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1. Introduction

In their paper [5], Lai and Wei obtained a general log log law for weighted
sums of the form

co ©o 1/2
> bi;loglog X %,) =g¢ a.s.,

= —00 i=-0c0

limsup| X3 b,,,;ei\/ 2

N~soo0 {==-o00 i

where the ¢; are independent random variables with zero means and a common
variance ¢2, and {b,;, n=1, —c0<i<oo} is a double array of constants such that
iZ_ b%:<oco for every n. They also applied this result to obtain laws of the
iterated logarithm for partial sums of linear processes and for least squares
estimates in regression models, and to improve the results of Tomkins [8, 9]

concerning iterated logarithm behavior of the form tﬁ; f(@/n)e;. It is our object

here to extend their results to the martingale case.
Let {e,, F,, —co<n<oo} be a sequence of martingale differences such that

1.1) E@E:|Fp-1)=0%>0 a.s. for all n
and
(1.2) E(|&,|"|Fr-1)=C a.s. for all n, some r>2 and some C<oo,

and let {a;, n=1, —c0<i=<n} be a double array of constants such that

1.3) 1_&_) a2;< oo for every n.
Define
(1.4) s,,=ii Gnits.

Conditions and guarantee almost sure convergence of the series in
and therefore S, is well defined. Our main result is the following genera-
lization of of (see the Note added in proof).
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Theorem 1. Let {e,, F,, —co<n<co} be a sequence of martingale diffe-
rences satisfying (1.1) and (1.2), and let {an;, n=1, —c0o<i<n} be a double array
of constants satisfying (1.3). Define S, as in (1.4). Assume that as n—oo,

(L.5) An= 3 ati—> oo
and
(1.6) sup a%=0(A,(log A,)-*) for all p>0.

(i) If there exist constants ¢;=0 and d>2/r such that

m n n d

@D B @)+ 3 as(( 3 ) for n>mzm,
and
(1.8) (3 )d=O(A ) as n—oo

. 5o 1 n )
then
(1.9) - - limsup|S,|/(2A, log log A,)*<¢ a.s.

(ii) If

(1.10) 2 (@n—am+ 3 atisgn—m)  for n>mzm,,

where g is a positive function on {1, 2, ---} such that

(1.11) gn)=0(A,) as n—oo,

(1.12) lirg _il:lf g(Kn)/gn)>K?*"  for some integer K=2
and

(1.13) Vr>0, 3‘5<1 such that li“,}_.s;uP{aﬂ?fn g(@)/gn)} <1+7,

then (1.9) still holds.
(iii) Suppose that for every 0<y<y, there exist integers 1<n,<ng<---
such that

M 2
(1.14) lim sup ({s%:_l Gn4. 1)/ An, =7,
(1.15) lirilﬂsup (log log A,,)/(log k) =147
and

(1.16) lirp inf (log log A,,)/(log £)>0,
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where n, may depend on y, then for every —6=¢=o0,

(1.17) lim inf| (24, log log A,)"*/2S,—¢|=0  a.s.

T -0

In the field of applications it will be often difficult to check condition (1.2),
while the condition

(1.18) ‘ snglenl’<oo for some r>2
is satisfied in many applications. For this reason, replacing the assumption

(1.2) of by the weaker assumption [1.18), we give the following
iterated logarithm results.

Theorem 2. Let {en, Fn, —c0o<n< oo} be a sequence of martingale differences
satisfying (1.1) and (1.18), and let {an:, n=1, —co<iZn} be a double array of
constants satisfying (1.3), (1.5) and (1.6). Define S, as in (1.4).

(1) If there exist constants ¢;=0 and d>2/r such that (1.7) and (1.8) hold,
then

(1.19) lirﬁl sup|S.|/(2BA, log log A,)'*=¢ a.s.,

where B=dr/(dr—2).
(ii) If (1.10), (1.11) and (1.13) hold, and if

(1.20) lirg inf g(Kn)/g(n)=K*#'"F-»  for some B>1 and some integer K=2,

then (1.19) holds.

Remarks. 1. Condition (1.13) is satisfied if either g(n) is nondecreasing or
max g()~g(n). Condition (resp. (1.20)) is satisfied by g(n) of the form

g(n)=n*L(n), where a>2/r (resp. a=2p/r(f—1)) and L(n) is a positive slowly
varying function.
2. Define

f(m, n)'=t§3' (@ni—amd™t, :Eﬂaii for n>mzl1,
and f(m, m)=0 for m=1. If f(m, n) satisfies (superadditivity)
fim, B)+f(k, n)<f(m,n)  for n=k=m=m,,

then [(1.7) and (1.8) hold with d=1, cmo-—O and ¢;=f(m,, 1)—f(mo, i—1) for i>m.
3. For the particular case

Ani=a; if 1=i=n, a,;=0 otherwise,

n
S, reduces to the weighted sum ‘)_,“ a;s;. If, as n—oo
=1
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(1.21) (@) A= ; &} —> 0o, (b) @t =0(A.(log A,)-*) for all p>0,

then the assumptions of Theorem 1(i) are satisfied with d=1 and c;=a?, and
the assumptions of Theorem 1(iii) are satisfied by taking n,=inf n>ng_1: A=
L*}, where L>7y-* (see [5]). The condition (1.21) (b) is equivalent to and
(1.21) (a)-(b) include a,==+n% —1/2<a<, a,==+n*(log n)8, a>—1/2 or a=
—1/2=B8< o0, etc. Tomkins has obtained a log log law for weighted sums

é‘_‘,laiei of identically distributed martingale differences under slightly weaker

conditions.
The above results provide a powerful tool for some applications. To il-
lustrate we shall consider the stationary linear process

(1.22) Xn= i bign-1, i bi< o,
i=0 =0

where the {&,, F,, —co<n<oco} are martingale differences such that holds,
and &, are o-fields generated by ¢,, m=<n. This model is important in time
series analysis, the martingale condition corresponding to the condition that the
best linear predictor is the best predictor (both in the least squares sense; see
Hannan and Heyde [3]).

Let for n=1 and i<n,

(1.23) Qni= an_‘,lb,_,, where b,=0 if i<0.
Then

(1.24) Sa=F Xi= 3 anes

and

(1.25) g(n)=ESi=0A,, where A,,—_—‘:i_:wag.t.

We now apply Theorems 1 and 2 to obtain the following :

Corollary. Let {e,, F,, —c0<n<oo} be a sequence of martingale differences
satisfying (1.1), and let X, be a linear process defined by (1.22). Define {a,i},
Sa and g(n) by (1.23), (1.24) and (1.25), respectively.

(i) If (1.2), (1.12) and (1.13) hold, then

lim sup| S, 1/ {2g(n) log log g(n)}*/*<1 a.s.
(ii) If (1.13), (1.18) and (1.20) hold, then
lirr}; sup| S, |/{28g(n) log log g(n)}*/*<1 a.s.
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(iii) If (1.2) holds, and if
(1.26) > at;=o(g(n)) for all a>0

isn exp(-(log )%

and
(1.27) lirr: 3£f (log log g(n))/(log log n)>0,
then for every —1=<q=1,
lirg*iilfl {2g(n) log log g(n)} -/*S,—q|=0  a.s.

Conditions [(1.12), (1.13) and (1.20) cover a wide range of correlation struc-
tures for the sequences {X,}; see e.g., [4], [5] and [11]. Note that parts (i)
and (ii) of the corollary were given by the author [11].

Proof. Note that
g(n—m)=a”[__i‘ (am—am)2+i_§)+la%¢] for n>m=1.

Suppose that g satisfies (or (1.20)) and (1.13). Then by of Lai
and Stout [4], g(n)—oc as n—oo, and hence holds. Note that also
holds (see [5], p. 327). We next suppose (1.26) and (1.27). Given 0<y<l,
choose 1<d<1+7 and define for k=1, 2, ---

ny=[exp (¥°)].

Then [1.14), and (1.16) hold (see [5], pp. 327 and 333). Hence
1 (ii)-(iii) and [Theorem 2(ii) imply the corollary.

(i), (iii) can be applied to extend a log log law for least squares
estimates in regression models obtained by Lai and Wei to the case that
the disturbances form martingale differences. We can also apply to
extend Corollaries 1 and 2 of to the martingale case. But we shall not
enter into details.

2. Proofs of Theorem 1 (i)-(ii) and Theorem 2

The proofs of (i)-(ii) and closely follow that of
(i)-(ii) of [5]. Thus we only skech them. The following lemma
was proved in [11]

fle

Lemma 1. Let {¢,, F,, —co<n<o} be a sequence of martingale differences
such that E(e%|F,-) =0 a.s. for all n, and (1.18) holds. Let {@,;, n=1, —co<
i=n} be a double array of constants satisfying (1.3), (1.5) and (1.6). Let S,=

i_Zn_} Qni€i. Then for all {>1 and 6>0, as n—o
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P[S.1>La(20 A, log log A,)*]1=0(exp(—0 log log A,)).

Proof of (i)-(ii). Let 0<d0<1. By virtue of (1.2), we can cho
ose B>0 such that

E[e2I(|e;| >B)| F4-,]<0%0? a.s. for all 7.
Let
e;=¢ed(|le;| =B)—E[ed(|e;| =B)| F¢-1]

and
d,;=€1;—e1; .

Then both {e;, F;, —o0<i<oco} and {d;, F;, —oo<i<oo} are sequences of mar-
tingale differences such that

E@|Fi-)<E(|Fi-1)=0% a.s.
and

E(d}1Fi-)=E[etl(|e:] > B)|F4-1]=0%*  ass.

Putting e; and d; defined above in place of &¢; and &7, respectively, applying
stated above instead of (ii) and making use of the Burkholder
inequality instead of the Marcinkiewicz-Zygmund inequality, then parts (i)
and (ii) of [Theorem 1 can be proved similarly to corresponding parts of

1 of [5]
Proof of [Theorem 2. Let 6>0. If and hold, then by the

Burkholder inequality, we obtain that for n>m=m,

m n r/
E|Sa—Sn|"C, (sup Eled ) 2 (@m—amd®+ 3 a%)"
i i=-c0 i=m+1

- BI(B=1)
n
éCr(supElstl')( > ci) )
% t=m+1

where B=dr/(dr—2) and C, is a positive constant depending only on r. Hence,
applying with §=8+0 and {=1+4, and further applying Theorem
4 (i) of (with g=r, 2=8/(B—1) and B,=A,), we get

lirr,} sup|S,|/(2A, log log A,)'2=(14+0)(B+0)"%c a.s.

Since d is arbitrary, follows as desired. Using Theorem 4 (ii) of [5], the
proof of part (ii) of follows similarly.

3. Proof of Theorem 1 (iii)
Define
3.1 eni=¢d[|ani€:]| = AY* (log log An)"'],
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eni=eni—E(eni| Fi-1).

Then, {e.; Fiy, —0<i<n} is a sequence of martingale differences such that

(3.2) E(E%tlgi.—o,éaz a.s. for all

and

3.3) lanienil £2A%% (log log Ap)™? a.s. for all 7.

Let Iy={n:ny.,<n=n;} and By= X a3%,,.. Then by
i€lp

(3.4) (I—r+0(1)A., =By=A,,, log log B, ~ log log Axn, .

Further let Uy= X @n,,16n,.: and Zp=0¢"'B;'*U;. In the sequel, for simpli-
i€ly

city of notation, we denote a,,,; and €,,,; by ax: and e, respectlvely We
now set down some lemmas under the assumptions of [Theorem 1 (iii).

Lemma 2. For all €>0 and all large &,
(3.5) E[I(Zy>¢&)|Fn,-,]
<{ exp (—&/4cy) a.s. if ecy=1,
exp [—(e%/2)(1—ecx/2)] a.s. if ecx<l1
where ¢y=20""(A,,/B)"*(log log A,,)™"
Proof. Assume 0<Ac;=1. Define

Vi =exp(io- By'/* ,-=,§3 |, GrER)EXD [——(12/2)<1+,zck/z)B;Iiﬂ;z"zmazt]
for ny-,<m=n,, and V%, _ =1 as. It follows from and that
Elexp (A0 'Bi*%ars€ri)| Fi-1]
=14+2%/2)(1+2cs/2)0 ~* By ak E(eke | F4-1)
<exp[(A%/2)(1+Ac:/2)Bi'ai:]  a.s.

Hence, {V%, Fm, ns-1<m=<n,} forms a supermartingale (cf. Stout [7],1p. 299).
Thus we get
E[exp(AZi)|F,,_, )<exp[(23/2)[14+2c:/2)] a.s.

This implies that

(3.6) E[I(Zy>¢€)|Fn,y-,]
<exp(—Ae)E[exp(AZ;)| Fn-,]
<exp(—2e)exp [(A2/2)(1+Acx/2)] a.s.
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Hence [3.5) follows from by setting A=1/c, if ec,=1, and A=c¢ if ec,<1.
Lemma 3. Let a>0 be given. Then, for all ¢e>0 and k sufficiently large,
3.7 E[I(Z>¢)|Fn,_]zexp[—(*/2)1+a)] as.
Proof. Since E(s;|F;-,)=0 a.s., it follows from and (1.2) that
0*—E(ehi| Fi-1)=E[(ei—€n0)®| F 41 ]+ E*(eni| F4-1)
Z2E(ei[|anie:] > Ai*(log log An) 111 Fy-1)
=2C{(sup a7.)/ As} ""'*(log log A.)"*  a.s.

Hence by for each 0<d<1, there exists N=N(d) such that
3.8) (1—0)o2<E(ed;| Fi-1) a.s.

for all n>N and all /<n.
Assume 0<Ac,<1, where ¢, is defined in Let 0<d<1 and
define
anzexp(la"B;”z ﬁ) akieki)

i=np_1+1
xexp| —~(1/2(1—dc)(1-8)Bi_ % azi]

t=np_1+1

for n,-,<m=n,, and W%,_ =1 a.s. It follows from [3.3) and [3.8) that for all
large k&

Elexp(do~'By**ap& )| Fi-1]
=14+(4%/2)(1—A4ce/2)0 2Bi'a} E(e} | F i-y)
2exp[(2%/2)(1—Acy)(1—8)Bi'ai;]  a.s.

Hence, {W#%, Fn, ne-:=m=n,} forms a submartingale for each % sufficiently
large. Thus we have for all large %

(3.9 E[exp(AZy)| Fn,-,12exp [(22/2)(1—2ci)(1—-0)]  a.s.

Since d is arbitrary and c,—0 as k—oo, the rest of the proof can be obtained
by using [3.5) and (3.9), and arguing just as in the proof of of Stout
(setting a;=1).

Lemma 4. For all {>0, §>0, §+0 and all large k,

(3.10) E{I[(0—0)0=(2Blog log By)'*U,=(0+8)0]|Fn,_,}
=exp(—802log log B,) a.s.
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Moreover, for all §>L>0 and all large k,
(3.11) E{I[0=(2B; log log By)*Us=§0]|F0,_,}
=exp (—® log log B,) a.s.

Proof. To prove (3.10), we only consider the case 8>0. Since and
continue to hold if we replace Z, by —Z,, the case <0 follows simi-
larly. Take 0<{’<{ and 0<&’<¢ such that §—¢’>0. Applying Lemma 2 with
e=(0+&)(2 log log B;)''?, and noting that by [3.4), ec,—0 as k—oo, we obtain
that

(3.12) E{I[(2B, log log B:)""*U;>(04-8)0]|F r,_,}

=E{I[Zy>(0+§)2 log log Bx)'*]|F n,_,}
=exp[—(6+&')? log log B;] a.s.
for all large k. Take a>0 such that (§—¢")*(1+a)<6% Then by
(3.13) E{I[(2B, log log B:)""*Us>(0—{"o]|Fr,_,}
=E{I[Z,>(60—{")(2 log log Bx)'/*][Fn,_,}
zexp [—(0—L{")*(1+a) log log B, ]
=2exp(—6@tloglog B,) a.s.

for all large k. From [(3.12) and [(3.13), (3.10) follows.
To prove (3.11), taking {<{<&, we obtain as in that

(3.14) E{I[(2Bsloglog By)""*U>§06]|F n,_,}

<exp(—{?loglog B;) a.s.
for all large k. Take 0<r<{. Then as in [(3.13),
(3.15) E{I[(2B, log log By)~"*U;>70]|F,, .}
) =2exp(—{2log log B,) a.s.
for all large .. From [(3.14) and m‘, (3.11) follows.
Proof of (iii). We first note that

(3.16) 33 Pllayes =AY (log log A,,)~* for some i]<oco
(see [5]). By (1.16),
Q.17 loglog A, ,=dlog k for all large 2 and some d>0.

Take 0<y<d®. We now show that
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(3.18) P[| 15¢21k aricri|l Say/‘(1+7)(2A,, log log A, ,)"? for all large k]=1.
Let A, c and A be positive constants such that
a2i§ka%i__<_.A, laricri| S AY%¢ a.s. for all 71, Ac<1.
Define
T,=exp (ZA'”zi:AI,‘k Qri€xi) €XP [—(2”/2)(1+2c/2)A’1a’u213k at],

J 5
Ts.i=exp(A7* 35 aniers)exp| —(/201+4c/2A0* 2, ak]

for /<j<n,_, and T,..,=1 a.s. Then, as in the proof of {Ty.1, &y,

I—1=<j=<n,;-,} forms a supermartingale, and hence ETy,_,..=1 for all I=n,-,.

‘On the other hand, T,,_,,—7T a.s. as [—»—co. Therefore, by the Fatou lemma,
ET:=< sup ET,,_,.=<1,

lsnp_y

‘which implies that ‘

3.19) Elexp (A" 21@, Qri€xi)]
=exp [(22/2)(1+26/2)A"021§k azi]
=exp [(2*/2)(1+4c/2)].

By .6213 a:i=r(l+7)*A,, for all large k. Hence, putting A=a?r(1+7)*4,,,
T k

€=20"rV*(1+7)"'(log log A,,)"! and A=y*/*(2 log log An)'? in the above bargu-
ment, and noting that Ac—0 as k—oo, we obtain from (3.17) and (3.19) that

(3.20) P[“Zz)k ari€ri> 07/ (1+7)(2A0, log log A,,)"%]
=exp(—2r~'/*log log An,)
X E{exp[a=ly=1+7)"" A7}/ 2 log log A, )/ &, anerd)
=exp[—y ) (1+0(1))log log A,,]
<exp[—(r~'*d+0(1)) log k]

for all large 2. Note that (3.19) (and therefore (3.20) as well) also holds with
ex; replaced by —s;;. Thus we get

3.21) PL| “ZI) ari€rs] > o7/ (14+7)(2A,, loglog A, ,)VE]
k

=2exp[—(r~"*d+o(1)) log k]
for all large k. Since d>7%, (3.18) follows from [3.21) and the Borel-Cantelli
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lemma.
we next show that all z>0

Tk
322 P[| 2 anBell g

<t(An, log log A,,)"* for all large |=1.
By (1.6), for all >0 and 6>0,

i
323 P| 2 anell g

>7(A,, log log A,,k)”g]

=t(Aq,loglog A,,)"'*E iémauE(eiln | Fi-1)

<774, log log A,,k)'”"t:Z_’wa{ larses| IT | arees| > Axf3(loglog A, )71}
=t '(sup Ele:|") {(sup @%:)/ An,} "~ /*(log log An ) =**
=o(exp(—0 log log A,,).

Hence (3.22) follows from (3.17), (3.23) and the Borel-Cantelli lemma.
By [(1.15) and [(3.4),

(3.24) oglog B,<(1+7r)¢log k& for all large k.

In view of (3.24), we can apply and a conditional version of the
Borel-Cantelli lemma (see Doob [2], p. 323) to obtain that for every —1=<6#=<1
and >0,

(3.25) P[[(2B.loglog B,)"'*U,—(14+7)'0ag| =7 i.0.]J=1.

Assume 0<6=1 (the case —1<60<0 follows similarly). By and (3.24), for
all large k&,

(3.26) An,loglog A,, =B loglog Bx=(1—7)*A,, log log A, .
By [(3.25) and [3.26),
@3.27) PLL—1") {14700 — 7} <(24,, log log A,,)"/*U,

=(14+p)-0o+y i.0.]=1,

where y’=y or 0 according as (1+7)'@c—%n>0 or =<0. Consequently, from
(3.16), (3.18), (3.22) and it follows that

(3.28) PLA—7) {14700 —n} —ar/*(1+7)—2"V 2
=(2A.loglog A,)-'%S,
S+ 00 +n+er i 1+7)+2-2r i.0.]=1.
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Since 7, » and r are arbitrary, follows from [(3.28).

Note added in proof. In this paper, we made a restriction to the one-sided
case (a,;=0, 7>n), but it is not essential. It is easy to see that similar methods
can be applied to obtain results for the two-sided case. Theorem 1(i)-(ii) and
Theorem 2 continue to hold for the two-sided case if (1.3)-(1.7) and (1.10) are
replaced by the corresponding ones of [5]. For Theorem 1(iii), however, the
assumption (1.14) must be replaced by (1.13) of [5] in which the subsets I of
integers satisfy max{n:n€l;} <min{n:nel;,,} for k=1. In [5], only the
disjointness of I,’s was required. Theorem 1 of [5] then holds for martingale
differences satisfying (1.1) and (1.2) under the additional assumption on I,
stated above.
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