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1. Introduction

Let P(a, B, A) denote the class of functions p(z) =1+ Y.<, p,z" which are analytic
in the disc E={z: |z| <1} and satisfy the inequality

pz)—1
2B(p(z)— 1+ (1 —a)e ~**cos A)—(p(z)— 1)
for some «, f, A (0<a<1, 0<B<1, —n/2<A<mn/2) and for all z in E. In [E]], the
following class has been introduced and studied in depth;

zf'(2)
7@ P ,l),zeE},

where N denotes the class of analytic functions f(z) with the normalization f(0)=0=
S’(0)—1. A function f € S(a, B, 4) is called a A-spiral-like function of order « and type
B. The class S(a, 1, A) of A-spiral-like functions of order « was introduced by Libera
[6]). Furthermore, S(0, 1, A) is the class of the so called “spiral-like” functions defined
by Spadek [13].

Let p(z) =1+p,z+p,z*+ -+ be in P(a, B, A) and put 8 =exp{—iargp,}. Then
p(0z)=1+|p,|z+ - - - € P(a, B, A). Thus we see that there is no loss of generality in
limiting our study to functions in P(a, f, 1) with non-negative real coefficients. It will
be shown in of this paper that |p, |<2B(1—a)cosi, 0<a<1, 0<pB<I,
—mn/2<A<mn/2). From these observations, we define a subclass of P(a, B, 1), namely

(1.3) Py, B, ))={pe P, B, 1): p’'(0)=2aB(1 —a)cos 4, 0<a<1}.

We now consider a subclass of univalent functions with fixed second coefficient
generated from P,(a, B, 1), viz.,

(1.1)

1.2) S(e, B, A):{feN:

2@
)

Following Silverman and Telage [12], we define an another subclass of P(a, f, 1)
as follows.

14) S, (0B A= { f@)=z+2aB(l —a) cos A)z*+ - eP (o, B, A), z€ E}
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.2f'(@)
f)

la,|=2b,0<b<p(1—a)cos 4, st}.

(1.5)  Hyo B, l)={f @=z+az’+ - eP(o, B, A),

However, we observe that for a=b/(f(1 —a)cos A), the results for the two classes,
namely, S,(«, 8, ) and H,(x, B, 1) coincide.

We shall investigate how the second coefficient in the series expansion of the
functions in the class S,(«, B, 1) affects certain properties such as distortion, y-spiral
radius, and radius of starlikeness of these functions.

In [1], the author has defined a class, C(a, f, 1), of A-Robertson functions of
order « and type B. In fact, f € C(«, B, 4) if and only if

2@ @) »
286" @ @)+ (1 —a)e " cos )~ @I @)

holds for some a, , A (0<a<l1, 0<f<1, —7n/2<i<n/2) and for all z in E. We
observe that C(0, 1, ) and C(0, (20 — 1)/26, 4) are the classes introduced and studied,
respectively, by Robertson and Kulshrestha [5].

It easily follows from definitions|(1.2) and |(1.6)| that a function fis in C(a, B, A) if
and only if zf’(z) e S(a, B, 4), (ze E). So analogous to our class S,(a, f, 1), we shall
study the class C,(a, f, 1), where

1.7 feC,a, B, A) == zf"(2)eS,(a, B, 1), (ze E).

We observe that for a= 1, this class gives rise to the corresponding results obtained by
the author in [T}, and for a# 1, the results are otherwise an improvement.

(1.6)

2. Growth estimates

In this section, we give two results. Our lemma has been used in the last section
for generating certain subclasses of P(a, f, A). The second result is the growth
theorem for the class P,(«, 8, 4); and will be applied in the subsequent section.

Lemma 1. If p(z2)=1+3 " ,p,2", analytic in the open unit disk E, is in
P(a, B, A), then

| Po| <2(1 —a)cos A
Jfor all n>1. The estimates are sharp.

Proof. Since pe P(a, 8, A), the condition coupled with an application of
Schwarz’s lemma implies
1+ (2B-1)—2B01 - a)e " cos A)axz)
- 1+ 28 - Dxz)

(21) p(z)
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where w is analytic in E and satisfies the conditions w(0)=0 and |w(z)| <1 for z in E.
Now (2.1) may be written as

(2.2) {2/3(1 —a)e" % cos A+ i (28— 1)p,‘z"}w(z)= - i Pzt .
k=1 k=1

It is easy to see that in each p, on the right depends on p,, p,, * -, p,—; on the
left. Thus yields

{2[3(1 —a)e " cos i+"i1 (28— l)pkz"} wz)= — ‘Z pF— Yk,
k=1 k=1

k=n+1

where 3., ., t,z* is absolutely and uniformly convergent in compacta on E. Using
the fact that | w(z)| <1, squaring, and then integrating both sides we obtain

. n—1 n [ <]
4 (1—a)? cos? 2+ Y. 2B—12pr*2 Y Ip P+ ¥ Inlir?.
k=1 k=1

k=n+1

Taking the limit as r—1, we get

n—1 n—1
421 —a)?cos? A+ Y, B—1)2Ip P =1pa P+ Y okl
k=1 k=1
that is

n—1
|pal?+4B1—PB) Y. | |*<4B*(1 —)*cos? 4.
k=1

Since 0 < f <1, this gives
|Pal<2B(1—)cos i,  (nz1)
which proves the lemma. The bounds are sharp for the functions

_1-(2B—1-2p(1 —a)e* cos A)z"
Pal2)= 1-f—1)z"

forn>1 and zeE.
Lemma 2 [3]. If w(z)=b,z+ - - is an analytic map of the unit disc into itself,
then | b, | <1 and :

L _rr+1by|)
lw(z)ls1+|b1|r

where |z |=r.

Theorem 1. Let p(z2)=1+3Y >, p,2" be analytic in E. If pe P,(a, B, A), then for
|z|=r<1 and for all o, B, 1,7, a (0<a<1, 0<B<1, —m/2<i, y<m/2,0<ax<]),
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(1+ar)? cos y—2B(1 — &) cos A-rr+a)(1 + ar)
+(2B—1){2B(1 —a) cos Acos (y— 1) —(2B—1) cos y}r¥(r + a)®
(1+ar)>=2B—1)*r*(r+a)? ’

(2.3) Re{ep(z)} >

and
(1+ar)? cos y+2B(1 —a) cos A-r(r+aX1 +ar)
+ (28— 1){2p(1 — o) cos 4 cos(y — A) — (28— 1) cos y}r?(r +a)?

(2.4) Re{e"yp(z)} < 1+ ar)z _ (2ﬂ — 1)27'2(7‘ + a)z

These bounds are sharp.

Proof. As in the proof of we have
_14{2—1-2p(1 —a)e™** cos A}u(z)
N 1+28—Daxz)

which, by direct computations, yeilds

_ 1—p(2)
T 2B(p(z)—1+(1 —a)e " cos A)—(p(z)—1)

Note that w(z) is analytic map of 4 onto itself and | —ae'*|=a<1. Then by
2, it follows that

@3 p(2)

=—aetz 4.

(2.6) (z)

r(r+a)

2.7) |2 | =7~

9

where | z|=r. Letting B(z)=e'"p(z), (2.5) may be written

e’ — B(z)
(2B—1)B(z)—e"(2B—1—-2B(1 —a)e **cos A)
and (2.8) together implies

e'? — B(z) | 1r+a)
2B—1)B(z)—e"2B—1—-2B(1—a)e Zcos 4)|~ 1+ar '
Thus it follows that B(z) maps the disc |z|<r onto a disc | B(z)— D| <R, where
(2B(2B — 1)1 — w)e ™ * cos A)r + a)*r?
(1+ar)*—(2B—1)*(r +a)*r?

_2B(1—a)cos A r(r+a)1+ar)
(A +ar)*—QB—1)r2(r+a)? "

This immediately leads to (2.3) and (2.4).
The equalities of are obtained by the function

1+a(l + Ae')z + Ae'*z?
1+a(l+Q2B—1)e")z+ (2B —1)e''z2’

(2.8) a(z)=

D= e”<1 +

(2.9) p(z)=
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where A=28—1—-2B(1 —a)e **cos A, and the values of ¢ (0<r<2n) are properly
chosen.

Setting p(z)=2zf’(z)/f(z) in Theorem, we obtain the growth estimates for the
class S (a, B, A). By taking the appropriate values of the parameters «, f we can get
the corresponding results for several subclasses of A-spiral-like functions introduced
by many researchers. The growth theorem for the class S,(a, 1,4) where b=
a(l—a)cos A was obtained by Silverman and Telage [12] Further, the growth
theorem for S,(0, 1, 0) was found by Finkelstein [3].

3. The y-spiral radius

Let S be the family of all normalized functions which are analytic and univalent
in E. Following Silverman and Telage [12], if f€ S and |y|<n/2, then the y-spiral
radius of order 6 (0 <6 < 1) written R(y, 8, f(2)), is given by

(3.1 R(y, 6, f(2))=sup I:r: Re {e"ym}> S, |z| <r] ;

f(2)
and if F< S, then the y-spiral radius of order é of F, denoted R(y, d, F), is given by
(3.2 R(y,d, F)= fme R(y, 4, f(2)

These definitions reduce to those of Libera [6] when 6=0.
We now determine the y-spiral radius of order é of the class S,(a, B, 4).

Theorem 2. y-spiral radius of order & of the class S,(a, B, ) is the smallest
positive root r, of the fourth degree equation

3.3 Ar*+ Br3+ Cr*+ Dr+(cosy—38)=0,

where
A=2p—1){2p(1 —a)cos Acos(y—A)—(cosy—8)(2f—1)}
B=—2a{(2B—1)*(cosy— ) + (1 —a)(1 —2(2f— 1) cos(y — 1)) cos 1}
C=4B(1 — B)a*(cosy—8) —2(1 —a)cos y{1 +a®> —a*(2B— 1) cos(y — D)} ,
D=2a{cosy— (1 —a)cos A—4} .

The result is sharp.

Proof. Let feS,(a, B, A). Then

) _
o

for some pe P,(a, B, A). Therefore by Mheorem 1,
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w3 (@)
Re{e 7@ }>5

where the right side of (2.3) is >4. This is equivalent to

(1+ar)®cosy—2B(1 —a)cos A- r(r+a)(1 +ar)
+(2B—1){2B(1 —a)cos Acos(y— 1) — (2B — 1) cos y}r3(r+ a)?
>8{(1+ar)*—(2—1)*r*(r+a)’}
or
(cos y—8){(1+ar)’ —(2B—1)*r*(r+a)*}
=2B(1—a)cos A-r(r+a){l+ar—(2B—1)cos(y—A)-r(r+a)} >0,

which on simplification, and with the aid of concludes the proof of the theorem.
The extremal function is of the form [(2.9).

Corollary 1. y-s.r. S(a, B, A) is the smallest positive root ro of the quadratic
equation

3.49) (28— 1){2B(1 —a)cos (y—A)cos A— (2B — 1) cos y}r?
—2B(1—a)cosA-r+cos y=0.
The result is sharp.

Proof. Set 6=0=a—1in|(3.3). The least positive root of the equation is given
by

2B8—1){2B8(1 —a)cos Acos(y —A)—(2B—1) cos y}r*
+2{(28—1)(2B(1 —a) cos (y — ) cos A—(2f—1) cos y) — B(1 — &) cos A}r3
+{(2B—1)2B(1 —a) cos A cos (y—A)— (2B —1) cos y—4B(1 —a) cos A+cos y}r 2
+2{cos y—p(1 —a)cos A}r+cos y=0.

Noting that (1+r)? is the common factor of the left side of the above equation we
obtain, on simplification, the equation [(3.4)| The result is sharp for the function given
by '

z/(1 — (2B — 1)ei®z)2PU —@)e ™" cos -2 —1)"* ﬂ;ei
’ 2

(3.5) f@)=
1

zexp (1 —a) cos A-€®z) | ﬂ=_2_

where
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_ 1—-28—-1r —A
0—2arctan{1+(2ﬁ_l)rcot< 7 )}

The result in the Corollary was also found in [9].

Corollary 2. y-s.r. of order & of Hy(a, B, A) is the smallest positive root of the
equation

(cos y—8)(u?* — (2B — 1)*v*r?)—2B(1 —a)cos A- vr(u— (2B — 1) cos(y — A) -vr) =0,
where
u=br+p(1—a)cos A
v=b+p(l1—a)cosi-r.
The result is sharp.
Proof. Letting a=b/(B(1 —a)cos 4) in[Theorem 2, we find that the least positive
root of the equation is given by
22 —1){2l cos (y—2)—(2B—1)(cos y—8)}r*
+26I{I(2(2B— 1) cos (y— A)— 1) — (2B — 1)*(cos y— 8)}r
+ {4b*B(1 — B)(cos y— &) — 2U(b*+ 12 — (2B —1) cos (y — A))}r?
+2bl(cos y—I1—8)r+I*(cos y—38)=0,
where
I=p(1—a)cos 4.
Writing
u=br+p(1 —a)cos A=br+1
v=b+p(l—a)cos A-r=b+Ir

and rearranging the terms in the above equation we can easily obtain the result of this
corollary.

Remark 1. Setting f=1, the above corollary gives the y-s.r. of order é of the
class H} ()= H,(a, 1, A).

Remark 2. Whena=1/2, =1, A=0in[Corollary 1 we note that is linear,
and we obtain the y-s.r. of the class, K, of convex functions. Thus y-s.r. K=cos 7.

Remark 3. Different values of the parameters o, § and A lead to y-spiral radius
of the classes studied by Libera [6], Makowka [8], and Kulshrestha [5].
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4. Radius of starlikeness

It is evident that the 0-spiral radius of order é of a subclass F< S is the radius of
starlikeness of order & of F. Thus by fixing y=0in we immediately obtain
the following '

Theorem 3. The radius of starlikeness of order & of the class S,(a, B, A) is the
smallest positive root of the fourth degree polynomial equation

(28— D{2B(1 —a) cos? A—(1—8)2B—1)}r*
—2a{(1—-6)(2B—1)*+ (1 —a) cos A(1 —2(2B—1) cos A)}r?
+2B{2a*(1 — B)(1 —8) — (1 — &) cos A(1+a* —a*(2B— 1) cos D}r?
+2a{(1-0)—pB(1—a)cos A}r+(1—-06)=0.
The result is sharp.

By fixing the parameters a, 8, 4 and a in we obtain some interesting
special cases.

Corollary 1. Let f(z2)=z+3. 2, a,z" be analytic in E. If f € S(a, B, A), then f is
univalent and starlike in
|z] <{B(1 — &) cos A++/B*(1 —a)? cos? A+ (2B —1)*—2B(1 —a)2B—1) cos* A} 1.
The estimate for | z| is sharp for the function

Proof. Setting 6=0=a—1 in [Theorem 3, it follows that f is univalent and
starlike for | z| <r,, where r, is the smallest positive root of the equation

4.1 2B —1)(2B(1 — &) cos? A— (2B — 1))r2 —2B(1 —a) cos A-r+1=0.

Now the result easily follows from (4.1).

By taking =0 and =1 in [Corollary 1, we obtain the following result, which
has been obtained independently and using different methods by Robertson
Libera [6], and Libera and Ziegler [7]

Corollary 2. Let f(z2)=z+2 3., a,z" be a A-spiral-like function; then f is star-
like for

1

Z|ISr=—r——7————-.
lzl=r; |sin A{+cos A

The estimate for r, is sharp for the function

—ia

f6(2)=2/(1 _eioz)Zcos}.-e ,

where
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0=2 arctan {((1 -r)/(1+ r)) cot (%)} .

Remark 1. We note that the maximum value of |sinA|+cos4 is /2 and
occurs for A= +n/4. Consequently, a A-spiral-like function f'is always univalent and
starlike in |z|<1/\/ 2 =0.707- - -.

Kulshrestha studied the class S*(8)=S(0, (26 —1)/26, 1). More precisely, a
function f'e N is said to be in the class S*(9) if it satisfies the inequality
ezf'(2)/f(z)—i sin A B

cos A

for some d, 1 (6>1/2, —n/2<A<mn/2)and forall ze E. gives the following
result for this class.

Corollary 3. If fis in SX(J) (6> 1/2), then f is starlike in
|z|<2{(1+1)cos A+ /(1 +1)* cos? A—4I* Re(c)} ~*

0|<d,

where
c=(1+0cosie /-1, I=1-1/5.
The estimate is sharp for the function

z/(1 —le“’z)((’“)/’)cos drei , 10
zexp{cos A-€'®~ 4z}, o

Jol2)= {

where 0 is given by

+Ir 2

Remark 2. Our results in the above corollary are improvements over the
corresponding results obtained by Kulshrestha [5].

Remark 3. Different values of the parameters «, f in give rise to
the corresponding radius of starlikeness for the respective classes defined by Goel

Makéwka [8], and many others.

We now set H,(0, 1, 1)= H,(4). In the result that follows from of
we relate starlike to spiral-like functions.

Corollary 4. If fe H,(0) and we set D=sec y+|tan y| then

tan 6/2 =; —hr cot (j) .

-'YM
Re{e 15 }>0 for |z|<r(b),

where
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2D

Furthermore r(b) is decreasing (0 <b<1) with

r0)= —1—

NG

r(1)=%.

)= [b(l —D)++/b*1—D)? +4p]

Remark 4. The above corollary was also found in [12]

5. The family C,(a, B, 4)

We can obtain results about the family C,(«, §, ) from those found for the class
S,(a, B, ) by a simple application of and thus observing that

of1.7'@ of 9@
Re{e (1 + IZe) >}>6 = Re{e (z g(z))}>5 ,

where g(z)=zf"(z), ze E. Furthermore, by fixing the parameters «, 8, 4,y and a in
such results for the class C,(«, B, ) we can obtain several interesting special cases
which coincide with the results found earlier by Libera and Ziegler [7], Chichra
Kulshrestha [5], and many others.

The author is grateful to the referee for his suggestions.
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