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Let y be a smooth curve of finite length L(y) in an m-dimensional Riemannian
manifold M. Let P, be any geodesic polygon with »n sides which is inscribed in y. Let
L(P,) be the length of P,. We denote the geodesic curvature of y by «. In this paper we
prove the following inequality:

Theorem.

3
lim n(L(y)— L(P,)) 2 = U K”’]

We also construct an inscribed polygon P, for each » such that the equahty in the
above inequality holds.

This is a generalization of a theorem by A. M. Gleason [2] which gives the
inequality for curves in Euclidean spaces.

Let s be the arc-length parameter of y.

Lemma 1. Fix s, and let L(t) be the length of 7|[s,, So+1]. Let D(t)=
dy(Y(So), Y(so + 1)) where dy, is the distance in M. Then

Dt)= L)~ 5oL+ o L))

Proof. Since y is parameterized by arc-length, L(f)=t. Let f(£)=D(¢)*>. Let
{e; i=1, - - -, m} be an orthonormal basis for T, M, the tangent space of M at y(so)-
Let (x,, - x,,,) be the normal coordinate system associated with {e;}: To each point
p in a neighborhood of y(s,) we assign the coordinates (x,, ---,x,) if p=
€XPyso( izt Xi€;). We set
0 0 0 m 0
- d Vsyor—= re«—,
9ii <ax ax,.> and Voexgy 2z Dz
where (,) is the Riemannian metric on M and V is the Levi-Civita connection
associated with (, >. g;; and I'j; k satlsfy the following conditions for all i, j and k at

Y(so):
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(1) 9:1(¥(80))=9;
(2) I (s0)=0.

(See [T}, for instance.)
Fix (a,, -, a,) € R™. We define a curve o(u) on M by x,(6(u)) = ua,. The tangent
vector of a(u) is

m d m
3) G’(u)=i21 du xi{otu »_=,; 'ax '
Since a(u) is a geodesic on M,
(4) Vo= al——=0.
i,j.k a
Since ;= x;/u, it follows from (4) that
(5) Z xx; =0
for all k.
We set x,(£) =x(y(so+1)). Then f(1)=3; x;(¢)*. Since x,(0)=0, we have
(6) f(0)=0
(7) f(0)=0
(8) . f"0)=2% x{0)*
(9) f"0)=63 x(0)x(0)
(10) f "”(0)-—:62 x/(0)2+ 82 x(0)x;"(0) .

Let T be the tangent vector of y so that T'=3, x[(£)0/dx;. Since y is parameterized by
arc-length, (T, T) =1. This implies that

11) Y xiox g, =1
where g;,(£)=g;(7(so + ). From (1), (8) and we have
(12) f"(0)=2.

We set I'¥(#) = I (y(so+ ). Since

72T =3 (<0+ ¥{Ox O H0) 5
k Xk

(2) implies that
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” a
(13) VT | o =2. xi(O)gx—i.

Since <V T, Ty =0, using (1), (9) and we have

(14) f70)=0.

Differentiating twice and evaluating at =0, we obtain

(15) X (@x"0)xi(0)+2x/(0°)+ Y 4x{(0)x(0)gi£0) + 2. x{0)x(0)g(0)=0.

i,j i,Jj
Since g{(1) = .1 xi(DT1(Dg,;() + ' (Dgi(2)), (2) implies that
(16) gi(0)=0.
Since

gi(0)=Y XX 0)g,(0) + T i0)gu0) + xO{T ) Ogi0) + T ialt)g i)

+(M) O9:0) + Ti(g 10} ,
it follows from (1) and (2) that

(17) 92',(0)‘—‘; [xk(OXT £)(0) + x(OXT ;) (0)] -
Differentiating (5) three times and evaluating at t=0, we obtain

(18) Z, x{(0)x (OXT" ) (0)=0

for all k. From and we have

(19) Z} x{(0)x'{0)g(0)=0.

Combining (15), and [(19), we have

(20) 2,: x;"(0)xi(0)= —Xi: x;(0)*.

Since k(s,)? =3, x/(0)*> by (1) and [(13), it follows from and that
(21) S"(0)=—2i(s,)* .

Using (6), (7), (12), (14) and [21), we obtain the following Taylor expansion for f:

(22) flty=t? ——11—2K(s0)2t4+0(t4)
Since f(t)= D(?)?, implies that

(23) D(t)=t —% K(so)?t3+o(t3).
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- This completes the proof of Lemma 1.

Proof of the theorem. We will prove the following statement from which the
theorem follows immediately.
For any ¢>0 there is an integer r such that

24) (n+ P(Ly) — L(P,)) 3 > 24~ 13 f <23ds— eL()

v
for all polygons P, having n sides.
Let =7|[s,, 5,] be a subarc of y. Let & be the geodesic segment which joins y(s; )
and y(s,). By Lemma 1, for any ¢ >0 there exists a >0 such that

(25) (L) — L(o))'* — 247 Pr(s)*PL(7) > — e L(F)

holds for any § with L($) <é and se(s;, s,]. Let r be an integer such that L(y)/r <é.
We can find at most r points on y and adjoin them to the vertices of P, to construct a
new polygon Q, (n<t<n+r) each of whose sides has length <d. Let y(sy),
y(81)s ***, Y(8s,— 1), ¥(s,) be the vertices of Q, and y,=7v|[s;_, 5;]. Let o; be a side of Q,
which joins y(s;_;) and y(s;). For each i there is an s/e[s;_,, s;] such that

(26) r K(s)* *ds=w(s)**L(y) .

Using and we have

(27) Y (L) —Le)'*> 3 [247Pr(s)*Liy) —eL(y))]
i=1 i=1

M-

- [24 -1 {F K(s)*3ds — 81-(?:)]

Si-1

1

=24" ”i[ K(s)*3ds — eL(y) .

On the other hand, Hoélder’s inequality gives the following inequality:

(28) -Zi (L(y) — L(o:))'* = -=21 LAy~ L(a )"

t 2/3 t
g(_; 13/2) <z (um—ua,»)

=t23(L(y)— Q)" .
Since t<n+r and L(P,) = L(Q,), it follows from and that

29) 247 ﬂsj K(s)**ds — eL(y) <t*’*(L(y) — (@) S (n+r)**(L(y) — L(P,))* .

1/3

This completes the proof of the theorem.
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Construction of a polygon which gives the best approximation.

Now we construct a geodesic polygon inscribed in y which gives the best
approximation to the length of y. More precisely, we will show that for any positive
number 1 >0 there exists a geodesic polygon P, inscribed in y such that

(30) nz(L(y)—L(P,,))<%( f K(s)2/3ds>3+n.

As in the proof of the theorem, let =1y | [s;, s,] be a‘éubarc of y and & be the
geodesic segment which joins y(s,) and y(s,). Let ¢ >0 be given. Then, by Lemma 1,
there exists a 6 >0 such that

(31) L(y”)—ua)<§x(s)2L@)3+eL(v")3

for any § with L(§) <4 and any se[s,, s,].

We write y=17,+7y; +7,, where y,={y(s): k(s) =0}, y, = {y(s): 0 <x(s) <&'”*} and
v2=1{y(s): &P =x(s)}.

Choose an integer / such that /> L(y,)/5. Let y,,, 7,5, - - *» ;, be a subdivision of
7: such that L(y,;) are all equal. Let g, be the geodesic segment which joins the
endpoints of y;; and let Q, be the polygon consisting of ¢;’s. Then we have L(y,,)=
L(y,)/I< 6 for each i and hence, using [(31), we have

1.
(32) L(y,;)— (o) <-212 K(5)?L(y,)® + eL(y,)° < ﬂe’" 3L(y.:)? +eL(y,,)?

=I‘(2)31)3 (51282/3 +8> .

Summing on i, we obtain

L(y,)*( 1
(32) L(y,)-LQ)< lzl ﬂ82/3+8 .
Choose an integer m such that m > (1/662°)(f,, k*”ds). We can find a subdivision
{y2j:j=1, .-+, m} of y, and points y(s}) in each y,; such that S;=x(s)**L(y,;) are
equal for all j and S;=(1/m)f,, k(s)*?ds. Let 7, be the geodesic segment which joins

the endpoints of y,; and let R,, be the polygon consisting of all 7;’s. Since we have
L(y,,) <o for each j, it follows from that

1 1
(3) L) = Le) <5 els) Liva)® +eldyy)* =5 5] + LUy,
1 3
~ 24m3 (L Kmds) + ey’

1 2/3d 3 81/3 2/3d 3
24m3 , K S +;§-< , K S .

<
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Here the last inequality follows from

(34) J K(s)?3ds < f K(s)*3ds

Y

and

(35) uvzj)=ij(s;)'2/3=—1-< J
m

Y

1 _
K23ds Ji(s}) 2P <—e 29| k23gs.
2 m Y2

Summing on j, we obtain the following enequality:

1/3 3
(36) L(yz)—L(Rm)<<ﬁ+%F>( f rc2/3ds) :

Let 015 Y020 * * *» Yox b€ the connected components of y,. We construct a geodesic
pOlngIl Pn (n=k+l+m) Wlth k+l+m SideS, VOI’ " Yok yll’ Y yll’ '}’21, R YZm'
Now we choose / and m in the follwoing way: Let

1
[>max M,—s”“’ rc2/3ds,i and m= 1 +1.
, g gl/4

0 0
Note that the condition m > (1/6¢*”){, k*?ds is satisfied in this choice. Then we have
(37 n*(L(y) — L(P,)) = (k+ 1+ m)*(L(y,) — L(@) + L(y,) — L(R,,))

Ly,)* (1 1 gl 3
2 T a2/3 2/3
<(k+1+m) {———lz 248 +e )+ 24mz+———m2 yK ds
2 —1/4 | 0\2 L(y,)? i 2/3 gt/ ET 2/3 3
<l*(1+e¢ +¢€) {———12 (248 +e |+ —24lz+ 72 y Kk*°ds
1 1 3
=(1 +81/4+85/4)2{[4())1)3(5281/6+8)+(—2—4-+81/3)<J; x2/3ds) }

The inequality shows that if we choose ¢ small enough, we can construct a
geodesic polygon P, which satisfies the condition for any given 7.
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