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ABSTRACT. A generalization of Wicke and Worrell’s theorem (Proc. Amer. Math. Soc. 55
(1976), 427-431) on covering property of topological spaces is provided.

The following theorem was first mentioned by Worrell and Wicke in [2] as
Theorem (iv), but the proof was given twelve years later in [1].

Theorem 1. Suppose that $X$ is a countably compact topological space and $\mathcal{U}$ is
the union ofa countable collection $\{\mathcal{V}_{n};n<\omega\}$ ofcollections ofopen subsects of $X$ such
that each $x\in X$ is in at least one element but not in more than countably many elements
of some $\mathcal{V}_{n}$ . Then some finite sub-collection of $\mathcal{U}$ covers $X$.

The purpose of this note is to generalize this theorem.
We need some notations. If $\mathcal{U}$ is a collection of subsets of a topological space $X$,

then define $\mathcal{D}(x, \mathcal{U})=\{U\in \mathcal{U};x\in U\};St(x, \mathcal{U})=\bigcup_{U\in 9x}\langle,q$
) U. $|\mathcal{D}(x, \mathcal{U})|$ denotes the

cardinality of $\mathcal{D}(x, \mathcal{U})$ .

Theorem 2. Suppose that $X$ is a countably compact topological space and $\mathcal{U}$ is an
open cover. If $\mathcal{U}$ is the union ofa countable collection $\{\mathcal{U}_{n};n\leq\omega\}$ ofcollections ofopen
subsets of $X$ such thatfor each uncountable closed subset $S\subset X$, there is an $x\in S$ and an
$n$ satisfying $ 1\leq|\mathcal{D}(x, \mathcal{V}_{n})|\leq\omega$ , then $\mathcal{U}$ has a finite subcover..

Proof. Assume the contrary. Since $X$ is countably compact, $\mathcal{U}$ has no countable
subcover. So $X$ must be uncountable. Let $C=$ { $x\in X;1\leq|\mathcal{D}(x,$ $\mathcal{V}_{n})|\leq\omega$ for some $n$ }.
Then $C$ is nonempty. Let $N(x)$ be the set of all positive integer $n$ such that
$1\leq|\mathcal{D}(x, \mathcal{V}_{n})|\leq\omega.$ Note that $\bigcup_{n\in N\langle x)}St(x, \mathcal{V}_{n})$ isacountable union of members of

$\mathcal{U}$ for each $x\in X$. Let $R=X\backslash \bigcup_{x\in C}\bigcup_{n\in N\langle x)}St(x, \mathcal{V}_{n})$ . Since $R$ is a countable closed
set, it is contained in a countable union $U$ of members of $\mathcal{U}$ . Now assume that there
is a finite set $\{x_{1}, \cdots, x_{k}\}\subset C$ such that $C\backslash U\subset\bigcup_{1\leq i\leq k}\bigcup_{n\in N\langle x_{i})}St(x_{i}, \mathcal{V}_{n})$ . Let
$W=U\cup\bigcup_{1\leq i\leq k}\bigcup_{n\in\langle x_{i})}St(x_{i}, \mathcal{V}_{n})$ . Then $W$ is a countable union of members of $\mathcal{U}$

and $W\supset C$. Since $X\backslash W$ is countable, $\mathcal{U}$ has a countable subcover. This contradicts
the first assumption of this proof. Hence there is no such a finite set, we can find a
sequence $\{x_{k}\}_{k=1}^{\infty}$ in $C$ such that $x_{k}\in(C\backslash U)\backslash \bigcup_{i\leq i\leq k}\bigcup_{n\in N\langle x_{i})}St(x_{i}, \mathcal{V}_{n})$ .
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Now we prove that the sequence $\{x_{k}\}_{k=1}^{\infty}$ has no $\omega$-limit point. Let $x\in X$ be an
arbitrary point. If $x\in U$, then $U$ is an open neighborhood of $x$ containing no points of
$\{x_{k}\}_{k=1}^{\infty}$ . If $x\in X\backslash U$, since $X\backslash U\subset X\backslash R=\bigcup_{x\in C}\bigcup_{n\in N\langle x)}St(x, \mathcal{V}_{n})$ , there is an $\overline{x}\in C$ such
that $x\in\bigcup_{n\in N(\tilde{x})}St(\tilde{x}, \mathcal{V}_{n})$ . Hence $x\in St(\tilde{x}, \mathcal{V}_{n_{O}})$ for some $n_{0}$ . Therefore $x\in V$ for an
open set $V\in \mathcal{V}_{no}$ . If $V\cap(\bigcup_{k=1}^{\infty}\{x_{k}\})=\emptyset,$ $V$ is an open neighborhood of $x$ containing
no points of $\{x_{k}\}_{k=1}^{\infty}$ . If $ V\cap(\bigcup_{k=1}^{\infty}\{x_{k}\})\neq\emptyset$ , then $x_{p}\in V$ for some integer $p$ and
$V\subset St(x_{p}, \mathcal{V}_{n_{O}})$ . For $k>p$ , since $x_{k}\in(C\backslash U)\backslash \bigcup_{1\leq i\leq k}\bigcup_{n\in N\langle x_{i})}St(x_{p}, \mathcal{V}_{n})$ , we have
$x_{k}\not\in St(x_{p}, \mathcal{V}_{n_{0}})$ , hence $x_{k}\not\in V,$ $V$ is an open neighborhood of $x$ containing at most $p$

points of the sequence $\{x_{k}\}_{k=1}^{\infty}$ . Therefore $\{x_{k}\}_{k=1}^{\infty}$ has no $\omega$-limit point, $X$ is not
countably compact, a contradiction.
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