. Let $M$ be a Haken mamfold that is either simple and such that
each compOnent of $M$ is a torus or a Seifert fiber space. Let $F$ be a system of
boundary components and let $g:M\rightarrow M$ be a map with $g^{n}\simeq 1$ rel F. Then there is
a homeomorPhism $h\simeq g$ rel $\partial F$ such that $h^{n}=1$ .

Proof. If a component of $\partial M$ is not incompressible, then $M$ is a solid torus
and the theorem follows from lemma 10 (a). If $M$ is a Seifert fiber space this
follows from Theorem 1. Thus we assume that $M$ is incompressible, that $M$ is
not a Seifert fiber space, and (by [W]) that $g$ is a homeomorphism. We now
follow the proof of Theorem 2 in [H. T. II]: We can assume that $g$ leaves a
collar neighborhood $U=\partial M\times[0,1]$ invariant, where $\partial M=\partial M\times\{0\}$ , and that the
homotopy $G:g^{n}\simeq 1$ carries $U$ itself at each stage. By Thurston and Mostow
there is a homeomorphism $h^{\prime}$ of $M^{\prime}=M\backslash U^{l}$ that is homotopic to $g|M^{\prime}$ with
$(h^{\prime})^{n}=1$ . By [$W$, Theorem 7.1 $(b)$] we can further assume that $h^{\prime}$ is isotopic
to $g|M^{\prime}$ . Extending this isotopy to a homotopy constant on $\partial M$ we obtain a
map $h:M\rightarrow M$ such that $h\simeq g$ rel $\partial M,$ $(h|M^{\prime}\cup\partial M)^{n}=1|M^{\prime}\cup\partial M$ and $h^{n}\simeq 1$ rel $\partial M$

by a homotopy $G$ with $G(U\times I)\subset U$ . It now suffices to show that $h^{\prime}=h|U$ is
homotopic rel $\partial U$ to a map $\overline{h}$ with $\overline{h}^{n}=1$ . For this it suffices by lemma 8 (b) to
construct a homotopy $G^{\prime\prime}$ : $(h^{\prime})^{n}\simeq 1$ rel $\partial U$ .

For a basepoint $x_{0}$ in $\partial M\times\{1\}$ , the trace $\tau$ under the cyclic homotopy
$G|M^{\prime}\times I:h^{\prime n}\simeq 1$ represents an element of the center of $\pi_{1}(M^{\prime})$ , which is trivial
since $M$ is not a Seifert fiber space. By proposition 7 we can assume that
$\tau=x_{0}$ . Thus by restricting $G$ to $U$ , it follows that $(h‘‘ |\partial U)‘‘=1,$ $G‘‘=G|U:(h^{\prime})^{n}$

$\simeq 1$ rel $\{x_{0}\}$ and $G_{l}^{\prime\prime}(\partial U)=\partial U$. By lemma (8b) we can then assume that in
fact $G^{\prime}$ : $(h^{\prime})^{n}\simeq 1$ rel $\partial U$.

If some of the boundary components are not tori we obtain the following.

Corollary. Let $M$ be a simple Haken manifold that contains no essential an-
nulus. Let $F$ be a nonempty system of tori of $\partial M$ and let $g;M\rightarrow M$ be a map
with $g^{n}\simeq 1$ rel F Then there is a homeomorPhsm $h\simeq g$ rel $F$ such that $h^{n}=1$ .

Proof. Let $S_{1},$ $\cdots$ , $S_{k}$ be the components of $\partial M$ different from tori. Let
$\overline{M}$ be the manifold obtained from two copies of $M$ by identifying the two copies
of $S_{\ell}$ by the identity $(i=1, \cdots , k)$ . If $\overline{M}$ would not be simple then by the torus
theorem [J] (see also [Jo], [S]) there would be an essential torus in $ J\varpi$, or ffi
would be a Seifert fiber space. That latter case can not occur since $\overline{M}$ contains
an incompressible closed surface $S_{i}$ different from a torus, but $\partial\overline{M}\neq\emptyset$ (see $e.g$.
[He, Theorem 2]). In the former case any essential torus in $\overline{M}$ would intersect
$M$ in annuli at least one of which would be essential. Thus $\overline{M}$ is simple.

There is an involution $i:\overline{M}\rightarrow\overline{M}$ that interchanges the two copies of $M$ and
$g$ induces a homeomorphism $\overline{g}:\overline{M}\rightarrow\overline{M}$ that commutes with $i$ . Since we can as-
sume (by [W]) that $G$ is an isotopy of $M$ it follows that $G$ induces an isotopy
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$\overline{G}:\overline{g}^{n}\simeq 1$ on $\overline{M}$ (that is constant on the two copies $\overline{F}$ of $F$). By Thurston and
Mostow, $i$ is homotopic to an involution $j$ that is an isometry and $\overline{g}$ is homo-
topic to an isometry $\overline{h}$ such that $\overline{h}^{n}=1$ . Since $\overline{g}$ commutes with $i$, the isometry
$\overline{h}j\overline{h}^{-1}j^{-1}$ is homotopic to the identity and hence (by the uniqueness part of
Mostow’s theorem) equal to the identity. By Tollefson [To] there is a homeo-
morphism $\overline{f}\simeq 1$ such that $i=\overline{f}^{-1}j\overline{f}$ . Now $j$ is an involution with fix point set
$\overline{f}(\hat{S})$ and it follows that $\overline{h}f(\hat{S})=\hat{S}$ , where $\hat{S}=S_{1}\cdots S_{k}$ . Let $\overline{t}:\overline{M}\rightarrow\overline{M}$ be a homeo-
morphism isotopic to the identity that maps $f(\hat{S})$ to $\hat{S}$ . Then $ t\overline{h}\overline{t}^{-1}\simeq\overline{g}\sim$ and
$\overline{t}\overline{h}\overline{t}^{-1}(\partial M)=\partial M$. By the proof of lemma 9 (ii) or [$W$ , Theorem 7.1] we can find
an isotopy $\overline{K}:\overline{t}\overline{h}\overline{t}^{-1}\simeq\overline{g}$ such that $\overline{K}(\hat{S}\times I)\subset\hat{S}$ . Thus $\overline{K}$ induces a homotopy be-
tween $h^{\prime}=\overline{t}\overline{h}\overline{t}^{-1}|M$ and $\overline{g}|M$ to give $h^{\prime}\simeq g$ on $M$ with $(h^{\prime})^{n}=1$ . Now we repeat
the proof of Theorem 3 to obtain a homeomorphism $h\simeq h^{\prime}$ such that $h^{n}=1$ and
$h\simeq g$ rel $F$.
\S 5. Nielsen’s theorem for closed sufficiently large 3-manifolds.

Theorem 4. Let $M$ be a closed Haken mamfold that is not a Seifert fiber
space. SuPpose $g$ is a map of $M$ to itself such that $g^{n}$ is $homoto\mu c$ to the identity.
Then $g$ is homotoffic to a homeomorphism $h$ with $h^{n}=1$ .

Proof. As before we can assume that $g$ is a homeomorphism of $M$. By
the splitting Theorem of Jaco-Shalen [J. S.] and Johannson [J] there exists a
system $F$ of mutually disjoint incompressible tori that splits $M$ into $\sigma(M)=$

$M_{1}U\cdots\cup M_{m}\cup N_{1}\cup\cdots\cup N_{q}$, where each $M_{\ell}$ is a Seifert fiber space and each
$N_{\ell}$ is simple. Furthermore, $F$ is unique up to isotopy. Thus, after an isotopy
of $g$ , we may assume that $g(F)=F$, and by lemma 9 (ii) we can furthermore
assume that $(g|F)^{n}=1|F$ and that there is an isotopy $G:g^{n}\simeq 1$ rel $F$.

The case $q=0$ is excluded by hypothesis and the case $m=0$ follows from
Thurston and Mostow. Thus assume that $m+q>1$ .

The isotopy $G$ induces an isotopy of $(g|M_{\ell})^{n}\simeq 1$ rel $\partial M_{i}$ and $(g|N_{j})^{n}\simeq 1$

rel $\partial N_{f}$ and we can apply Theorem 3 to deform each $g|M_{i}$ and $g|N_{f}$ by a
homotopy that is constant on $F$ to homeomorphisms $h_{\ell}$ and $h_{j}$ such that $h_{\ell}^{n}=$

$1|M_{\ell}$ and $h_{j}^{n}=1|N_{f}$ . This gives the desired deformation of $g$ to a homeo-
morphism $h$ with $h^{n}=1$ .

Fig. 1
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