ON A COVERING THEOREM OF WICKE AND WORRELL

By

JINGCHENG TONG

(Received October 11, 1984; Revised September 25, 1985)

ABSTRACT. A generalization of Wicke and Worrell's theorem (Proc. Amer. Math. Soc. 55 (1976), 427-431) on covering property of topological spaces is provided.

The following theorem was first mentioned by Worrell and Wicke in [2] as Theorem (iv), but the proof was given twelve years later in [1].

Theorem 1. Suppose that X is a countably compact topological space and \mathcal{U} is the union of a countable collection $\{\mathscr{V}_n; n < \omega\}$ of collections of open subsects of X such that each $x \in X$ is in at least one element but not in more than countably many elements of some \mathscr{V}_n . Then some finite sub-collection of \mathscr{U} covers X.

The purpose of this note is to generalize this theorem.

We need some notations. If \mathscr{U} is a collection of subsets of a topological space X, then define $\mathscr{D}(x,\mathscr{U}) = \{U \in \mathscr{U}; x \in U\}; \operatorname{St}(x,\mathscr{U}) = \bigcup_{U \in \mathscr{D}(x,\mathscr{U})} U. |\mathscr{D}(x,\mathscr{U})| \text{ denotes the cardinality of } \mathscr{D}(x,\mathscr{U}).$

Theorem 2. Suppose that X is a countably compact topological space and \mathcal{U} is an open cover. If \mathcal{U} is the union of a countable collection $\{\mathcal{U}_n; n \leq \omega\}$ of collections of open subsets of X such that for each uncountable closed subset $S \subset X$, there is an $x \in S$ and an n satisfying $1 \leq |\mathcal{D}(x, \mathcal{V}_n)| \leq \omega$, then \mathcal{U} has a finite subcover..

Proof. Assume the contrary. Since X is countably compact, \mathscr{U} has no countable subcover. So X must be uncountable. Let $C = \{x \in X; 1 \le | \mathscr{D}(x, \mathscr{V}_n) | \le \omega$ for some $n\}$. Then C is nonempty. Let N(x) be the set of all positive integer n such that $1 \le |\mathscr{D}(x, \mathscr{V}_n)| \le \omega$. Note that $\bigcup_{n \in N(x)} \operatorname{St}(x, \mathscr{V}_n)$ is a countable union of members of \mathscr{U} for each $x \in X$. Let $R = X \setminus \bigcup_{x \in C} \bigcup_{n \in N(x)} \operatorname{St}(x, \mathscr{V}_n)$. Since R is a countable closed set, it is contained in a countable union U of members of \mathscr{U} . Now assume that there is a finite set $\{x_1, \dots, x_k\} \subset C$ such that $C \setminus U \subset \bigcup_{1 \le i \le k} \bigcup_{n \in N(x_i)} \operatorname{St}(x_i, \mathscr{V}_n)$. Let $W = U \cup \bigcup_{1 \le i \le k} \bigcup_{n \in (x_i)} \operatorname{St}(x_i, \mathscr{V}_n)$. Then W is a countable union of members of \mathscr{U} and $W \supset C$. Since $X \setminus W$ is countable, \mathscr{U} has a countable subcover. This contradicts the first assumption of this proof. Hence there is no such a finite set, we can find a sequence $\{x_k\}_{k=1}^{\infty}$ in C such that $x_k \in (C \setminus U) \setminus \bigcup_{i \le i \le k} \bigcup_{n \in N(x_i)} \operatorname{St}(x_i, \mathscr{V}_n)$.

¹⁹⁸⁰ Mathematics subject classifications. Primary 54D20.

J. TONG

Now we prove that the sequence $\{x_k\}_{k=1}^{\infty}$ has no ω -limit point. Let $x \in X$ be an arbitrary point. If $x \in U$, then U is an open neighborhood of x containing no points of $\{x_k\}_{k=1}^{\infty}$. If $x \in X \setminus U$, since $X \setminus U \subset X \setminus R = \bigcup_{x \in C} \bigcup_{n \in N(x)} \operatorname{St}(x, \mathscr{V}_n)$, there is an $\bar{x} \in C$ such that $x \in \bigcup_{n \in N(\bar{x})} \operatorname{St}(\bar{x}, \mathscr{V}_n)$. Hence $x \in \operatorname{St}(\bar{x}, \mathscr{V}_{n_0})$ for some n_0 . Therefore $x \in V$ for an open set $V \in \mathscr{V}_{n_0}$. If $V \cap (\bigcup_{k=1}^{\infty} \{x_k\}) = \emptyset$, V is an open neighborhood of x containing no points of $\{x_k\}_{k=1}^{\infty}$. If $V \cap (\bigcup_{k=1}^{\infty} \{x_k\}) \neq \emptyset$, then $x_p \in V$ for some integer p and $V \subset \operatorname{St}(x_p, \mathscr{V}_{n_0})$. For k > p, since $x_k \in (C \setminus U) \setminus \bigcup_{1 \le i \le k} \bigcup_{n \in N(x_i)} \operatorname{St}(x_p, \mathscr{V}_n)$, we have $x_k \notin \operatorname{St}(x_p, \mathscr{V}_{n_0})$, hence $x_k \notin V$, V is an open neighborhood of x containing at most p points of the sequence $\{x_k\}_{k=1}^{\infty}$. Therefore $\{x_k\}_{k=1}^{\infty}$ has no ω -limit point, X is not countably compact, a contradiction.

Acknowledgement. The author thanks the referee for his valuable suggestion to improve this note.

References

- [1] H. H. Wicke and J. M. Worrell, Jr.: Point-countability and compactness, Proc. Amer. Math. Soc., 55 (1976), 427-431.
- [2] J. M. Worrell, Jr. and H. H. Wicke: Characterizations of developable topological spaces, Canad. J. Math., 17 (1965), 820-830.

Department of Mathematical Sciences University of North Florida Jacksonville, FL 32216 USA

and

Institute of Applied Mathematics Academia Sinica Peking China