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We consider in this paper a more general class than that of the classical W*-
algebras; namely the class of locally W*-algebras defined as inverse limits of W*-
algebras (Definition 1.1). Among the examples of this sort of algebras we work out, is
the locally C*-algebra L(H), H a “locally Hilbert space” [8; Section 5]. As it is
apparent from what follows, L(H) represents, in effect, the most general case of a
locally W*-algebra. That is, defining the respective g-weak (operator) topology on
L(H), we prove that every locally W*-algebra E equipped with the inverse limit
topology ¢ (Proposition 1.3) coincides (within an isomorphism of topological
algebras) with a o-weakly closed *-subalgebra of some L(H), H a locally Hilbert
space (Theorem 2.1). In this respect, one gets that the center Z(E) of a locally W*-
algebra E, is a o-closed *-subalgebra of (E, 6), hence also a locally W*-algebra (cf.

orollary 2.2/ and Example 1.4.1, [Proposition). On the other hand, one always
obtains that every locally W*-algebra admits an ‘“Arens-Michael-type decom-
position™ consisting of W*-algebras (Proposition 1.3). An application of the above
gives information concerning the inner derivations of a locally W*-algebra E. More
precisely, one has that each inner derivation §,, x=(x,) € E, of E is an inverse limit of
inner derivations 9, , a€ 4, corresponding to the W*-algebra factors £%=, xe 4 of E.
Thus, the set 5,(E) of all inner derivations of E, becomes a complete locally convex ..
space (Theorem 3.1), so that if (q,), o€ 4, is a defining family of seminorms for 8,(E),
one gets that for every 6, € 6,(E)

q,(6,)=2inf{p (x—z): ze Z(E)} , aeAd,

where (p,),x€4, is a family of (submultiplicative) C*-seminorms defining the
topology of E. The latter extends in our case a previous result of L. Zsido
concerning an estimation of the norm of an (inner) derivation acting on an abstract
W*-algebra. Similar estimations referred to (inner) derivations of the C*-algebra
Z(H) of all bounded linear operators on a Hilbert space H, or of a W*-algebra
acting on a separable Hilbert space, have been also given earlier by J. G. Stampfli
and P. Gajendragadkar respectively. Furthermore we use Zsido’s technique of
Theorems 1 and 2 in in order to estimate the above numbers ¢,(3,), a€ 4, by
means of a certain map®: E—Z(E), at the cost however of some particular
restriction on the locally W*-algebra E (Theorem 3.5). A further application of the
latter leads to a new information even for the normed case, according to which
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Zsido’s continuous mapv: 6o(E)—E [16; Theor. 3] is, in effect, a relatively open
section of a continuous open linear surjection u: E—J,(E) (Theorem 4.3).

1. The topological algebras considered throughout are all over the field C of
complex numbers and have an identity element.

By an /mc (locally m-convex) *-algebra, we mean a *-algebra E endowed with a
topology defined by a family (p,), xe4 (a directed index set), of *-preserving
submultiplicative seminorms. A complete Imc *-algebra E is called a locally C*-
algebra if, in addition, p(x)?>=p(x*x), for any ae 4, xeE. Given an Imc *-
algebra E, set N,=ker(p,) and denote by E, the completion of the normed algebra
E,=E/N,, with norm p, defined by p(x,)= p,(x), Xx,=x+N,€E,, xe Eand a€ A (cf.
[1], [T1]). Then, if E is complete one gets E =1ig_nEw within a topological algebraic

isomorphism (ibid.), the latter expression being called an Arens-Michael decom-
position of E [10; Def. 111, 3.1]. In particular, if E is a locally C*-algebra, E, is always
complete, hence a C*-algebra, i.e., E,=E, for every aeA (cf. [13; Folg. 5.4]), a
fact being actually true even if E has no unit (cf. [4; Prop. 2.1, (ii)]), £ given thus
as an inverse limit of C*-algebras.

Now, let (F,, f.p), x€4, be an inverse system of W*-algebras, where the
connecting maps f,;, < in A4, are considered continuous with respect to the

uniform (norm) topology of F,’s. The canonical map of the inverse limit lim F, into

F,, will be denoted by f,, a€ 4. In this regard, we now'set the next. :

Definition 1.1 (A. Mallios). An algebra E is said to be a locally W*-algebra, if it
is given as an inverse limit of W*-algebras, ie., E =1i_rgFa, where each F,, e A, is a

W*-algebra.

a

Scholium 1.2. Every locally W*-algebra E is a locally C*-algebra equipped with
the inverse limit topology 1, induced on it by the uniform topology of its W*-algebra
factors F,, o.€ A. In addition, the Arens-Michael decomposition of (E, 1) is given exactly
by the *-subalgebras f(E) of F/'s, a€ A.

In fact, if || - ||, denotes the C*-norm defining the uniform topology of F,, a € 4,
one gets by [10; Lemma III, 3.2] that

(L.1) lim F,=(E, 7)=lim f(E)=lim f(E),

where “— means | * ||,-closure. Now the relation

(1.2) po=l"laofe, €4,

defines a (*-preserving submultiplicative) C*-seminorm on E, and it is clear by
that t is defined by the family (p,), a € A, and makes E into a locally C*-algebra. Now,
considering the Arens-Michael factor E,, a€ 4, of (E, 1), one has by that

DuX) =P (X)= | f(X) s » xekE, aeA,
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consequently the map
(1.3) E,=E/N,—f(E): x,——f(x), xeE, aeAd,

is a topological algebraic isomorphism, and since E, = E,, a € A (cf. discussion before
Definition 1.1), one also gets f,(E)=f,(FE), a€ A. Thus, we finally have

(1.4) Lim (F,, |- 1l)=(E, )=]im (E,= f(E), B.) ,

within isomorphisms of topological algebras.

Note that, because of [1.3), the connecting maps of the inverse system (E,), a € 4,
coincide with the restrictions of f,;, a <, on fy(E). Thus, from now on, we agree to
keep the symbols f,;, a < B, f,, a € 4, for the connecting maps, respectively, canonical
maps of the inverse system (E,), a € 4, as well.

Now, given a locally W*-algebra E=lim F,, for each a e A, there is a Banach

space M% the dual of which is F,, ae 4 [12; Defs. 1.1.2, 1.1.3]. We denote by o, the
weak *-topology o((M%)*, M%) on F,~(M3%)* and by (M3)} the W*-algebra F,
endowed with o,, a€ 4. In this respect, we now have the next.

Proposition 1.3. Let E=lim F, be a locally W*-algebra, in such a way that the

connecting maps f,5, « < in A, of the respective inverse system (F,), a € 4, are weakly
*_continuous. Then, E is endowed with the inverse limit topology o, coarser than the
inverse limit Imc C*-topology t (cf. Scholium 1.2). In addition, (E, ¢) admits an Arens-
Michael-type decomposition consisting of W*-algebras, in the sense that

(19 (E, 0)=lim Eg,

within a topological algebraic isomorphism, where “—ac,” means o -closure in F,, o€ A.
2 a a a

Proof. By the above comments and the weak *-continuity of f,;, «a<pf, one
concludes that (M%) ¥, f.5), « < B, is a projective system of topological vector spaces,
in such a way that

(1.6) E=lim (M3)7,,

within an isomorphism of vector spaces. So that by E is obviously equipped with
the inverse limit topology ¢=limg,, which is coarser than the Imc C*-topology t

defined by the family (p,), ae 4 (cf. (1.2)), as this follows by the next commutative
diagram '
Jfa

(E, ) > (Fos 1+ 1)
idg idp,
(B, 0)——F " (F, 0)=(M3)},,
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and the fact that 6, <|| * ||, on F, for every a € 4.

Now, denote by £9= the g -closure of E, into F,, a.€ A (cf. Scholium 1.2). Then,
E’=is a W*-algebra as a ,-closed *-subalgebra of the W*-algebra F,, a.€ 4, [12; Def.
1.1.4). On the other hand, since f,;, « < B are weakly *-continuous, they are uniquely
extended to f,;: E5—E%, a<p, in such a way that (E¢=, fup)» a€ A, is a projective
system too. Thus, one gets

E=}iIP_ Eac}iﬁ E:“L—*(ﬁ_ln_ Fa=E s

which implies

(E, 0)=lim EZ-,
a

within an isomorphism of topological algebras. [

Motivated by the above when we speak in the sequel about the o-topology of
a locally W*-algebra, we shall always mean that the connecting maps of the
respective inverse system are weakly *-continuous.

1.4. [Examples of locally W *-algebras.
1. The first example of a locally W *-algebra is given by the next.

Proposition. Every g-closed *-subalgebra G of a locally W*-algebra E =limF,,
is also a locally W*-algebra. «

Proof. Since 6 <7 on E, G is also t-closed, hence a locally C*-subalgebra of

(E, 7). Thus, (cf. [T],

(G, T|G)=4liﬂ G,,

within a topological algebraic isomorphism, where G,=G/ker(p,|s), a€ A, is a C*-
algebra (cf. discussion before Definition 1.1). In particular, G,=f,(G), a4 (cf.
(1.3)), so that, since G is g-closed one gets by [10; Lemma III, 3.2]

(1.7) (G, o|g)=lim G2,

within an isomorphism of topological algebras, where each G2+ is a W *-algebra as a
o,closed *-subalgebra of the W*-algebra E%, aed. []

2. Let (E,), ne N (natural numbers), be a descending sequence of W *-algebras
with non-trivial intersection (cf. [3]). Let also that uniform, respectively, weak *-
topologies on E,, nelN, form an ascending sequence (for any n<m in N,
Il I * llms @s well as o, |5, <a,,). Then,

E=(\E,,
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is a locally W*-algebra. 1t is easily seen that
lim E,=() E,,

within an algebraic isomorphism. Moreover, the canonical injections
Jum: Eme— E,, n<m in N,

are norm, respectively, weakly *-continuous, so that lim E, is endowed with the inverse

n
limit topologies t=lim | - ||,, 6 =limo,, where ¢ <7 since 6,<| * ||, n€N. Thus, Eis
n

a locally W*-algebra by Definition 1.1. In particular (cf. also [Proposition 1.3),

lim (E,, 0,)=(E, o)=]im F3~,

where
FnE(ES “.”nlE)9 nEN’

is a C*-algebra corresponding to the Arens-Michael decomposition of (E, 7), and F»
a W*-subalgebra of E,, neN.

3. Let (H,), Ae A, be a directed family of Hilbert spaces, with H, < H, and
(s 22=<(,),onH,forany A<uin A. Then, H=lim H, endowed with the respective
A

locally convex inductive limit topology, is called a locally Hilbert space (cf. [8; Def.
5.2]). Thus, if

L(H)={Te L(H): for every A<pu| 4, T,oi,;=i,°T;. where T;=T|y,
€ ¥(H,), e A, and i,, the canonical injection of H, into H,},

L(H)is, in fact, a locally C*-algebra (cf. [8; Prop. 5.1]). In particular, L(H) is a locally
W*-algebra, in such a way that the connecting maps of the inverse system of W*-
algebras corresponding to L(H), are weakly *-continuous. The topology of L(H) is
defined by a family of (*-preserving submultiplicative) C*-seminorms (p,), A€ 4,
such that p,(T)=|T,||, A€ A (ibid). Now, considering the C*-algebra L(H)/N,, L€ A,
corresponding to the Arens-Michael decomposition of L(H), we conclude that the
map

LH),=LH)IN; —— L(H): T+ N, ——T;=T|,,, Ae4,
is an isomorphism of topological algebras, so that
(18) L(H=lim H,)=lim $(H,),
A A

within a topological algebraic isomorphism, where each #(H,), Ae A, is a W*-
algebra; hence, by L(H) is a locally W*-algebra.

We shall now show that the connecting maps f;,,, A < in A, of the inverse system
(L(H),=%(H))), L€ A, are weakly *-continuous. For each 1e A L (H,) =(% (H,))*,
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with £, (H,)=L%(H,)* the dual of the compact operators of L(H,), ieA.
Moreover, the weak *-topology o(#(H,), £ ,(H,)), A€ A, is the o-weak (operator)
topology of #(H,), defined by the following family of seminorms

n=1

(1.9 Pen,on(T) = ,» TeZ(Hy), ied,

for any sequences (¢"), (n) in H, with Y2, |é2<o0, T2, 722 <
[15; p. 67], A€ A. Thus, if (T}) is a net in £(H,) such that T3—0 with respect to
o(¥(H,), £ ,(H))), then since T°'=Tjj|,,}1 and {(,); =, >M|HA, one also gets that
T%—0 with respect to 6(Z(H,), £, (H,)), A<pin A.

By the above and [Proposition 1.3 we now have that L(H) is endowed with the
inverse limit topology

(1.10) o=limo,, with o,=o(L(H), Z,(H)).
i

The topology ¢ on L(H) will be called, in the sequel, o-weak (operator) topology.

2. In this Section we shall show that every locally W *-algebra E equipped with
the inverse limit topology o (Proposition 1.3) is identified (within a topological alge-
braic isomorphism) with a g-weakly closed *-subalgebra of some L(H), H a locally

Hilbert space (Theorem 2.1). The latter constitutes in our case, an analogue of the
respective classical situation for W*-algebras (cf., for instance, [15; Theor. III, 3.5]).

Theorem 2.1. Every locally W*-algebra E endowed with the inverse limit
topology a coincides, within an isomorphism of topological algebras, with a o-weakly
closed *-subalgebra of some L(H), H a locally Hilbert space.

Proof. E=JlimF,, where each F,, a€ 4, is a W*-algebra, hence [15; Theor.

II1, 3.5] there is a faithful representation

(21) (pa:Fa'_’g(Ha)y aeA,

H,, a€ A, a Hilbert space, bicontinuous with respect to the topologies ¢, =0a(F,, M),

o(¥(H), £ ,(H,)) of F,; L(H,), o.€ A, respectively (cf. comments before
1.3 and [(1.10)). Now, set (cf. also [8; Theor. 5.1])

H = @Haa

a<i

where @ means orthogonal direct sum. Then, for any A<u s, , and {, );=
{, >, on M, so that

H=_1_i9_)=}f,{,
A

is a locally Hilbert space (cf. Example 1.4.3). In this regard, define
¢: E—— LH)=lim L(#): x — ¢(x): ¢(x) | o, = 0(x); ,
A
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with

qo(x)l(él): @ (Pa(xa)(éa) ’ fOI' ever}’ é,l:(éa)as). in '#). .

a<l

It is easily seen that ¢ is a 1-1 algebraic morphism. On the other hand, if =, is the
canonical map of L(H) onto #£(#,), ¢ is continuous if, and only if, each 7,0 ¢ is
continuous. Thus, if (x;) is a net in E with x; —— 0, we have to show that n,(¢(x;,)) =

@(x5), = 0, for all A. According to the definition of o, (cf. [(1.9)), for any sequences
(€D, (n™) in 3 ,, such that

1) . Y &P <o, Y lnil*<o0,
n=1 n=1

we must show

(2.2) 21 {@(x5):8% n3>2 | —0.

But,

(2'3) Z <(P(x6)/l€;a 7];)1 = Z Zj, <(pa(x:)€g,aa ’72,a>a ’
n=1 n=1a<

where (£5 ), (n3.,) are sequences in H,, a <4, such that

24) Y €3l <o 2 lInfall?<co.
n=1

n=1
On the other hand, x; T»O@xg ——0, for all a, which by the weak *-continuity of

@, %€ A, yields that
(2.5) @ (x3) —0, with respect to o(L(H,), Z,.(H,),
for all a€ 4. But, means that for any sequences as in
Z <¢a(x2)ég.,w r"}'.,az>a —0 L] (XSA .
n=1
Thus, [2.2) follows now from the fact that the right-hand side of is less than or

equal to Za.<_}. | Z:o=1 <¢a(x§)€2,a’ ’12,0: >a | .
Conversely, let (¢(x;)) be a net in ¢(E) < L(H), with

(2.6) @(x;) —0,

where ¢ is now given by [(1.10). We must show that
(fa°<P—‘)((0(xa))=x26—>0, forall aecd,

or equivalently
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2.7 @ (x%) ——0, with respect to o(L(H,), £ (H,)), oeAd.
By we have that ¢(x,); ——0, for all 1, which means that is true for all
sequences (¢1), (%), in 5, fulfilling [(2.1). Moreover, will have been proved, if

for all sequences (¢3), (17) in H, with 372, [|€2]1% <00, 3%, Ingll? < oo, one gets

(2.8)

PURCEEH AN
n=1

———fO, aeA.

But each H, is imbedded to some J#;, a <4, so that the sequences (¢}), (n7) as before,
define sequences (&%), (n%) which satisfy [2.1), Thus, (cf. also

Y L@uxDE5 N2Da
n=1
a < A, which proves [2.8).

We now show that ¢(E) is o-weakly closed in L(H). Let ¢(x;) be a net in ¢(E)
with

L <@l s ——0,

o(x;) ——TeL(H). .
Then, ¢(x,); T, for all A (cf. (1.10)), so that applying the argument of and
the notation o, for o(¥(H,), & ,(H,)), a€ A, too, we conclude that

P x) ——T,, forall aed,

where T,€ @ (F,), o€ A, since ¢, (F,) is g,-closed. Thus, T,=9¢,(y,), y,€F,, acA,
where, in particular, f,5(ys)=y,, for any « < in 4. On the other hand,
Vo= 07 (@ (V) =0, '(lim§=g,(x})=lim3=x],  for every aed.
Hence,
lim{x;=yeE and T=Ilimjo(x,;)=¢(limjx;)=¢(y)ee(E). O

Corollary 2.2. The center Z(E) of a locally W*-algebra E is also a locally W*-
algebra. In particular,
29) (Z(E), 0| 25)) = Z((E, 0)=]im EZ*)=lim Z(E3"),

within a topological algebraic isomorphism, where (E,), a. € A, corresponds to the Arens-
Michael decomposition of E.

Proof. 1t is easily seen that multiplication of L(H), H a locally Hilbert space, is
separately continuous with respect to the g-weak topology. Thus, by the preceding
theorem, one also gets that multiplication of E is separately continuous with respect
to 0. A consequence of the latter is that Z(F) is a o-closed *-subalgebra of (E, o),
therefore a locally W*-algebra according to Example 1.4.1, Propositionl Moreover,
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by (cf. also [Proposition 1.3)
(2.10) (Z(E), 0| z5)=1imZ(E),**,

within an isomorphism of topological algebras, where (Z(E),), a€ 4, is the Arens-
Michael decomposition of Z(E), as a locally C*-subalgebra of (E, 7). Now,

2.11) Z(E),=Z(E), aeA,
within the topological algebraic isomorphism
Z(E),——Z(E)): z+ker(pa|Z(E)) F——z+N,, aed,

while,

(2.12) Z(E?)=Z(E)=Z(E)™, acd,
as this follows by the separate continuity of the multiplication of E?= with respect to

o, a€A (cf., for instance, [15; Theor. III, 3.5]). Thus, follows now by
QI [z O

2.3. The connecting maps of the inverse system (Z(ES%)=Z(E,)), ac A (cf.
(2.12)), are those of (E3*) restricted on Z(E%*), ac A. Thus, according to Section 1
(cf., in particular, proof of Proposition 1.3 and discussion before it), when no
confusion is likely to result, we shall keep the symbols Jupr @B, f,, a€ A, of the
connecting, respectively, canonical maps of the projective system (F,), a € 4, for both
of the projective systems (E3%), ae 4 and (Z(E?*)=Z(E))), o€ A.

Remark 2.4. If L(H), H a locally Hilbert space, is the locally W*-algebra of
Example 1.4.3, one also defines on L(H) the respective of the classical weak
(operator) topology. In fact, if T=(T,)e L(H =lim H;)=lim %(H,) (cf. and &,

A A

ne H, there is Ae A such that ¢, ne H,. Thus, if
(2.13) Pe(T)=IT:¢, m,;1,

the seminorms (p; ,), &, ne H, define a locally convex topology on L(H), which is
called weak (operator) topology and it is denoted by w.
Furthermore, for any &, ne H, one defines

Wt LH) —C: TH—w, (T)=<T;¢, 1),

where A is that index in A with ¢, ne H,. Then, w, ,€ L(H)’ (topological dual of
(L(H), w)), for any &, ne H. Thus, if LF(H) is the linear subspace of L(H) generated
by w; ,, &, ne H, the pair (L(H), LF(H)) forms a dual system, in such a way that one
particularly obtains

(2.149) w=o(L(H), LF¥(H)) .

On the other hand, if w, denotes the weak (operator) topology on #(H,), A€ A,
and L #(H,) the respective to LF(H) linear subspace of #(H,)’, A€ A, one has (cf.
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also [15; p. 68])
(2.15) w,=0(L(H,), ¥ (H))), leA.

In particular, the connecting maps f;,, A<pu, of the inverse system (£(H))),
Je A, are weakly continuous, so that one finally gets

(2.16) w=lim w; =lim 6(£L(H,), £ #(H,))=0o({H), LF(H)).
A A

Moreover (cf. [15; p. 68] as well as (1.10)),

(2.17) w, <0, =0(L(H), L (H)), Aed,

consequently,

(2.18) wSa=‘li_m_a,1 ,

A

with ¢ the g-weak topology on L(H). Thus, a consequence of (2.18) and Example
1.4.1, is that every w-closed *-subalgebra of L(H), H a locally Hilbert
space, is a locally W*-algebra.

3. In Sections 3 and 4 we apply the theory developed above, in order to get
some information about the inner derivations of a locally W *-algebra. Some of our
results extend in the more general case of locally W*-algebras, previous results of L.
Zsido [16] concerning the norm of a derivation of an abstract W*-algebra.

A derivation of an algebra E is a linear mapd: E—E such that é(xy)=
8(x)y+xd(y) for any x, y in E. A derivation 6 of E is called inner, if 6 =9, for some x
in E, with 6 (y)=xy—yx, y in E.

Now, let E=lim F, be a locally W*-algebra. Since each F,, ae 4, is a W*-

algebra, every derivation of F,, a € 4, is norm-continuous and inner . Thus, if x=
(xp)eEandd,, d, , ae A, are the inner derivations of E, F,, a€ 4, respectively defined
by x, x,, a€ A, one gets

f;zﬁoéxp:éxaofaﬂ ’

for any a<f in 4 and x; € F; with f,4(x;)=x,. Hence, there is a unique continuous
linear map

5=}_iI_l‘l_ 0,,: E—E,

such that f,c6=46,_of,, a€A, and 6=90,, x=(x,)€E.
In this respect, if 6,(E) is the set of all inner derivations of E and §(F,), a€ A,
the Banach space of all (inner) derivations of F,, a € A, one has the following.

Theorem 3.1. For every locally W*-algebra E, 0,(E) is a complete locally
convex space, in such a way that
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do(E)=1im &(EZ?),
a

where (E,), a € A, corresponds to the Arens-Michael decomposition of E.

Proof. Each E,=E/N,, o€ A4, is complete [13; Folg. 5.4] (cf. also discussion
before [Definition 1.1) therefore the connecting maps f,;: E;—E,, a<f in 4, are onto,
which yields that

fu(Z(Eg)=Z(E,), a<Bp in 4.

Hence, according to one also gets (cf. besides 2.3 and comments after
[Proposition 1.3)

[l Z(ESP)cZ(ES), a<B in 4.
Thus, for any a<f in 4, we may define the continuous morphisms
(3.1) 9up: ESPIZ(EGP) — ES*Z(ES): %p=x5+ Z(EG?) »—»f/,,z\x,,) :
Now, every E?%, ae A, is a W*-algebra (cf. [Proposition 1.3), so that
(3.2) 105l =2inf{lix,— z,llo: z,€ Z(ESD)}, €A,

for any 6, €d(E£%%), x,e ES*, ae A (cf. [16; p. 148, Corol.]). Thus, since moreover
S,.=0, for all x,e Z(ES"), a € A, it follows that the map

(3.3) u,: ES=|Z(ES") ——8(E®): %, ——0,,, a€A,

is a topological vector space isomorphism. A consequence of (3.1), is now that
the pair (8(ES?), h,g), <P in A, is a projective system of Banach spaces, where

oy S(EPP) ——O(E?): 8, ——0,,, with  x,=f5(x;) , a<p.
Hence, taking also into account the discussion before we obtain
0o(E)=lim XE*),
so that §,(E) becomes a complete locally convex space, for which a defining family of
seminorms is given by
(3.4) 9.00,)=19,1, «aed,
for any 6, €6y(E), x=(xp)eE. 0O

An interesting result in this direction would be, of course, that every derivation
of a locally W*-algebra is inner.

The next theorem provides in our case an analogue of a known result concerning
the norm of a derivation of a W*-algebra, see [16; p. 148, Corol.] as well as [5; Theor.

1].
Theorem 3.2. Let E be a locally W*-algebra. Then,
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(3.5) 4,0,)=2inf{p,(x—2): ze Z(E)}, aed,
for any 6,.€6,(E), x=(x,)eE.
Proof. By [Proposition 1.3 Exlim £+, so that if x=(x,) in E, x,=f(x) for

every o€ 4 (cf. also 2.3). Thus, by Theorem 3.1, 3, = (3y,(,) With ., € 3(E5®), ae 4.
Moreover, by (2.12), Z(Eg)=Z(E,) = Z(E),= Z(E)/ket(pq| ziy) =f(Z(E)),
a€ A. Hence, according to [(3.2), [(3.4), [(1.2) we conclude that

3:00,)= 107, | =2inf{]| () — 2,11, : 2, € Z(E5)}
=2inf{| f(x) —f2)l.: € Z(E)}
=2inf{p,(x—2z):ze Z(E)}, oA
for any 0, €dy(E), xe E. [

As a corollary to the preceding theorem we now get Stampfli’s result for L(H), H
a locally Hilbert space, referred to the norm of a derivation acting on the C*-algebra
Z(H), H a Hilbert space (cf. [14; Theor. 4]).

Corollary 3.3. Let H be alocally Hilbert space and L(H) the locally W*-algebra
of Example 1.4.3. Let also 61 in y(L(H)), T=(T,) in L(H). Then,

(3.6) q;(0r)=2inf{p,(T—zidy) : ze C},
for all L€ A.

Proof. Working out the Example 1.4.3, we saw that each factor L(H),, A€ A, of
the Arens-Michael decomposition of L(H) coincides (algebraically-topologically)
with the W*-algebra ¥(H,), H;,, AleA, a Hilbert space. Moreover, by
Z(L(H)) ;ﬁ? Z(Z(H;)), where Z(ZL(H)))={z;idy,:2,eC}=C,, AeA, with

C,=C, for all AeA. Hence, (cf. [2; p. 77, Exemple 2)]), Z(L(H))={zidy: ze C},
so that the assertion now follows by O

Corollary 3.4. Let E be a locally W*-algebra. Then, 6,(E)= E/Z(E) within an
isomorphism of locally convex spaces or, equivalently, the sequence

0 —— Z(E) — E ——§,(E) —0,
is topologically exact.

Proof. Themapu: E—Jd,(E): x —u(x)=4, is a linear surjection with ker(x) =
Z(E). Moreover, q,(u(x))<2p,(x), for any xe E, a.€ A (cf. |(3.5)), therefore u is also
continuous. Thus, taking the induced from wu linear bijection @: E/Z(E)—
8o(E): x=x+ Z(E) —u(X)=9,, this is, in fact, an isomorphism of locally convex
spaces by [(3.5). Hence, the continuous linear surjection u is a *““topological homomor-
phism” [7; p. 106, Def. 2], which is equivalent to the fact that « is moreover open [7; p.
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106, Theor. 1]. [J

L. Zsid6 realized the norm of a derivation acting on an abstract W*-algebra E
by means of a certain particular map & : E— Z(E) [16; Theorems 1, 2]. Using Zsido’s
technique we shall also try to estimate the numbers ¢,(5,), a€ 4, (cf. via of a
corresponding to our case map &, at the cost however of some extra restriction for the
locally W*-algebra involved (cf. [Theorem 3.5). Thus, let E be a locally W*-algebra.
Then (Proposition 1.3),

Denote by
M, =MZ(E;), oaed,
the spectrum (Gel’fand space) of Z(E?=), oe A, where
Z(E)=¥M,), acd,

by the Gel’fand-Naimark theorem. Thus, if 7 is a positive integer and A, e M, set

61 M= misimieketi vz ] =i, aea,
i=1

where “— means norm-closure in £2*, o € 4. Then, M, is the smallest closed 2-sided
ideal of EZ* containing ker(h,), a€ A, so that it is primitive by [6; Theor. 4.7].
Therefore, every ES*/M,, has a faithful irreducible representation ¥, in some Hilbert
space H,, a€ A. In this regard, L. Zsid6 shows in [16; Theor. 1] the existence of a
unique norm continuous map

(3.8) D, E;*——Z(E?)=¥(M), aeAd,
defined by the relation
3.9) ?,(x,)(h,)=center of the operator ¥ (x,+ M,),

for any x,e E3*, h,e M,, o € A, where by the center of an operator Tin Z#(H,) is meant
the unique complex number z, for which

(3.10) |T—z; )| =inf{|| T—zidy| : ze C}

(cf.[14)). By means of &,, L. Zsid6 estimates the norm of a derivation in E 7=, o€ A (cf.
[16; Theor. 2]). Namely, for any x, e £2 and z,€ Z(E2*), « € 4, the map has the
following properties:

(3.11) P Xat+2)=P(X)+2, s Pu(X,2)=Po(X,)Z,
(3.12) 1, = Po(x )l =inf{ ]| X, — z,ll,: z,€ Z(ES)},
(3.13) 10: I =201%,— Po(x o, Oy, €H(EG).

Following the preceding notation, as well as the notation of 2.3, we consider the
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primitive ideal M, = [ker(h;)] in E?," (cf. [3.7), with hy=h, o f,; in My, a < B, h, in M,,
o€ A. Thus, for any «a <f in 4 we can define the map

(3.14) Aaﬁ: Eﬂaﬂ/Mﬂ _—)E_aa“/Ma: xB+MB l—_)j.aﬂ(xﬁ"*_Mﬁ):f;ﬂ(xﬁ)"“Ma .
In this respect, if 7, denotes the quotient map of £3* onto E£3=/M,, o€ A, one has
Aag o Tig=T,0 fop forany a<fin 4,

so that (3.14) is continuous. On the other hand, the faithful irreducible representation
Y, of the primitive algebra E5*/M,, a € A4, is in fact, an isometric representation, since
E*/M,, ae€ A, is a C*-algebra. Besides, supposing that 4,, a<p, is 1-1, this also
becomes an isometry. Hence, considering the diagram

— Aaﬂ -
E2e/M, — Eos/M,
(3.15) vil v. a<f in A
Im(y5) = L(Hp) — Im(y,) = Z(H,)
‘pa ° )'aﬁ ° ll/ﬂ

the map Y, o 4,zo¥ ;' is an isometry too. Note that 1,5, a <f, becomes 1-1 for any
locally W*-algebra E=lim F,, with connecting maps f,;: F,—F,, a.<p, bijections,
hence norm and weakly *-bicontinuous (for the latter see [12; Corol. 4.1.23]).

In this concern, one now gets the next theorem, which is an analogue in our case
of [16; Theorems 1, 2].

Theorem 3.5. Let E be alocally W*-algebra, in such a way that the map (3.14) is
1-1. Then, there is a unique t-continuous (cf. Scholium 1.2) map ®: E—Z(E), with
the properties:
i) @(x+2)=D(x)+2, D(xz)=D(x)z, for any xe E, z€ Z(E).
ii) p(x—P(x))=inf{p(x—2): ze Z(E)}, for any x€E, a€ A.
iii)  g,(0,)=2p,(x — B(x)), for any 5,€dy(E), (x€ E), a € 4.

Proof. We shall first show that the maps (®,), a € 4, (cf. (3.8)) form an inverse
system. Thus, we consider the diagram

i _
Eop———— Z(E3")= (M)

(3.16) fus )  a<pin 4
E Z(E3)=E(M,)

x

where ‘f,; denotes the transpose of f,;, « <. Then, for any xz€ ES, h,eM, a<pPin

A, one has (cf. also [(3.9), [(3.10))
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((Sap) ° Pp)xp))h) = (Dp(xp) o Fog) () = P y(xp)h 0 fop)
= p(Xp)(Bp) = 2y pxg+ Mp) -
But, since 4,5, <, is 1-1, the map y, o 4,50 ; ' of diagram (3.15) is an isometry, so
that

Zyp(xp+Mp) = ZWachapo¥ g~ NWplxp + Mp))

= Zyaldap(xp+ Mp) = ZYulfap(xp) + Ma)
=(D, o fu5)(xp)(h,) , a<p.

Thus, the diagram (3.16) is commutative, which yields the existence of a unique t-

continuoys map (cf. also [Proposition 1.3 and (Corollary 2.2)

(3.17) o=lim &,: Exlim EJ* —— Z(E)=lim Z(EZ"),
such that
[ro®=®,of,, forall aed.

Now, the definition of ¢ and imply i). On the other hand, (cf. also
and [(3.12)), for every x=(x,)e E

pa(x_é(x))=”xa—'(pa(xa)”azs”xa_za“a’ aeA s
for all z,=f(z) e Z(E?*)=f(Z(E)), o€ A (cf. proof of Theorem 3.2). Thus,
Po{x — P(x)) <inf{p,(x—2z):z€ Z(E)} <p,(x— P(x)),

for any xeE, ae A.
Concerning iii), this is a consequence of [(3.4), [(3.13) and [(1.2). O

4. If (E, (p)) is a locally convex space and Z a closed linear subsapce of E,
denote by n the quotient map of E onto E/Z and by r the seminorm of E/Z derived by
p- In this respect, using the properties of the map of Theorem 3.3, we are led to
the following general statement.

Theorem 4.1. Let (E, (p)) be a locally convex space and Z a closed linear
subspace of E. Then, y: E—~Z is a continuous map with the properties ¥Y(x+z)=
Y(x)+z, xeE, zeZ, and p(x—¥Y(x))=inf{p(x—2):z€ Z}, xeE, for every p if,
and only if, m admits a continuous relatively open section s, in the sense that
nos=idg, and p(s(X))=r(x), X=x+Z, xeE, for any p, r.

Proof. For any xeE and yex, Y(x)=x—y+¥(y), so that one defines
st E/Z—E: X r—s(X)=x—¥(x), where nos=idg, and p(x — ¥(x))=r(%), xe E, for
all p, r. Conversely, if s is a section of n with p(s(x)) =r(x), x€ E, for any p, r, we first
have that n(x—s(x))=0, hence, one defines ¥: E—Z: x — ¥(x)=x—s(x). Then,
P(P(x)) <2p(x), xe E, for every p, so that ¥ is continuous, having besides the re-
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quired by [Theorem 4.1 properties. []
A direct consequence of Theorems (4.1, 3.3 is now the next.

Corollary 4.2. Let E be a locally W*-algebra for which the map (3.14) is 1-1.
Then, n: E-E|Z(E) has a continuous relatively open section s, with s(X)=x— ®(x),
x€E, where & is the map (3.17) [

Now, according to Corollary 3.4, for every locally W*-algebra E, one defines
the “topological homomorphism”

4.1) u: E——6y(E): x ——u(x)=6, ,
in such a way that the induced linear bijection
4.2) u: E|Z(E) —y(E): X ——a(X)=u(x) ,

becomes an isomorphism of locally convex spaces.

The next theorem gives an extension and strengthening as well of a previous
result of L. Zsid6 [16; Theor. 3]. More precisely, below, gives a new
information, even in the norm case, ensuring that Zsido’s continuous map of
Theorem 3 in (cf., for instance, the map v of the next theorem) is, in addition, a
relatively open section of the topological homomorphism [(4.1). That is, one has.

Theorem 4.3. Let E be a locally W*-algebra for which the map (3.14) is 1-1. Let
also @ be the map (3.17) andv: d,(E)—E: 6, +—v(d,)=x— ®(x). Then, the continuous
open linear surjection u (cf. (4.1)) has v as a continuous relatively open section. In
particular,

2p,(v(8,))=4.(6,)
for any é,€6,(E), (xeE), acA.

Proof. If o,, 4,€64(E), (x, yeE), with 6,=0,, one gets that x—ye Z(E),
consequently (cf. Theorem 3.3, i)) ®(x) = P(x — y+y) = x —y+ D(y), which yields that
v is well defined. On the other hand, (- v)(d,) =6, — g, =9,, for every J, € §o(E),
x € E; moreover, v=sou~ !, with s, @ as in|Corollary 4.2, respectively (4.2). Hence, v s,

in effect, a continuous relatively open section of u, having besides the property (cf.
4.(0,) =2p,(v(3,)), for any a€ 4, 5,€6(E), (xe E). []
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