A NOTE ON THE CENTRAL LIMIT THEOREM FOR STATIONARY STRONG-MIXING SEQUENCES

By

Toshio Mori and Ken-ichi Yoshihara

(Received July 2, 1986)

1. Introduction and results

Let $\{X_n, n \ge 1\}$ be a strictly stationary sequence of random variables. Suppose that the sequence $\{X_n\}$ satisfies $EX_1 = 0$, $EX_1^2 < \infty$ and the strong-mixing condition, i.e.

(1)
$$\alpha(n) \equiv \sup\{|P(A \cap B) - P(A)P(B)|: A \in \mathscr{F}_0^m, B \in \mathscr{F}_{n+m}^\infty\} \downarrow 0$$

as $n \to \infty$, where \mathscr{F}_m^n denotes the σ -algebra generated by X_m , X_{m+1} , \cdots , X_n . Let $S_0 = 0$, $S_n = X_1 + \cdots + X_n$ for $n \ge 1$, and $S_n^2 = ES_n^2$. It is well known (see [3] Theorem 18.4.2) that under the assumption

(2)
$$s_{\sigma}^{2} = \sigma^{2} n(1 + o(1)), \quad 0 < \sigma < \infty$$

 $S_n/s_n \xrightarrow{d} N(0, 1)$ if and only if $\{(S_n/s_n)^2, n \ge 1\}$ is uniformly integrable, i.e.

(3)
$$\lim_{a\to\infty} \sup_{n\geq 1} E\{(S_n/s_n)^2 I(|S_n/s_n|>a)\} = 0.$$

Recently in [4] one of the authors gave the following theorem (see [4] Theorem 1): under the assumption (3) $S_n/s_n \to N(0, 1)$ if and only if the sequence $\{s_n^2\}$ satisfies a certain condition which implies $s_n^2 \to \infty$ and is implied by (2). However "only if" part of this theorem is false, as is shown by a simple counterexample (see p. 315 of [3]). This theorem should be corrected as follows: under the assumption on $\{s_n^2\}$ stated above, $S_n/s_n \xrightarrow{d} N(0, 1)$ if and only if (3) holds. The purpose of this note is to strengthen the last statement and prove the following theorem:

Theorem. Suppose $s_n^2 \to \infty$ as $n \to \infty$. Then in order that $S_n/s_n \xrightarrow{d} N(0, 1)$ it is necessary and sufficient that (3) hold. If this is the case then there exists a slowly varying function h on $(0, \infty)$ such that $s_n^2 = nh(n)$.

Theorem 2 of [4] should also be read as follows: Suppose that $\{X_n\}$ is strictly stationary ϕ -mixing and satisfies $s_n \to \infty$, then $S_n/s_n \xrightarrow{d} N(0, 1)$ if and only if (3) holds. Obviously this statement is implied by our theorem. It should also be noted that Herrndorf [3] proved that the weak invariance principle for ϕ -mixing stationary sequence $\{X_n\}$ holds if and only if (3) and

$$\lim_{n\to\infty} P\left\{\max_{1\leq i\leq n} |X_i| \geq \varepsilon s_n\right\} = 0$$

hold for every $\varepsilon > 0$.

2. Proof

We prove the theorem applying the following lemma which is a part of Theorem 18.4.1 of [3].

Lemma 1. Suppose that $s_n^2 = nh(n)$ where h is a slowly varying function on $(0, \infty)$, and suppose that

(4)
$$\lim_{n \to \infty} \frac{n}{p(n)s_n^2} E(S_{p(n)}^2 I(|S_{p(n)}| > \varepsilon s_n)) = 0$$

holds for some sequence $\{p(n)\}$ of positive integers such that $p(n) \to \infty$, p(n) = o(n), and there exists a sequence $\{q(n)\}$ of positive integers satisfying the following three conditions:

(a)
$$q(n) \to \infty$$
, $q(n) = o(p(n))$ as $n \to \infty$

(b)
$$\lim_{n \to \infty} n^{1+c} q(n)^{1-c} p(n)^{-2} = 0 \quad \text{for some} \quad c > 0$$

(c)
$$\lim_{n\to\infty} np(n)^{-1}\alpha(q(n)) = 0.$$

Then $S_n/s_n \stackrel{d}{\to} N(0, 1)$.

To apply this result we need the following lemma. In what follows we write $\xi_{m,n} = (S_n - S_m)/s_{n-m}$ for $0 \le m < n$ and $\xi_n = \xi_{0,n} = S_n/s_n$.

Lemma 2. If $s_n^2 \to \infty$ and (3) holds, then there exists a sequence $\{\beta(n)\}$ satisfying $0 < \beta(n) \to 0$ and

$$(5) |E\xi_m\xi_{m+\tau,m+n+\tau}| \leq \beta(\tau)$$

for $m, n, \tau \ge 1$.

Proof. For simplicity we writen $\eta_n = \xi_{m+\tau, m+n+\tau}$. Let

$$\xi_n^{(M)} = \xi_n I(|\xi_n| \le M), \qquad \bar{\xi}_n^{(M)} = \xi_n - \xi_n^{(M)}$$

and

$$\eta_n^{(M)} = \eta_n I(|\eta_n| \le M), \qquad \bar{\eta}_n^{(M)} = \eta_n - \eta_n^{(M)}$$

Define a function γ by

$$\gamma(M) = \sup_{n \ge 1} E(\xi_n^{(M)})^2$$

for M>0. It follows from the uniform integrability of $\{\xi_n^2\}$ that

(7)
$$\gamma(M) \downarrow 0 \quad \text{as} \quad M \to \infty.$$

By Theorem 17.2.1 of [3] and by stationarity we have

$$|E\xi_m^{(M)}\xi_n^{(M)}| \leq 4M^2\alpha(\tau)$$
,

and

$$E(\bar{\xi}_n^{(M)})^2 = E(\bar{\eta}_n^{(M)})^2 \leq \gamma(M) ,$$

and therefore

$$|E\xi_m^{(M)}\bar{\eta}_n^{(M)}| \le \{E(\xi_m^{(M)})^2 E(\bar{\eta}_n^{(M)})^2\}^{1/2} \le \{\gamma(M)E\xi_m^2\}^{1/2} = \gamma(M)^{1/2}$$
.

Similarly we obtain

$$|E_{m}^{\mathcal{E}(M)}\eta_{n}^{(M)}| \leq \gamma(M)^{1/2}$$

and

$$|E_{\zeta_m}^{\xi(M)}\bar{\eta}_n^{(M)}| \leq \{E(\bar{\zeta}_m^{(M)})^2 E(\bar{\eta}_n^{(M)})^2\}^{1/2} \leq \gamma(M) \leq \gamma(M)^{1/2}.$$

These inequalities together prove that

(8)
$$|E\xi_{m}\eta_{n}| \leq |E\xi_{m}^{(M)}\eta_{n}^{(M)}| + |E\xi_{m}^{(M)}\bar{\eta}_{n}^{(M)}| + |E\bar{\xi}_{m}^{(M)}\eta_{n}^{(M)}| + |E\bar{\xi}_{m}^{(M)}\bar{\eta}_{n}^{(M)}|$$

$$\leq 4M^{2}\alpha(\tau) + 3\gamma(M)^{1/2},$$

for any positive integers m, n, τ and for arbitrary M > 0. Choosing $M = \alpha(\tau)^{-1/2 + \delta}$, where $\delta > 0$, is an arbitrary constant, we define β by

$$\beta(\tau) = 4\alpha(\tau)^{2\delta} + 3\{\gamma(\alpha(\tau)^{-1/2+\delta})\}^{1/2}$$
.

It follows from (1) and (7) that $\beta(\tau) \to 0$ as $\tau \to \infty$. By (8) we have $|E\xi_m \eta_n| \le \beta(\tau)$ for positive integers m, n and τ .

Proof of Theorem. The necessity follows from Theorem 5.4 of [1]. We shall prove the sufficiency. Suppose $s_n^2 \to \infty$ and $\{\xi_n^2\}$ is uniformly integrable. In view of Lemma 2 we can apply the proof of Theorem 18.2.3 of [3] to prove that $s_n^2 = nh(n)$ with some slowly varying function h (see p. 330 of [3]). It is well known that h admits the following representation:

$$h(x) = c(x) \exp\left(\int_1^x \frac{\phi(u)}{u} du\right),$$

where $\lim_{x\to\infty} c(x) = 1$ and $\lim_{x\to\infty} \phi(x) = 0$. If we define

$$\psi(x) = \sup_{y \ge x} |\phi(y)|$$

for $x \ge 1$, then $\psi(x)$ is nonincreasing and $\lim_{x \to \infty} \psi(x) = 0$. Therefore, if we put

$$a(n) = \max\{n^{-1/2}, \psi(n^{1/2})\}$$

then

(9)
$$\lim_{n\to\infty} \int_{a(n)}^{1} \frac{\psi(nv)}{v} dv = 0.$$

Now, let

$$\lambda(n) = \max\{ (\alpha[n^{1/4}])^{1/3}, (\log n)^{-1} \},$$

$$p = \max \left\{ \left\lceil \frac{n\alpha([n^{1/4}])}{\lambda(n)} \right\rceil, \left\lceil \frac{n^{3/4}}{\lambda(n)} \right\rceil, na(n) \right\} \text{ and } q = [n^{1/4}].$$

Then sequences $\{p(n)\}$ and $\{q(n)\}$ satisfy conditions (a), (b), (c) in Lemma 1. By (7) and (9) we have for every $\varepsilon > 0$

$$\frac{n}{p(n)s_n^2} E\{S_{p(n)}^2 I(|S_{p(n)}| > \varepsilon s_n)\} = \frac{h(p(n))}{h(n)} E\{\left(\frac{S_{p(n)}}{s_{p(n)}}\right)^2 I\left(\left|\frac{S_{p(n)}}{s_{p(n)}}\right| > \varepsilon \frac{s_n}{s_{p(n)}}\right)\}$$

$$= \frac{c(p(n))}{c(n)} \exp\left(-\int_{p(n)}^n \frac{\phi(u)}{u} du\right) E\{\xi_{p(n)}^2 I\left(|\xi_{p(n)}| > \varepsilon \frac{s_n}{s_{p(n)}}\right)\}$$

$$\leq \frac{c(p(n))}{c(n)} \exp\left(\int_{a(n)}^1 \frac{\psi(nv)}{v} dv\right) \gamma\left(\frac{\varepsilon s_n}{s_{p(n)}}\right) \sim \gamma\left(\frac{\varepsilon s_n}{s_{p(n)}}\right)$$

as $n \to \infty$. Since $s_n/s_{p(n)} \to \infty$ as $n \to \infty$, (4) follows from (7). Thus we can apply Lemma 1 to show $\xi_n \stackrel{d}{\to} N(0, 1)$. This proves the theorem.

Added to the proof. Very recently, in [5] Denker obtained the same result by a different method to ours.

References

- [1] Billingsley, P.: Convergence of probability measures, New York: Wiley, 1968.
- [2] Herrndorf, N.: The invariance principle for ϕ -mixing sequences, Z. Wahrscheinlichkeits verw. Geb., 63, 47–108 (1983).
- [3] Ibragimov, I. A. and Linnik, Yu. V.: Independent and stationary sequences of random variables. Groningen: Wolters, Noordhoff, 1971.
- [4] Yoshihara, K. Central limit theorems for stationary mixing sequences. Yokohama Math. J., 33, 131-137 (1985).
- [5] Denker, M.: Uniform integrability and the central limit theorem for strongly mixing processes. In: Eberlein, E. and Taqqu, M. S., eds., Dependence in probability and statistics, Boston, Birkhäuser, 1986, pp. 269-274.

Department of Mathematics Yokohama City University 22-2 Seto, Kanazawa-ku Yokohama, 236 Japan Department of Mathematics Faculty of Engineering Yokohama National University 156, Tokiwadai, Hodogaya-ku Yokohama, 240 Japan