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\S 1. Introduction

Let $(M, g)$ denote an n-dimensional $(n\geqq 2)$ connected, complete Riemannian
manifold with the Riemannian metric $g$ . The author has introduced in [4] a
function $p_{M}$ : $M\rightarrow R^{+}\cup\{+\infty\}$ whose boundedness gives us some informations on
the geometric structure of $M$ where $R^{+}$ is the set of all positive real numbers.
This function $\rho_{H}$ is defined as follows. Let $p$ be a point of $M$. Suppose that for
an $r>0$ exp $p:\overline{B}(0_{p}, r)\rightarrow M$ is of maximal rank where $\overline{B}(0_{p}, r)=\{Y\in T_{p}M;\Vert Y\Vert\leqq r\}$ .
Let $\xi$ be the outer unit normal vector field to the boundary $\partial B(0_{p}, r)=\{Y\in T_{p}M$ ;
$\Vert Y\Vert=r\}$ in the Riemannian manifold $(\overline{B}(0_{p}, r),\tilde{g})$ , $\tilde{g}=\exp_{p}^{*}g$ , and let $H_{p.r}$ be
the mean curvature of $\partial B(0_{p}, r)$ in $(\overline{B}(0_{p}, r),\tilde{g})$ with respect to $\xi$ . $H_{p.r}(Y)$ ,

$Y\in\partial B(0_{p}, r)$ , is defined by $H_{p.r}(Y)=(1/(n-1))\sum_{\ell=1}^{n-1}g(\nabla_{e_{i}}(-\xi), e_{i})$ where $\nabla$ denotes

the Riemannian connection induced from $\tilde{g}$ and $\{e_{1}, e_{n-1}\}$ is an orthonomal
basis in $T_{Y}\partial B(0_{p}, r)$ . Now let $\Omega_{H}$ be the subset of $M$ which consists of all
points $p\in M$ satisfying the following condition: There exists an $r>0$ such that
$\exp_{P}$ : $\overline{B}(0_{p}, r)\rightarrow M$ is of maximal rank and $H_{p.r}\geqq 0$ . We define $\rho_{H}$ : $ M\rightarrow R^{+}\cup$

$t+\infty\}$ by $\rho_{K}(p)=\inf\{r>0;\tilde{H}_{p.r}\geqq 0\}$ if $p\in\Omega_{M}$ and $\rho_{M}(p)=+\infty$ if $p\in M\backslash \Omega_{H}$ . We
define $\rho(M)$ by $\rho(M)=\sup\{\rho_{H}(p);p\in M\}$ .

We are interested in Riemannian manifolds $M$ of positive Ricci curvature
such that $\rho(M)$ is flnite. There are many Riemannian manifolds $M$ with $\rho(M)$

$<+\infty$ . Typical examples of such Riemannian manifolds are compact symmetric
spaces of rank one. If $M$ is an n-dimensional $(n\geqq 2)$ connected, complete Rieman-
nian manifold whose sectional curvature $K_{H}$ and Ricci curvature Ric $M$ satisfy
$K_{H}\leqq 1,$ $Ric_{H}\geqq(n-1)\lambda^{2},1/2<\lambda\leqq 1$ , then $\pi\leqq 2\rho(M)\leqq\pi/\lambda$ ([4]).

The purpose of this paper is to show the following theorems.

Theorem A. Let $M$ be an n-dimensional $(n\geqq 2)$ connected, complete Rieman-
nian manifold of positive Ricci curvature such that $\rho(M)$ is finite. Then $ i(M)\leqq$

$2\rho(M)$ holds where $i(M)$ denotes the injectivity radius of M. Moreover, the
equality holds if and only if $M$ is isometric to $a$ euclidean n-sphere.

Theorem B. Let $M$ be an n-dimensional $(n\geqq 2)$ connected, non simPly con-
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nected, compact Riemannian manifold of positive Ricci curvature such that $\rho(M)$

is finite. Then $i(M)\leqq\rho(M)$ holds with the equality if and only if $M$ is isometric
to an n-dimensional real projective space of constant curvature.

A Riemannian manifold $(M, g)$ is said to be a $C_{L}$-manifold if all geodesics of
\langle $M,$ $g$) are periodic geodesics with the least period $L$ .

Theorem C. Let $M$ be an n-dimensional $(n\geqq 2)$ connected, compact Riemannian
manifold of positive Ricci curvature. If $M$ is a $C_{L}$-manifold with $L=2\rho(M)$,
then $M$ is isometric to an n-dimensional real projective space of constant curva-
ture.

The proof of theorems stated above will be given in \S 3 and \S 4. In \S 2 we
describe notations which will be used in later sections and we state some pro-
perties of $p_{M}$ . Lemma 2.1 in \S 2 is an important lemma to obtain theorems of
this paper. This lemma directly follows from Theorem 3.1 and Remark 3.1 in
the author’s paper [4]. In \S 4 we investigate compact, non simply connected
Riemannian manifolds $M$ of positive Ricci curvature such that $\rho(M)$ is finite.
Theorem $B$ is a direct consequence of Theorems 4.2 and 4.3.

\S 2. Preliminaries

In this section and throughout this paper we always assume that manifolds
and apparatus on them are of class $C^{\infty}$ unless otherwise stated.

In what follows let $(M, g)$ denote an n-dimensional $(n\geqq 2)$ connected, com-
plete Riemannian manifold with the Riemannian metric $g$. Let $d_{H}$ denote the
distance function on $M$ which is induced from the metric $g$ and let $d(M)$ denote
the diameter of $M$ We denote by $K_{K}$ and $Ric_{H}$ the sectional curvature of $M$

and the Ricci curvature of $M$ respectively. For each $p\in M\exp_{p}$ denotes the
exponential map from the tangent space $T_{p}M$ to $M$ at $P$ into $M$ For a $p\in M$

and an $r>0$ we put $B(p, r)=\{q\in M;d_{H}(p, q)<r\},$ $\partial B(p, r)=\{q\in M;d_{K}(p, q)=r\}$ ,
$B(0_{p}, r)=\{X\in T_{p}M;\Vert X\Vert<r\}$ and $\partial B(0_{p}, r)=\{X\in T_{p}M;\Vert X\Vert=r\}$ where $\Vert X\Vert$ de-
notes the length of $X$. We deflne $i_{H}$ : $M\rightarrow R\cup\{+\infty\}$ as follows: $ i_{K}(p)=\sup$

{ $r>0;\exp_{p}|B(0_{p},$ $r)$ is a diffeomorphism}, $p\in M$. We deflne the injectivity
radius $i(M)$ of $M$ by $i(M)=\inf\{i_{H}(p);p\in M\}$ . For each $p\in M$ and each unit
tangent vector $X$ at $P$ we will denote by $c_{p.X}$ : $[0, \infty$) $\rightarrow M$ the $g\ovalbox{\tt\small REJECT} desic$ emanat-
ing from $P$ with the initial velocity vector $X$. For a $p\in M$ we define $m_{p}$ :
$\partial B(0_{p}, 1)\rightarrow R^{+}\cup\{+\infty\}$ by $m_{p}(X)=\sup\{l>0;d_{H}(p, c_{p.X}(t))=t\},$ $X\in\partial B(0_{p}, 1)$ , and
we set $\tilde{C}_{H}(p)=\{m_{p}(X)X;X\in\partial B(0_{p}, 1), m_{p}(X)<+\infty\}$ . The set $\tilde{C}_{K}(p)$ is called
the tangent cut locus of $P$ in $T_{p}M$ and the set $C_{K}(p)=\exp_{p}C_{r(}p)$ is said the
cut locus of $P$ in $M$. It is well known that $d_{K}(p, C_{H}(p))=i_{K}(p)$ for any $p\in M$.
For each $p\in M$ and each $\alpha\in\pi_{1}(M, p)$ we put $\Vert\alpha\Vert(P)=\inf\{L(c);c$ is a geodesic
loop at $P$ belonging in $\alpha$ }, where $L(c)$ denotes the length of $c$.
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Let $P$ be a point of $\Omega_{H}$ (for the definition see \S 1) and $r$ a positive such
that $\exp_{P}$ : $\overline{B}(0_{p}, r)\rightarrow M$ is of maximal rank. For a unit tangent vector $X$ at $p$

we take unit tangent vectors $e_{1},$ $e_{n-1}$ at $P$ so that $\{e_{1}, e_{n-1}, X\}$ is an
orthonormal basis in $T_{p}M$. We extend $e_{1},$ $e_{n-1}$ to parallel vector fields $e_{i}(t)$

$(0\leqq l\leqq r),$ $1\leqq i\leqq n-1$ , along the geodesic $c_{p.X}|[0, r]$ . Since $\exp_{p}|\overline{B}(0_{p}, r)$ is of
maximal rank, there exist Jacobi fields $Y_{\ell}(t)(0\leqq t\leqq r),$ $1\leqq i\leqq?\iota-1$ , along $c_{p.X}|[0, r]$

such that $Y_{\ell}(O)=0_{p}$ and $Y_{i}(r)=e_{i}(r)$ , $1\leqq i\leqq n-1$ . Let $H_{X}(p, r)$ be the mean
curvature of the geodesic hypersphere $S(p, r)=\exp_{p}\partial B(0_{p}, r)$ with respect to the
velocity vector $\dot{c}_{p.X}(r)$ . Since $\{Y_{1}(r), \cdots, Y_{n-1}(r)\}$ is an orthonormal basis in
the tangent space to $S(p, r)$ at $c_{p.X}(r)$ , using the second variation formuIa,
$H_{X}(p, r)$ can be expressed by

$(n-1)H_{X}(p, r)=-\sum_{i=1}^{n-1}\int_{0}^{r}\{\Vert Y_{i}^{\prime}\Vert^{2}-g(R(Y_{i},\dot{c}_{p.X})\dot{c}_{p,X}, Y_{i})\}dt$

where $Y_{i}^{\prime}$ is the covariant derivative of $Y_{i}$ along $c_{p.X}$ and $R$ stands for the
Riemannian curvature tensor of $M$. We note $H_{p.r}(rX)=H_{X}(p, r)$ . In the case
where $M$ is the euclidean n-sphere of curvature $\lambda^{2},$ $\lambda>0$, we have $H_{X}(p, r)=-$

$\lambda$ cot $\lambda r,$ $ 0<r<\pi/\lambda$ . Thus $\rho_{M}(p)=\pi/2\lambda$ for any $p\in M=S^{n}(1/\lambda)$ . We can easily
show

$(n-1)H_{\acute{X}}(p, t)=Ric_{H}(\mathcal{E}_{p.X}(t))+\Vert A_{t}\Vert^{2}$, $0<t\leqq r$ .
where $\Vert A_{t}\Vert$ stands for the length of the second fundamental form $A_{t}$ of $S(p, t)$

$=\exp_{p}\partial B(0_{p}, t)$ . Using this formula we can show that $\rho_{H}$ is continuous if $M$

is of positive Ricci curvature and if $\rho(M)$ is finite. Let $\tilde{M}$ be a Riemannian
covering manifold of $M$ with the covering map $\Pi$ . Then $\rho ff=\rho_{H}\circ\Pi$ .

Making use of the comparison theorem with respect to the index form, we
get the following.

Proposition 2.1 ([4]). Let $M$ be an n-dimensional $(n\geqq 2)$ connected, complete
Riemannian manifold. If $K_{M}\leqq 1$ and $Ric_{M}\geqq(n-1)\lambda^{2},1<2\lambda\leqq 2$ , then $\pi\leqq 2\rho_{H}(p)$

$\leqq\pi/\lambda$ for any $p\in M$.
Remark 2.1. We note that there are Riemannian manifolds $M$ satisfying

$K_{H}\leqq 1,$ $Ric_{H}\geqq(n-1)\lambda^{2},0<2\lambda\leqq 1$ , and $\rho(M)<+\infty$ . For example, the Riemannian
product manifold $S^{m}(1)\times S^{2}(1)(m=3,4)$ satisfies such conditions where $S^{m}(r)$ denotes
the m-dimensional euclidean sphere of radius $r$.

We state a lemma which plays important roles in the proof of theorems of
this paper.

Lemma 2.1. Let $M$ be an n-dimensional $(n\geqq 2)$ connected, complete Rieman-
nian manifold of positive Ricci curvature such that $\rho(M)$ is finite. Then $d_{K}(p, q)$

$\leqq\rho_{H}(p)+\rho_{H}(q)$ holds for any $p\alpha ntsp$ and $q$ of M Moreover, if $d_{H}(p, q)=$

$\rho_{H}(p)+\rho_{H}(q)$ for some points $P$ and $q$ of $M$, then the following Properties hold.
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(1) $\partial B(p, \rho_{M}(p))=\partial B(q, \rho_{M}(q))$ .
(2) $\tilde{C}_{M}(p)=\partial B(0_{p}, d_{M}(p, q))$ and $C_{H}(p)=\{q\}$ . The same property also holds

for $q$ . $M$ is homeomorphic to a standard n-sphere.
(3) $\partial B(p, \rho_{K}(p))$ is a minimal hypersurface embedded in $M$.
This lemma follows from Theorem 3.1 and Remark 3.1 in the author’s

paper [4]. From Lemma 2.1 we get the following.

Theorem 2.1 ([4]). Let $M$ be an n-dimensional $(n\geqq 2)$ connected, complete
Riemannian manifold of positive Ricci curvature such that $\rho(M)$ is finite. Then
$d(M)\leqq 2\rho(M)$ and the fundamental group is a finite group. Moreover, if $d(M)$

$=2\rho(M)$ holds, then $M$ is homeomorphic to a standard n-sphere.

Remark 2.2. Let $M$ be the Riemannian product manifold $S^{8}(1)\times RP^{2}(1)$

where $RP^{m}(\lambda)$ stands for the m-dimensional real projective space of constant
curvature $\lambda$ . Then $\rho(M)<d(M)$ . We note that there exists a connected, non
simply connected, compact Riemannian manifold of constant curvature such that
$\rho(M)=d(M)$ and it is not homeomorphic to a real pr0jective space (see [6]).

\S 3. Proof of Theorem A

Let $M$ be an n-dimensional $(n\geqq 2)$ connected, complete Riemannian manifold.
$M$ is said to be a Wiedersehen manifold if for any $p\in M$ the cut locus $C_{H}(p)$

of $P$ in $M$ consists of a single point. It is well known that a Wiedersehen n-
manifold is isometric to a euclidean n-sphere (see [1], [7]).

Proof of Theorem A. By Lemma 2.1, $i(M)\leqq i_{M}(p)\leqq d(M)\leqq 2\rho(M)$ for any
$p\in M$. Suppose $i(M)=2\rho(M)$ . Then for any $p\in Mi_{H}(p)=d(M)=2\rho(M)$ . By (2)

in Lemma 2.1 $M$ is a Wiedersehen manifold. Hence $M$ is isometric to the eucli-
dean n-sphere of radius $ 2\rho(M)/\pi$ .

\S 4. Non simply connected manifolds with $\rho(M)<+\infty$

In this section we study geometric properties of a non simply connected,
compact Riemannian manifold $M$ of positive Ricci curvature such that $\rho(M)$ is
finite.

Theorem 4.1. Let $M$ be an n-dimensional $(n\geqq 2)$ connected, non simply con-
nected, compact Riemannian manifold of positive Ricci curvature such that $\rho(M)$

is finite. Then $\Vert a\Vert(p)\leqq 2\rho_{M}(p)$ for all $\alpha\in\pi_{1}(M, p)$ at every $p\in M$. Moreover, if
$\Vert a\Vert(p)=2\rho_{H}(p)$ for an $\alpha\in\pi_{1}(M, p)$ at a $p\in M$, then the universal covering mani-
fold of $M$ is homeomorphic to a standard $n$-sphere and the number of elements
of the fundamental group is even.
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Proof. Let $\tilde{M}$ be the universal Riemannian covering manifold of $M$ with
the covering map $\Pi$ . Take a $p\in M$ and an $a\in\pi_{1}(M, p),$ $\alpha\neq 1$ . Let $\sigma$ be the
deck transformation of $\tilde{M}$ corresponding to $\alpha$ which acts on $\tilde{M}$ as an isometry
of flxed point free. Take an $x\in\Pi^{-1}(p)$ . By virtue of Lemma 2.1, $ d_{B}(x, \sigma(x))\leqq$

$\rho_{E}(x)+\rho_{B}(\sigma(x))$ . Since $\Vert a\Vert(p)=d_{\tilde{K}}(x, \sigma(x))$ and $\rho_{E}=\rho_{M^{\circ\Pi}},$ $\Vert\alpha\Vert(p)\leqq 2\rho_{K}(p)$ . We
now assume that $\Vert a\Vert(p)=2\rho_{H}(p)$ for some $p\in M$ and some $a\in\pi_{1}(M, p)$ . Then
$d_{\overline{X}}(x, \sigma(x))=\rho_{R}(x)+\rho_{E}(\sigma(x))$ where $x\in\Pi^{-1}(p)$ and $\sigma$ is the deck transformation
of $\tilde{M}$ corresponding to $\alpha$ . Hence the properties (1), (2) and (3) in Lemma 2.1
hold for $x$ and $\sigma(x)$ . Therefore $\tilde{M}$ is homeomorphic to a standard n-sphere.
From the property (2) in Lemma 2.1 we see that $\sigma$ is an involution. Thus the
number of elements of the fundamental group is even.

Theorem 4.2. Let $M$ be an n-dimensional $(n\geqq 2)$ connected, non simply con-
nected, compact Riemannian manifold of positive Ricci curvature such that $p(M)$

is finite. Then $i_{K}(p)\leqq\rho_{K}(p)$ holds for any $p\in M$, If $i_{K}(p)=\rho_{H}(p)$ holds for some
$p\in M$, then the universal covering manifold of $M$ is homeomorphic to a standard
n-sphere and moreover the following holds.

(1) $\pi_{1}(M, p)\cong Z_{g}$ .
(2) $C_{K}(p)=\partial B(p, p_{K}(p))$ .
(3) $C_{K}(p)$ is a minimal hypersurface embedded in $M$

(4) $\exp_{p}$ ; $\partial B(0_{p}, \rho_{K}(p))\rightarrow C_{M}(p)$ is a covering map with the covering order
two.

(5) For distinct unit tangent vectors $X$ and $Y$ at $p$ such that exp$p\rho_{r}(p)X=$

exp$p\rho r(p)Y,$ $i_{p.X}(\rho\kappa(p))=-\dot{c}_{p.Y}(\rho\alpha(p))$ holds.

Proof. By Theorem 4.1 $i_{K}(p)\leqq\rho_{K}(p)$ holds for any $p\in M$. Suppose $i_{r}(p)$

$=\rho_{K}(p)$ for some $p\in M$. Let $\tilde{M}$ be the universal Riemannian covering manifold
of $M$ with the covering map $\Pi$ and $\Gamma$ the deck transformation group of $\tilde{M}$

corresponding to $\pi_{1}(M, p)$ . Each element of $\Gamma_{1}=\Gamma\backslash \{identity\}$ acts on $\tilde{M}$ as an
isometry of fixed point free. Take an $x\in\Pi^{-1}(p)$ . There exists a $\sigma\in\Gamma_{\iota}$ such
that $d_{E}(x, \sigma(x))\leqq d_{E}(x, \gamma(x))$ for any $\gamma\in\Gamma_{1}$ . The assumption $i_{K}(p)=\rho_{Z}(p)$ implies
$d\underline{\sim}(x, y)=\rho_{B}(x)+pr(y)=2\rho_{K}(p),$ $y=\sigma(x)$ . Then the properties (1), (2) and (3) in
Lemma 2.1 hold for $x$ and $y$ . By (2) in Lemma 2.1 we see that $\Gamma=\{identity$,
$\sigma\}$ and that $\partial B(x, \rho_{K}(p))$ is invariant by $\sigma$ . Hence $\tilde{M}=B(x, \rho_{Z}(p))\cup\sigma(B(x, pr(p)))$

$\cup\partial B(x, \rho_{X}(p))$ . The properties (1) to (5) then follow from the facts stated
above. We complete the $pr\ovalbox{\tt\small REJECT} f$.

In the $pr\ovalbox{\tt\small REJECT} f$ of Theorem 4.2 we have shown the following.

Corollary 4.1. Let $M$ be as in Theorem 4.2 and $\tilde{M}$ the universal Riemannian
covering manifold of $M$ with the covering map $\Pi$ . SuPpose that $i_{X}(p)=\rho_{X}(p)$

holds at a $p\in M$. Then $\Pi-1(p)=\{p_{1}, p_{g}\}$ , $ifl(p_{j})=2p_{K}(p),$ $j=1,2$ , and $C_{B}(p_{j})=$

$\{p_{i}\},$ $j\neq k$ .



166 R. ICHIDA

Theorem 4.3. Let $M$ be an n-dimensional $(n\geqq 2)$ connected, non simPly con-
nected, compact Riemannt’an manifold of positive Ricci curvature. If $i_{M}(p)=\rho_{H}(p)$

holds for any $p\in M$, then $M$ is isometric to an n-dimensional real projective
space of constant curvature.

Proof. Let $\tilde{M}$ be the universal Riemannian covering manifold of $M$. By

Theorem 4.2 and Corollary 4.1, $\tilde{M}$ is a Wiedersehen manifold. Therefore $\tilde{M}$ is
isometric to a euclidean n-sphere. Since $\pi_{1}(M)\cong Z_{2},$ $M$ is isometric to a real
projective space.

Theorem $B$ follows from Theorems 4.2 and 4.3.

Proof of Theorem C. Since $\rho_{H}$ is continuous, there exists a $p\in M$ such
that $\rho_{K}(p)=\rho(M)$ . By the definition of $p_{M}(p)$ and by the assumption, $\exp_{p}$ :
$\overline{B}(0_{p}, \rho(M))\rightarrow M$ is a surjective map of maximal rank. From this we see that
$M$ is not simply connected. Moreover, we see $i(M)=L/2$ . Then, by Theorem
$B,$ $M$ is isometric to the real projective space of constant curvature $(\pi/L)^{2}$ .

Theorem 4.4. Let $M$ be an n-dimensional $(n\geqq 2)$ connected, compact Rieman-
nian manifold of Positive Ricci curvature. If $i_{H}(p)=\rho_{H}(p)=d(M)$ holds for some
$p\in M$, then $M$ is diffeomorphic to an n-dimensional real projective space.

Proof. By the definition of $\rho_{H}(p)$ and by the assumption $p_{M}(p)=d(M)$ , exp $p$ :
$\overline{B}(0_{p}, d(M))\rightarrow M$ is a surjective map of maximal rank. From this we see that
$M$ is not simply connected. Take a unit tangent vector $X$ at $p$ . By (4) and
(5) in Theorem 4.2, the $g\ovalbox{\tt\small REJECT} desicc_{p.X}(t)(0\leqq t\leqq 2d(M))$ is a simple loop at $p$ .
Since $i_{H}(p)=d(M)$ , using Berger’s lemma (Lemma 6.2 in [3], p. 106) and (4) in
Theorem 4.2, $\dot{c}_{p.X}(0)=\dot{c}_{p.X}(2d(M))$ . Thus we have shown that for each unit
tangent vector $X$ at P $c_{p.X}$ : $[0,2d(M)]\rightarrow M$ is a simple closed geodesic. Then,
using (4) and (5) in Theorem 4.2, we can construct a diffeomorphism from $M$

to the real projective space of constant curvature $(\pi/2d(M))^{2}$ .
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