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\S 1. Preliminaries

For $F=R,$ $C$, or $H$ let $G_{p,q}(F)$ denote the real, complex, or quaternion
Grassmann manifolds ofp-planes in $F^{p+q}$ . Our purpose is to characterise $G_{p,q}(F)$ and
its non-compact dual $G_{p,q}^{*}(F)$ by means of a particular parallel tensor field $T$ of type
$(1, 3)$ and the Weingarten map on geodesic spheres.

Historically, the problem was first considered by L. Vanhecke and T. J.
Willmore who characterised spaces of constant curvature and spaces of constant
holomorphic sectional curvature [6]. These results were generalised by D. E. Blair and
the author in [1] for $F=R$ and in [4] for $F=C$. The case $G_{2,q}(R)$ has also been
considered by B. J. Papantoniou [5] using the Hermitian structure which exists in
that instance. Since our present purpose is to present a unified treatment we avoid
using Hermitian structures. In this respect the conditions imposed here differ from
those of [4] but have the advantage of relating closely to those of [1]. In fact they are
considerably weaker than those of [1] since, as our proof shows, one of the conditions
given there is redundant.

We begin with some general remarks on Jacobi vector fields and geodesic
spheres. Let $M$ be a Riemannian manifold of dimension $n>2$ and let $B$ be a normal
neighbourhood of a point $m$ in $M$. We may take $B$ to be a geodesic ball of radius $r$ .
Choose an orthonormal basis for the tangent space $M_{m}$ and let $\{x^{i}\},$ $i=1,2,$ $\cdots,$ $n$ , be
the corresponding normal coordinate system on $B$. Write $N$ for the unit vector field
on $B\backslash \{m\}$ tangent to geodesic rays from $m$ , thus $N=(x^{i}/s)(\partial/\partial x^{i})$ where $s$ denotes
geodesic distance from $m$ . Let $V$ be the unit tangent field to a geodesic $\gamma:(-r, r)\rightarrow B$

with $\gamma(0)=m$ , choose a non-zero vector $W_{m}=a^{i}(\partial/\partial x^{i})_{m}$ normal to $V_{m}$ , and let $Y=$
$a^{i}s(\partial/\partial x^{i})$ on $B$. Then on $\gamma\backslash \{m\}$ we have $[Y, N]=0$ and $R(N, Y)N=\nabla_{N}\nabla_{Y}N=\nabla_{N}^{2}$ Y.
Consequently, the vector field $X$ on $\gamma$ defined by $X_{\gamma\langle\sigma)}=a^{i}\sigma(\partial/\partial x^{i})_{\gamma\{\sigma)},$ $-r<\sigma<r$,
satisfies

(1.1) $\nabla_{X}N=\nabla_{N}X$

on $\gamma\backslash \{m\}$ , and, by continuity,
(1.2) $R(V, X)V=\nabla_{V}^{2}X$ on $\gamma$ .
Thus $X$ is the Jacobi vector field on $\gamma$ for which
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(1.3) $X_{m}=0$ and $\nabla_{V_{m}}X=W_{m}$ .

In particular, $X$ is normal to $V$ and, for any point $q$ on $\gamma$ , the subspace of $M_{q}$ normal
to $V_{q}$ is formed by evaluating all such Jacobi vector fields at $q$ . Now write $A=-\nabla N$.
For any geodesic sphere $S$ in $B$ with centre $m$ , the restriction of $A$ to tangent vectors
to $S$ isjust the Weingarten map with respect to $N$ as unit normal vector field. Also, by
(1.1) and (1.2), we have on $\gamma\backslash \{m\}$ ,

$R(N, X)N=-\nabla_{N}AX$

(1.4)
$=A^{2}X-(\nabla_{N}A)X$ .

This equation is linear in $X$, hence, from the above remarks, it is valid for arbitrary
vector $fieldsXonB\backslash \{m\}$ , where we note from the definition ofA that AN $=0$ .

Next suppose $M$ is a Riemannian locally symmetric space. With the previous
notation, suppose $W_{m}$ satisfies

$R(V_{m}, W_{m})V_{m}=cW_{m}$ .

Let $X$ be the Jacobi vector field on $\gamma$ satisfying (1.3), and $W$ the parallel vector field on
$\gamma$ with initial value $W_{m}$ . Now $R(V, W)V=cW$ since $\nabla R=0$ , hence $fW$ is a Jacobi
vector field on $\gamma$ with the same initial conditions (1.3) as $X$ when we choose

$f(\sigma)=\left\{\begin{array}{ll}|c|^{-1/2}\sin(|c|^{1/2}\sigma) & if c<0\\c^{-1/2}\sinh(c^{1/2}\sigma) & if c>0\\\sigma & if c=0\end{array}\right.$

Thus X$=fW$. Then, asaconsequence of (1.1) and the definition of A,

(1.5) $AW=-\frac{N(f)}{f}W$ .

Since the Riemannian curvature at $m$ is bounded, the set of eigenvalues $c$ of
$R$(V., –) $V_{m}$ taken over all unit vectors $V_{m}$ is bounded, say $|c|<k^{2},$ $k>0$ . Thus if $B$ is
a geodesic ball of radius $<\pi/k$ then $f$ is nowhere zero on $\gamma\backslash \{m\}$ . Equation (1.5) now
has the following immediate consequence.

Proposition 1.1. Let $m$ be a point in a Riemannian locally symmetric space of
dimension $>2$ . Then $m$ has a normal neighbourhood $B$ such that, for each unit vector
$V_{m}\in M_{m}$ and corresponding geodesic $\gamma$ , the parallel translate of an eigenspace of the
linear map $R(V_{m}$ , –$)$ $V_{m}$ along $\gamma$ is contained in an eigenspace of the Weingarten map
for each geodesic sphere in $B$ with centre $m$ .

\S 2. Statement of main theorem

We consider $G_{p,q}(F)$ as the homogeneous Riemannian symmetric space
$SO(p+q)/SO(p)\times SO(q),$ $SU(p+q)/S(U_{p}\times U_{q})$ or $Sp(p+q)/Sp(p)xSp(q)$ for $F=R$ ,
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$C$, or $H$ respectively. The tangent space at any point $m\in G_{p,q}(F)$ can be identified with
the vector space $F_{p,q}$ of all $p\times q$ matrices over $F$ considered as a real vector space with
inner product

(2.1) $g(X, Y)=re$ tr $X\overline{Y}$‘ ,

where $\overline{Y}$ denotes conjugation of $Y$ in $F_{p,q}$ and $\overline{Y}=Y$ when $F=R$ . The corresponding
Riemannian curvature tensor $R$ at $m$ is given by

(2.2) $R(X, Y)Z=X\overline{Y}^{t}Z+Z\overline{Y}^{t}X-Y\overline{X}^{t}Z-Z\overline{X}^{t}$ Y.

Similarly, for the non-compact dual $G_{p,q}^{*}(F)$ , the curvature tensor is just the negative
of this, and it will be sufficient to consider the compact case. Of course the metric $g$

can be replaced by any metric homothetic to it without affecting $R$ .
The tensor $T$ of type $(1, 3)$ defined at $m$ by

(2.3) $T(X, Y, Z)=X\overline{Y}^{t}Z$

is invariant by the isotropy group so extends to a parallel tensor field on $G_{p,q}(F)$ , also
denoted by $T$. We define real linear endomorphisms $T_{XY},$ $T^{XY}$ , and $T_{X}^{Y}$ at $m$ by

$T_{XY}Z=T(X, Y, Z)$ , $T^{XY}Z=T(Z, X, Y)$ , $T_{X}^{Y}Z=T(X, Z, Y)$ .
Then it is easily verified that $T$ has the following properties at $m$ , hence on $G_{p,q}(F)$ :

$P_{1}$ : $g(T(X, Y, Z), W)=g(T(Z, W, X)Y)=g(T(Y, X, W), Z)$ ;
$P_{2}$ : $T(T(X, Y, Z), U, V)=T(X, T(U, Z, Y), V)=T(X, Y, T(Z, U, V))$ ;
$P_{3}$ : there exist positive real numbers $\mu,$ $v,$ $\omega$ such that for each unit vector $X$

(a) tr $ T^{XX}=\mu$ , (b) tr $T_{XX}=v$ , (c) tr $ T_{X}^{X}=2-\omega$ , (d) $tr(T_{X}^{X^{2}})=\omega$ ;
$P_{4}$ : $\dim G_{p,q}(F)=\mu v/\omega$ .

We note from (2.3) that the values of $\mu,$ $v,$ $\omega$ are given by $\mu=\omega p,$ $v=\omega q$ , and $\omega=$

dim $F$. However, for the purpose of later references these relations are omitted from
the above properties.

Particular use will be made ofunit vectors $X$ at $m$ satisfying $T(X, X, X)=X$. Such
vectors can be characterised as in the following lemma which is easily proved using
elementary matrix methods or equivalence under the isotropy group.

Lemma 2.1. Suppose $X\in F_{p,q}$ satisfies re $trX\overline{X}^{t}=1$ . Then $X\overline{X}^{t}X=X$ ifand only
if $X=(x_{i}y_{\alpha})$ for $x_{1},$ $\cdots,$ $x_{p},$ $y_{1},$ $\cdots,$ $y_{q}\in F$.

As an easy consequence of (2.2) and Lemma 2.1 we see that if $V$ is a unit vector
at $m$ such that $T(V, V, V)=V$ then the self-adjoint linear map $R(V$, –$)$ $V$ acting on
$V^{\perp}$ , the orthogonal complement of $V$, has three eigenspaces. These are $T_{V}^{V}(V^{\perp})$ ,
$(T_{VV}+T^{VV}+2T_{V}^{V})(V^{\perp})$ , and their orthogonal complement in $V^{\perp}$ . From this and
Proposition 1.1. the next lemma is immediate.

Lemma 2.2. Let $m\in G_{p,q}(F)$ , choose a normal neighbourhood $B$ of $m$ as in
Proposition 1.1, and let $\gamma\subset B$ be any geodesic ray from $m$ with unit tangent vectorfield
$V$ satisfying $T(V, V, V)=V$. Write $V^{\perp}for$ the distribution of orthogonal complements
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to $V$ along $\gamma$ . Then the Weingarten map $A$ has the following property.
$P_{5}$ : At each point of $\gamma\backslash \{m\}$ each of the three subspaces $T_{V}^{V}(V^{\perp})$ ,

$(T_{VV}+T^{VV}+2T_{V}^{V})(V^{\perp})$ , and their orthogonal complement in $V^{\perp}is$ contained in an
eigenspace of $A$ .

We remark that $T_{V}^{V}V^{\perp}$ is trivial when $F=R$ . The main theorem can now be
stated as follows.

Theorem 2.3. Let $M$ be a non-flat, complete, simply connected Riemannian
manifold of dimension $\geq 3$ and let $T$ be a parallel tensor field of type $(1, 3)$ on $M$

satisfying $P_{1},$ $P_{2},$ $P_{3}$ . Then in $P_{3},$ $\omega=1,2$ , or 4 and $\mu=\omega p,$ $v=\omega q$ for some positive
integers $p$ and $q$ . Now suppose dim $M=\omega pq$ as in $P_{4}$ , and that each $m\in M$ has a normal
neighbourhood in which each geodesic ray $\gamma$ from $m$ with unit tangent vector field $V$

satisfying $T(V, V, V)=V$, has property $P_{5}$ . Then $M$ is homothetic to $G_{p,q}(F)$ or $G_{p,q}^{*}(F)$

where $F=R,$ $C,$ $H$ corresponds to $\omega=1,2,4$ .

\S 3. A characterisation of $T$ on $F_{p,q}$

The proof of the theorem depends largely on a characterisation of the structure
described earlier on the tangent space to $G_{p,q}(F)$ at any point. For this purpose, we
require the following result.

Proposition 3.1. Let $\Lambda$ be a real finite dimensional vector space with inner
product $\langle, \rangle$ , and let $T$ be a tensor of type $(1, 3)$ on $\Lambda$ satisfying $P_{1},$ $P_{2},$ $P_{3}$ with $\langle, \rangle$

replacing $g$ . Then $\omega=1,2$ , or 4, and $\mu=\omega p,$ $v=\omega q$ for some positive integers $p,$ $q$ . Now
suppose dim $\Lambda=\omega pq$ , and write $F=R,$ $C,$ $H$ corresponding to $\omega=1,2,4$ . Then there is
a linear isomorphism of $\Lambda$ onto $F_{p,q}$ , considered as a real vector space, such that, under
identification,

$T(X, Y, Z)=X\overline{Y}^{t}Z$ and \langle X, $ X\rangle$
$=trX\overline{X}^{t}$

The proof requires several lemmas which refer to $\Lambda$ under the above assump-
tions. The first of these lemmas provides a useful duality; the proof is immediate.

Lemma 3.2. Define a tensor $S$ on $\Lambda$ by $S(X, Y, Z)=T(Z, Y, X)$ , and write
$S_{XY}=Y^{YX},$ $S^{XY}=T_{YX}$ , and $S_{Y}^{X}=T_{X}^{Y}$ . Then $P_{1},$ $P_{2}$ are satisfied when $T$ is replaced by $S$,
and $P_{3}$ is satisfied with $T^{XX}$ and $T_{XX}$ are replaced by $S_{XX}$ and $S^{XX}$ respectively.

This shows that any property of $T_{XY}$ (resp. $T_{X}^{Y}$) has a dual for $T^{YX}$ (resp. $T_{Y}^{X}$) and
conversely, provided $\mu$ and $v$ are exchanged in $P_{3}$ . In what follows we make frequent
use of this duality by stating or proving lemmas for one case only. Also we remark
that $P_{1}$ and $P_{2}$ may be used occasionally without reference.

Lemma 3.3. For each non-zero $ X\in\Lambda$ , the linear endomorphisms $T_{XX},$ $T^{XX}$ , and
$T_{X}^{X}$ are self-adjoint and $T(X, X, X)\neq 0$ .

Proof. The self-adjoint properties are clear from $P_{1}$ . Also, from $P_{3}(b)$ , there
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exists $Y$ such that $T(X, X, Y)\neq 0$ . Then from $P_{1}$ and $P_{2}$ ,

$ 0<\langle T(X, X, Y), T(X, X_{J}Y)\rangle=\langle T(X, X, T(X, X, Y)),\cdot Y\rangle$

$=\langle T(T, X, X, X), X, Y), Y\rangle$ .
Thus $T(X, X, X)\neq 0$ .

Lemma 3.4. Suppose $X,$ $Y\in\Lambda$ are non-zero and $T(X, X, Y)=\lambda Y$. Then im $T_{YY}$ is
contained in the $\lambda$-eigenspace of $T_{XX}$ . If $T(X, X, X)=\lambda X$ then $\lambda$ is the only non-zero
eigenvalue of $T_{XX}$ .

Proof. For any $ Z\in\Lambda$ ,

$T(X, X, T(Y, Y, Z))=T(T(X, X, Y), Y, Z)$

$=\lambda T(Y, Y, Z)$

and the result follows. The last part of the lemma is justa particular case.
From now on we use the following notation. Define $ D\subset\Lambda$ by $X\in D$ if and only if

$X=0$ or rk $ T_{XX}=\min$ { $rkT_{YY}:Y\in\Lambda$ and $Y\neq 0$}. Then for each non-zero $X\in D$ write
$\Lambda_{X}=imT_{XX}$ . Dually, we define $ D^{\prime}\subset\Lambda$ by replacing $T_{XX},$ $T_{YY}$ above by $T^{XX},$ $T^{YY}$ and
writing $\Lambda^{X}=imT^{XX}$ for $X\neq 0$ . However, $D^{\prime}=D$ as (iii) of the next lemma shows.
Finally, we write $\Lambda_{X}^{X}=\Lambda_{X}\cap\Lambda^{X}$ .

Lemma 3.5. Let $X$ and $Y$ be non-zero vectors such that $X\in D$ and $Y\in\Lambda_{X}$ . Then
(i) $\Lambda_{X}\subset D$ ;

(ii) $\Lambda_{X}=\Lambda_{Y}$ ;
(iii) $T(X, X, X)=k\Vert X\Vert^{2}X$ where $k\Vert X\Vert^{2}rkT_{XX}=v$ and

$ k=\max${ $\theta|T(Z,$ $Z,$ $Z)=\theta Z$ and $\Vert Z\Vert=1$ }, conversely, any vector $V$ satisfying this
equation belongs to $D$ .

(iv) $T_{XX}|\Lambda_{X}=k\Vert X\Vert^{2}I$ whereI is the identity map on $\Lambda_{X}$ , and $T_{XX}(\Lambda_{X}^{\perp})=0$ where
$\Lambda_{X}^{\perp}is$ the orthogonal complement of $\Lambda_{X}$ in $\Lambda$ .

Proof. We may assume that $X$ and $Y$, as given in the lemma, are unit vectors. As
a consequence of Lemmas 3.3 and 3.4, $T_{XX}$ has exactly one non-zero eigenvalue, say
$\lambda$ , possibly with multiplicity $>1$ . Since $ T(X, X, Y)=\lambda$ Ythen, from the definition of $X$

and Lemma 3.4, $T_{YY}$ has a unique non-zero eigenvalue $\theta$ and im $T_{XX}=imT_{YY}$ which
proves (i) and (ii). The last equation also shows that $ T(Y, Y, Y)=\theta$ Y. Furthermore,
$T_{XX}$ and $T_{YY}$ are self-adjoint and have the same trace $v$ . Hence $\theta=\lambda$ . Next, let $X_{1}$ be
the orthogonal projection of $X$ onto the $\lambda$-eigenspace of $T_{XX}$ , noting from Lemma 3.3
that $X_{1}\neq 0$ . Then

$\lambda^{3}\Vert X_{1}\Vert^{2}X_{1}=\lambda^{2}T(X_{1}, X_{1}, X_{1})$

$=T(T(X, X, X), l\int X, X, X),$ $X_{1}$ )

$=T(X, X, T(X, T(X, X, X), X_{1}))$

$=T(X,$ $X,$ $T(X, X, T(X, X, X_{1}))$
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$=T_{XX}^{3}X_{1}$

$=\lambda^{3}X_{1}$ .

Thus $\Vert X_{1}\Vert=1$ so $X=X_{1}$ and $T(X, X, X)=\lambda X$. Since rk $ T_{XX}=v/\lambda$ and is a minimum
then the first part of (iii) follows. Conversely, if $ T(V, V, V)=k\Vert$ V||2 $V$ then rk $T_{VV}=$

rk $T_{XX}$ so $V\in D$ as required. Finally, (iv) is immediate since $T_{XX}$ is self-adjoint and $\Lambda_{X}$

is the k-eigenspace of $T_{XX}$ .
Lemma 3.6. If $Y\in\Lambda_{X}$ and $V,$ $ W\in\Lambda$ then $T(Y, V, W)\in\Lambda_{X}$ .

Proof. $Y=T(X, X, Z)$ for some $ Z\in\Lambda$ . Hence, from $P_{2}$ ,

$T(Y, V, W)=T(T(X, X, Z), V, W)$

$=T(X, X, T(Z, V, W))\in\Lambda_{X}$ .

In the rest of this section let $U$ be a unit vector in $D$ . Now for any $X,$ $Y\in\Lambda_{U}^{U}$ ,

$T(X, X, Y)=T(Y, X, X)=k\Vert X\Vert^{2}Y$ ,

and linearization gives, in particular,

$T(X, Y, X)+T(Y, X, X)=2k\langle X, Y\rangle X$ .

These equations imply

Lemma 3.7. For all $X,$ $Y\in\Lambda_{U}^{U}$ ,

$T_{X}^{X}Y=2k\langle X, Y\rangle X-k\Vert X\Vert^{2}$ Y.

On the other hand we have the following result for $(\Lambda_{U}^{U})^{\perp}$ .

Lemma 3.8. If $X\in\Lambda_{U}^{U}$ and $Y\in(\Lambda_{U}^{U})^{\perp}then$ $T_{X}^{X}Y=0$ .
Proof. Since $T_{X}^{X}$ is self adjoint it is sufficient to prove $T_{X}^{X2}Y=0$ .

Let $ Z\in\Lambda$ . Then $T_{X}^{X^{2}}Z=T_{XX}T^{XX}Z=T^{XX}T_{XX}Z$ so $T_{X}^{X^{2}}Z\in\Lambda_{U}^{U}$ . Hence

$\langle T_{X}^{X^{2}}Y, Z\rangle=\langle Y, T_{X}^{X^{2}}Z\rangle=0$

which proves the lemma.

Lemma 3.9. (i) For any non-zero vector $X\in\Lambda_{U}^{U},$ $\Lambda_{X}^{X}=\Lambda_{U}^{U}=T_{X}^{X}(\Lambda_{X}^{X})$ ;
(ii) $k=1$ ;

(iii) $\iota fY\in D$ is non-zero then dim $\Lambda_{Y}^{Y}=\omega$ .
Proof. From Lemma 3.5 (ii) and its dual, $\Lambda_{X}^{X}=\Lambda_{U}^{U}$ and $\Lambda_{U}^{U}=T_{X}^{X}(\Lambda_{X}^{X})$ from

Lemma 3.7, this proves (i). From Lemmas 3.7 and 3.8, the non-zero eigenvalues of
$T_{U}^{U}$ are $kand-k$ with multiplicity 1 and $d-1$ , where $d=\dim\Lambda_{U}^{U}$ . Hence, using $P_{3}$ , we
have $ k(2-d)=2-\omega$ and $ k^{2}d=\omega$ from which $(k-1)(kd+2)=0$ . Now from Lemma
3.5, $k$ is positive, hence $k=1$ and dim $\Lambda_{U}^{U}=\omega$ . This proves (ii) and (iii) follows since
the choice of unit vector $U\in D$ is arbitrary.
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Lemma 3.10. $\Lambda_{U}^{U}$ admits a multiplication with respect to which it is isomorphic to
$R,$ $C$, or H. In particular $\omega=1,2$ , or 4.

Proof. Define a bilinear binary operation on $\Lambda_{U}^{U}$ by $X\cdot Y=T(X, U, Y)$ . We
show that $\Lambda_{U}^{U}$ becomes a real associative division algebra and the lemma follows
using Frobenius’ Theorem. Clearly $U$ is a unit because $k=1$ . Also multiplication is
associative since

$(X\cdot Y)\cdot Z=T(T(X, U, Y), U, Z)$

$=T(X, U, T(Y, U, Z))$

$=X\cdot(Y\cdot Z)$ .
Next, for any $X\in\Lambda_{U}^{U}$ , define $\overline{X}=T(U, X, U)$ . Then $\overline{X}\in\Lambda_{U}^{U}$ and

$X\cdot\overline{X}=T(X, U, T(U, X, U))=T(T(X, U, U), X, U)$

$=T(X, X, U)=\Vert X\Vert^{2}U$ .
Hence any non-zero $X$ has an inverse $\Vert X\Vert^{-2}\overline{X}$ and the proof is complete.

Lemma 3.11. Suppose $X$ and $Y$ are unit vectors in $\Lambda_{U}$ with $Y$ orthogonal to $\Lambda_{X}^{X}$ .
Then

(i) $\langle\Lambda_{X}^{X}, \Lambda_{Y}^{Y}\rangle=0$

(ii) $T(\Lambda_{X}^{X}, \Lambda_{Y}^{Y}, \Lambda)=\{0\}$ .

Proof. Let $V\in\Lambda_{X}^{X}$ and $W\in\Lambda_{Y}^{Y}$ . Then from Lemma 3.6 and its dual,

$\langle T(X, V, X), T(Y, W, Y)\rangle=\langle T(W, Y, T(X, V, X), Y\rangle$

$=\langle T(W, T(V, X, Y), X), Y\rangle$

$=0$ ,

and (i) follows using Lemma 3.9 (i). Next, for $ V\in\Lambda$ ,

$\langle T(X, Y, V), T(X, Y, V)\rangle=\langle T(Y, X, T(X, Y, V)), V\rangle$

$=\langle T((T(Y, X, X), Y, V), V\rangle$ .
Now $T(X, X, Y)=Y$ so from Lemma 3.8, $T(Y, X, X)=l(T(X, X, Y), X, X)=$
$T_{X}^{X^{2}}Y=0$ . Hence $T(X, Y, V)=0$ , and (ii) follows using (i).

Proof of Proposition 3.1. From Lemmas 3.9 and 3.11 together with their duals,
$\Lambda_{U}$ (resp. $\Lambda^{U}$) is an othogonal direct sum of subspaces of the form $\Lambda_{X}^{X},$ $X\in\Lambda_{U}$ (resp.
$X\in\Lambda^{U})$ , each of dimension $\omega$ . Since $k=1$ , we obtain using Lemma 3.5 and its dual,
dim $\Lambda_{U}=rkT_{UU}=v=\omega q$ and dim $\Lambda^{U}=rkT^{UU}=\mu=\omega p$ for some positive integers $p$

and $q$ .
For convenience of notation, write $U=e=e_{11}$ . From Lemma 3.10, we may

consider $\Lambda_{U}^{U}$ as a l-dimensional right vector space over $F$ with vectors $ef,$ $f\in F$.
Next, from the above remarks, we may choose sets of orthogonal unit vectors
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$\{e_{11}, \cdots, e_{1q}\}\subset\Lambda_{e}$ and $\{e_{11}, \cdots, e_{p1}\}\subset\Lambda^{e}$ such that $\Lambda_{e}=\Lambda_{1}^{1}\oplus\cdots\oplus\Lambda_{1}^{q}$ and $\Lambda^{e}=$

$\Lambda_{1}^{1}\oplus\cdots\oplus\Lambda_{p}^{1}$ where $\Lambda_{1}^{\alpha}=\Lambda_{e_{1\alpha}}^{e_{1\alpha}},$ $\Lambda_{i}^{1}=\Lambda_{e}^{e_{i_{1}^{1}}}$ for $\alpha=1,$ $\cdots,$ $q,$ $i=1,$ $\cdots,p$ , and the direct
sums are orthogonal. Now define $e_{i\alpha}=T(e_{i1}, e, e_{1\alpha})$ for $i=1,$ $\cdots,p,$ $\alpha=1,$ $\cdots,$ $q$

noting consistency when $i=1$ or $\alpha=1$ . Then $e_{i\alpha}\in\Lambda_{e_{i1}}\cap\Lambda^{e_{1\alpha}}\subset D$ and we write $\Lambda_{e_{i\alpha}^{i\alpha}}^{e}=$

$\Lambda_{i}^{\alpha}$ . From Lemma 3.9 (iii), each $\Lambda_{i}^{\alpha}$ has dimension $\omega$ . Also, we note from Lemma 3.11
(ii) and its dual form that for $\alpha\neq\beta$ and $i\neq j$

$T(e_{1\alpha}, e_{1\beta}, \Lambda_{1}^{1})=T(\Lambda_{1}^{1}, e_{i1}, e_{j1})=\{0\}$ ,

and it follows easily that $\Lambda_{i}^{\alpha}$ and $\Lambda_{i}^{\beta}$ are orthogonal if $\alpha\neq\beta$ or $i\neq j$. Since dim $\Lambda=\omega pq$ ,
$\Lambda$ is the orthogonal direct sum of subspaces $\Lambda_{i}^{\alpha},$ $i=1,$ $\cdots,p,$ $\alpha=1,$ $\cdots,$ $q$ .

Next write $f$ for the conjugate of any $f\in F$ and define $e_{i}J=T(e_{i1}, ef, e_{1\alpha})$ , noting
that consistency for $i=\alpha=1$ follows from the definition of $\overline{X}$ in Lemma 3.10. Then for

$f,$ $g,$ $h\in F$,

$T(e_{i\alpha}f, e_{j\beta}g, e_{k\gamma}h)=T(T(e_{i1}, ef, e_{1\alpha}), e_{j\beta}g, e_{k\gamma}h)$

$=T(e_{i1}, T(T(e_{j1}, e\overline{g}, e_{1\beta}), e_{1\alpha}, ef), e_{k\gamma}h)$

$=T(e_{i1}, T(e_{j1}, e\overline{g}, T(e_{1\beta}, e_{1\alpha}, ef)), e_{k\gamma}h)$

$=\delta_{\alpha\beta}T(e_{i1}, T(e_{j1}, e\overline{g}, ef), e_{k\gamma}h)$

$=\delta_{\alpha\beta}T(e_{i1}, ef, T(e\overline{g}, e_{j1}, e_{k\gamma}h))$

$=\delta_{\alpha\beta}T(e_{i1}, ef, T(e\overline{g}, e_{j1}, T(e_{k1}, ek, e_{1\gamma})))$

$=\delta_{\alpha\beta}T(e_{i1}, ef, T(T(e\overline{g}, e_{j1}, e_{k1}), e\overline{h}, e_{1\gamma}))$

$=\delta_{\alpha\beta}\delta_{jk}T(e_{i1}, ef, T(e\overline{g},e\overline{h}, e_{1\gamma}))$

$=\delta_{\alpha\beta}\delta_{jk}T(e_{i1}, T(ek, e\overline{g}, ef), e_{1\gamma})$ .
Now

$ekgf=T(T\langle ek, e, eg),$ $e,$ $ef$ )

$=T(eF, T(e, eg, e), ef)$

$=T(ek,e\overline{g}, ef)$ .

Hence

(3.1) $T(e_{i\alpha}f, e_{j\beta}g, e_{k\gamma}h)=T(e_{i1}, ekg\overline{f,}e_{1\gamma})\delta_{\alpha\beta}\delta_{jk}$

$=e_{i\gamma}f\overline{g}h\delta_{\alpha\beta}\delta_{jk}$ .

Since each $\Lambda_{i}^{\alpha}=T(e_{i1}, \Lambda_{1}^{1}, e_{1\alpha})=e_{1\alpha}F$, it follows that $\Lambda$ can be considered as a $ri$ght
vector space over $F$ with basis $\{e_{i\alpha}\}i=1,$ $\cdots,p,$ $\alpha=1,$ $\cdots,$ $q$ . Then, by considering
$F_{p,q}$ as a right vector space over $F$, we have an F-linear isomorphism

$\phi:\Lambda\rightarrow F_{p,q}$ ;
$\sum_{i,\alpha}e_{i\alpha}x_{i\alpha}-(x_{i\alpha})$ .
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We may, of course, consider $\phi$ as a real linear isomorphism by regarding $\Lambda$ and $F_{p,q}$

as real vector spaces. From (3.1),

$T(e_{i\alpha}x_{i\alpha}, e_{j\beta}y_{j\beta}, e_{k\gamma}z_{k\gamma})=e_{i\gamma}x_{i\alpha}\overline{y}_{j\alpha}z_{j\gamma}$ ,

where, as usual, we use the summation convention. Thus, if elements of $\Lambda$ are
represented by their corresponding matrices then $T(X, Y, Z)$ corresponds to $X\overline{Y}^{t}Z$.
Finally, using Lemma 3.10,

$\langle e_{i\alpha}x_{i\alpha}, e_{j\beta}x_{j\beta}\rangle=\langle T(e_{i1}, e\overline{x}_{i\alpha}, e_{1\alpha}), e_{j\beta}x_{j\beta}\rangle$

$=\langle T(e_{1\alpha}, e_{j\beta}x_{j\beta}, e_{i1}), e\overline{x}_{i\alpha}\rangle$

$=\langle e\overline{x}_{i\alpha}, e\overline{x}_{i\alpha}\rangle$

$=x_{i\alpha}\overline{x}_{i\alpha}$

$=trX\overline{X}^{t}$

and the proof is complete.

Remark 3.12. Proposition 3.1 has a dual form obtained essentially by ex-
changing $p,$ $q$ and replacing $T$ by $S$ as defined in Lemma 3.2. Thus, write each basis
vector $e_{i\alpha}$ as $\epsilon_{\alpha i}$ and write any $ X\in\Lambda$ as $\epsilon_{\alpha i}x_{\alpha i}$ . Then an F-linear isomorphism
$\psi:\Lambda\rightarrow F_{q,p}$ is defined by $\epsilon_{\alpha i}x_{\alpha i}\mapsto(x_{\alpha i})$ ; clearly $\psi=t\circ\phi$ where $t;F_{p,q}\rightarrow F_{q,p}$ is the
transpose. If elements of $\Lambda$ are represented by their corresponding matrices in $F_{q,p}$

then $S(X, Y, Z)=T(Z, Y, X)$ corresponds to $X\overline{Y}^{t}Z$ and $\langle\epsilon_{\alpha i}x_{\alpha i}, \epsilon_{\beta j}x_{\beta j}\rangle=trX\overline{X}^{t}$ .

\S 4. Proof of main theorem

Before proving the main theorem, one further lemma is required. We use the
previous notation except possibly for the restriction on $U$.

Lemma 4.1. Let $R$ be a tensor oftype $(1, 3)$ on $\Lambda$ with the symmetry properties of
a Riemannian curvature tensor. Suppose for all $X,$ $ Y\in\Lambda$ and $Z\in D$

(i) $R(Z, X)Z=0$ and (ii) $R(X, Y)T=0$ .
Then $R=0$ .

Proof. For non-zero $Z\in D$ consider $R$ acting on vectors $ V\in\Lambda$ and $U,$ $W\in\Lambda_{Z}$

(or $U,$ $W\in\Lambda^{Z}.$) Then (i) implies

(4.1) $R(U, V)W+R(W, V)U=0$ .
Also (4.1) and the Bianchi identity imply

(4.2) $2R(U, V)W=R(U, W)V$ .
It follows from (4.1) and (4.2) that if $U,$ $V,$ $W\in\Lambda_{Z}$ or $U,$ $V,$ $W\in\Lambda^{Z}$ then
(4.3) $R(U, V)W=0$ .
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Next let $X,$ $Y\in\Lambda$ and let $U\in D$ be a unit vector. Then from (ii),

$R(X, Y)U=R(X, Y)T(U, U, U)$

$=T(R(X, Y)U,$ $U,$ $U$) $+T(U, R(X, Y)U, U)$

$+T(U, U, R(X, Y)U)$ .

Consequently, from Lemma 3.6 and its dual together with Lemma 3.7, we have

(4.4) $R(X, Y)U\in\Lambda_{U}+\Lambda^{U}$

Now each subspace $\Lambda_{e_{i\alpha}}$ (resp. $\Lambda^{e_{i\alpha}}$) of $\Lambda$ is independent of $\alpha$ (resp. i) and we write it as
$\Lambda_{i}$ (resp. $\Lambda^{\alpha}$). Then from (4.3) and (4.4),

(4.5) $R(\Lambda_{i}, \Lambda_{i})\Lambda_{i}=R(\Lambda^{\alpha}, \Lambda^{\alpha})\Lambda^{\alpha}=0$

and
$R(\Lambda, \Lambda)\Lambda_{i}^{\alpha}\subset\Lambda_{i}+\Lambda^{\alpha}$ ,

for all $l,$ $\alpha$ .
Suppose now that $i\neq j$ and $\alpha\neq\beta$ . Since $\Lambda_{i}+\Lambda^{\alpha}$ and $\Lambda_{j}^{\beta}$ are orthogonal then from

(4.6)

(4.7) $\langle R(\Lambda, \Lambda)\Lambda_{i}^{\alpha}, \Lambda_{j}^{\beta}\rangle=0$ ,

equivalently

(4.8) $R(\Lambda_{i}^{\alpha}, \Lambda_{j}^{\beta})=0$ .

Also from (4.1), (4.4), (4.8), and the Bianchi identity we see that if $i\neq j$ and $\alpha\neq\beta$ then
$\langle R(\Lambda, \Lambda_{i}^{\alpha})\Lambda_{j}^{\beta}, \Lambda_{j}+\Lambda^{\beta}\rangle=\langle R(\Lambda, \Lambda_{j})\Lambda_{i}^{\alpha}, \Lambda_{j}+\Lambda^{\beta}\rangle$

$=\langle R(\Lambda_{j}^{\beta}, \Lambda)(\Lambda_{j}+\Lambda^{\beta}), \Lambda_{i}^{\alpha}\rangle$

$=\langle R(\Lambda_{j}+\Lambda^{\beta}, \Lambda)\Lambda_{j}^{\beta}, \Lambda_{i}^{\alpha}\rangle$

$=0$ .
This relation together with (4.6) gives

(4.9) $R(\Lambda, \Lambda_{i}^{\alpha})\Lambda_{j}^{\beta}=0$ .
As a consequence of (4.5), (4.8), and (4.9), $R(\Lambda_{i}^{\alpha}\Lambda_{j}^{\beta})\Lambda_{k}^{\gamma}=0$ for all $i,j,$ $k=1,$ $\cdots,p$ and
$\alpha,$

$\beta,$ $\gamma=1,$ $\cdots,$ $q$ , so $R=0$ as required.

Proof of Theprem 2.3. From the conditions of the theorem, there exist
functions $f_{1},f_{2},f_{3}$ along $\gamma\backslash \{m\}$ such that if $X$ is any vector field along $\gamma$ normal to $V$

then, at each point $p$ of $\gamma\backslash \{m\},$ $X_{1}=T(V, X, V),$ $X_{2}=T(V, V, X)+T(X, V, V)+$

$2T(V, X, V)$ , and $X_{3}=X+X_{1}-X_{2}$ are orthogonal eigenvectors of $A$ with eigen-
values $f_{1}(p),$ $f_{2}(p),$ $f_{3}(p)$ respectively. We note that $X_{1}=0$ when $\omega=1$ in $P_{4}$ , that is
when $F=R$ , so in this case take $f_{1}=0$ . For all remaining cases it is clear from the
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representation of $T$ in Proposition 3.1 that there exists a parallel vector field $X$

along $\gamma$ for which $X_{1},$ $X_{2}$ , and $X_{3}$ are non-zero. Then, by taking inner products
$g(AX_{i}, X_{i}),$ $i=1,2,3$ , we see that $f_{1},$ $f_{2},$ $f_{3}$ are smooth functions. Next, it is im-
mediate from equation (1.4) that along $\gamma\backslash \{m\},$ $X_{1},$ $X_{2}$ , and $X_{3}$ are eigenvectors of
$R(V$, –$)$ $V$. The corresponding eigenfunctions $f_{i}^{2}-V(f_{j}),$ $i=1,2,3$ , are independent
of $X$, and it follows by continuity that, at $m$ , each of the subspaces $T_{V}^{V}(V^{\perp})$ ,
$(T_{VV}+T^{VV}+2T_{V}^{V})(V^{\perp})$ , and their orthogonal complement in $V^{\perp}$ is contained in an
eigenspace of $R(V$, –$)$ . Also, $V^{\perp}$ is an orthogonal direct sum of these three
subspaces. Clearly these relations hold for any non-zero vector $V$ at $m$ satisfying
$T(V, V, V)=g(V, V)V$. As before, write $D$ for the set of all such vectors including
zero, also write $D_{1}$ for the subset of unit vectors in $D$ . The above properties of the
curvature tensor $R$ at $m$ can be described equivalently as follows. There exist
functions $u,$ $v,$ $w$ on $D_{1}$ such that if $V\in D_{1}$ and $X\in M_{m}$ is orthogonal to $V$ then

(4.10) $R(V, X)V=u(V)X+v(V)RV,$ $X,$ $V$)

$+w(V)(T(V, V, X)+T(X, V, V))$ .
Next, we prove that $u=0$ and $v,$ $w$ are constant on $D_{1}$ . This requires Proposition

3.1 so, for convenience of notation, we write $M_{m}$ as $\Lambda$ . First assume $pq>1$ and choose
$U\in D_{1}$ . Then, as shown in the proof of Proposition 3.1, $\Lambda$ can be considered as a right
vector space over $F$ with an orthonormal basis $\{e_{i\alpha}\}$ of vectors in $D_{1}$ for which $U=$

$e_{11}$ . If $p\geq 2$ and $q\geq 2$ then from (4.10), $R(U, e_{22})U=u(U)e_{22}$ . But $T$ is parallel so
$R(X, Y)T=0$ for all $X,$ $ Y\in\Lambda$ . Hence, as in the proof of Lemma 4.1,
$R(X, Y)U\in\Lambda_{U}+\Lambda^{U}$ . Since $e_{22}$ is orthogonal to $\Lambda_{U}+\Lambda^{U}$ , it follows that $u(U)=0$ , so
$u=0$ on $D_{1}$ . If$p=1$ or $q=1$ then, in (4.10), $X=T(V, V, X)+T(X, V, V)+T(V, X, V)$

and we may assume $u=0$ .
Before considering $w$ and $v$ we note that in (4.10) the condition that $X$ and $V$

should be orthogonal can be removed by replacing $X$ by $X-g(X, V)V$. Then
properties $P_{1},$ $P_{2}$ and the symmetry of $g(R(X, Y)X,$ $Y$) in $X$ and $Y$ imply that for all
$X,$ $Y\in D_{1}$ ,

(4.11) $(v(X)-v(Y))(g(T(X, Y, X), Y)-(g(X, Y))^{2})$

$+(w(X)-w(Y))(g(T(X, X, Y), Y)+g(T(Y, X, X), Y)$

$-2(g(X, Y))^{2})=0$ .

To prove that $v$ and $w$ are constant, assume $pq>1$ and apply (4.11). We obtain
$(w(e_{j\alpha}x)-w(e_{k\beta}y))(\delta_{jk}+\delta_{\alpha\beta})=0$ for all $j,$ $k=1,$ $\cdots,p,$ $\alpha,$ $\beta=1,$ $\cdots,$ $q$ , and $|x|=|y|=$

$1$ ; so $w(e_{j\alpha}x)=w(e_{j\beta}y)=w(e_{k\beta}y)$ . Next choose $X\in D_{1}$ ; thus by Lemma 2.1, $X=e_{i\alpha}x_{i}y_{\alpha}$ .
Assume that $x_{i},$ $y_{\alpha},$ $y_{\beta}$ are non-zero for some $i,$ $\alpha,$

$\beta$ with $\alpha\neq\beta$ , and write $Y=e_{i\alpha}z$ where
$z=x_{i}y_{\alpha}|x_{i}y_{\alpha}|^{-1}$ (not summed). Then in (4.11), $v(X)-v(Y)$ and $w(X)-w(Y)$ have
coefficients zero and $|x_{i}|^{2}\sum_{\gamma}|y_{\gamma}|^{2}+|y_{\alpha}|^{2}\sum_{j}|x_{j}|^{2}-2|x_{i}|^{2}|y_{\alpha}|^{2}\geq|x_{i}|^{2}|y_{\beta}|^{2}>0$ respec-
tively, from which $w(X)=w(Y)=w(e_{i\alpha}Z)=w(e_{11})$ . A similar proof applies if $X$ has
components with some $x_{i},$ $x_{j},$ $y_{\alpha}$ non-zero, and it follows that $w$ is constant on $D_{1}$ . In
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considering $v$ , we may assume $\omega=2$ or 4, as remarked earlier. Now choose $t\in F$ such
that $i^{2}=-1$ , and, for any $x,$ $y\in F$ with $|x|=|y|=1$ , write $Z=((e_{j\alpha}ix+e_{j\beta}iy)1/\sqrt{2})$ ,
$\alpha\neq\beta$ . Clearly $Z\in D_{1}$ and then (4.11) gives $v(e_{j\alpha}x)=v(Z)=v(e_{j\beta}y)$ . Similarly, $v(e_{j\beta}y)=$

$v(e_{k\beta}y)$ , from which $v(e_{j\alpha}x)=v(e_{j\beta}y)=v(e_{k\beta}y)$ for all $j,$ $k,$
$\alpha,$

$\beta$ . Then for any $X=$

$e_{j\alpha}x_{j}y_{\alpha}\in D_{1}$ with some $x_{k},$ $y_{\beta}\neq 0$ , write $Y=e_{k\beta}z$ where $z=ix_{k}y_{\beta}|x_{k}y_{\beta}|^{-1}$ (not sum-
med). From (4.11), $v(X)=v(Y)=v(e_{11})$ so $v$ is constant on $D_{1}$ .

Finally, suppose $p=q=1$ . This case arises only when $\omega=4$ since dim $M\geq 3$ .
Also, in (4.10), $X=T(V, V, X)=T(X, V, V)=-T(V, X, V)$ so the equation reduces
to the form

$R(V, X)V=w(V)X$ .

If $Y$ is a unit vector orthogonal to $V$ and $X$ then clearly $w(V)=w(Y)=w(X)$ so $w$ is
constant as required. Moreover, $(M, g)$ is a space of constant curvature and the
theorem is proved for $p=q=1$ and $\omega=4$ . We have established that in all cases $u=0$

and $v,$ $w$ are constants.
Next we may assume $q>1$ and choose $U\in D_{1}$ and a basis $\{e_{i\alpha}\}$ with $U=e_{11}$ as

before. We prove that the constants $v,$ $w$ satisfy $v+2w=0$ by considering only the
subspace $\Lambda_{U}$ of $\Lambda$ . First, as an easy consequence of (4.10) and the Bianchi identity, for
all $X,$ $Y,$ $Z\in\Lambda_{U}$ ,

(4.12) $3R(X, Y)Z=(v-w)P(X, Y)Z+(v+2w)Q(X, Y)Z$

where $P$ and $Q$ are tensors of type $(1, 3)$ on $\Lambda$ defined by

$P(X, Y)Z=T(X, Y, Z)+T(Z, Y, X)-T(Y, X, Z)-T(Z, X, Y)$ ,

$Q(X, Y)Z=g(X, Z)Y-g(Y, Z)X$ .
Clearly $P$ and $Q$ correspond to the curvature tensors on $G_{p,q}(F)$ and a spaoe of
constant curvature respectively. In particular, this observation or a direct calculation
shows that, for all $X,$ $Y\in\Lambda,$ $P(X, Y)T=0$ . Also $R(X, Y)T=0$ since $T$ is parallel on $M$.
Now $T(X, Y, Z)\in\Lambda_{U}$ for all $X,$ $Y,$ $Z\in\Lambda_{U}$ so the above comments and (4.12) show
that either $v+2w=0$ or, for all $X,$ $Y\in\Lambda_{U},$ $Q(X, Y)T_{U}=0$ where $T_{U}$ is the restriction of
$T$ to vectors in $\Lambda_{U}$ . But

$e_{12}=Q(e_{11}, e_{12})e_{11}$

$=Q(e_{11}, e_{12})(T_{U}(e_{11}, e_{11}, e_{11}))$

$=(Q(e_{11}, e_{12})T_{U})(e_{11}, e_{11}l, e_{11}\iota)$ ,

so $v+2w=0$ . Then from (4.10) the tensor $L=R-(v/2)P$ on $\Lambda$ satisfies (i) and (ii) of
Lemma 4.1, hence $R=(v/2)P$ on $\Lambda$ . Clearly this relation holds everywhere on $M,$ $v$

now being regarded as a real-valued function on $M$. Sinoe $G_{p,q}(F)$ is an Einstein space
with curvature tensor of the form P, it follows that $(M, g)$ is also an Einstein space
and $v$ is a constant, say $2a$ . Since $P$ is parallel then so is $R$ so $(M, g)$ is a symmetric
space where we assume, as in the theorem, that $(M, g)$ is complete, simply connected
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and non-flat, that is $a\neq 0$ .
It remains only to obtain (2.2) for a metric $\overline{g}$ on $M$ homothetic to $g$ . Define $\overline{g}=$

$|a|g$ and $\overline{T}(X, Y, Z)=|a|T(X, Y, Z)$ on $M$. Then $P_{1}-P_{5}$ are satisfied for $\overline{g}$ and $\overline{T}$.
Thus the conditions of the theorem still apply and, since the curvature tensor is
unchanged, we have

(4.13) $R(X, Y)Z=\frac{a}{|a|}(\overline{T}(X, Y, Z)+\overline{T}(Z, Y, X)-\overline{T}(Y, X, Z)-\overline{T}(Z, X, Y))$

for all vector fields $X,$ $Y,$ $Z$ on $M$. Now assume $a>0$ . Given $M,$ $g$ , and $T$ as in the
theorem, the real numbers $\omega,$ $p$ and $q$ are uniquely determined. Then it is immediate
from Proposition 3.1 and equations (2.1), (2.2), and (4.13) that the tangent spaces at
any two points of $G_{p,q}(F)$ and $M$ are related by a linear isomorphism which preserves
inner products and the curvature tensors. Henoe $G_{p.q}(F)$ and $M$ are isometric since
each is complete and simply connected. A corresponding result applies to $G_{p,q}^{*}(F)$ if
$a<0$ , and the proof is complete.
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