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1. Introduction.

Let {§,, —co<n<oo} be a zero mean strictly stationary process defined on
a probability space (2, 8, P). Define the process {y,} by

(L.D) Ya=0+6n

where @ is an unknown parameter. In real time problems, as an estimate of
6, it is preferable to use “recursive M-estimator” of a stochastic approximation
type. The reason is explained in [2]. When &.s are not necessarily indepen-
dent, the asymptotic properties are less known. Holst studied the properties
of a simple recursive estimator of @ in the case when the sequence {§,} is m-
dependent and conjectured that his results will also hold under some condition
of a mixing type instead of the condition on m-dependence.

In this paper, we show that Holst’s conjecture is valid when {§,} is absolu-
tely regular, i.e., {§,} satisfies the condition

(1.2) Bn)=E{ sugwlP(Algﬂm)—P(A)|} —0 (n—00)
Begy

where 9 denotes the ¢-algebra generated by &, -+, § (a=<b).

2. Results.

Let {y,} be the process defined by [I.I). Let {x,} be the recursive estima-
tor of @ defined by

{xn+1:xn+(n+1)_1¢(yn+1_xn) (nz1)

X, is arbitrary.

(2.1)

Let
(2.2) ‘ fxX)=EpEr—x).
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We consider the following assumptions :
Al. ¢ is bounded, i.e., |¢(x)| =K for all x where K is a positive constant.
A2. ¢ is nonincreasing and has at most finitely many disédntinuity points.
A3. f(x)=—7rx+d(x) where 7>1/2 and d(x)=o(x) as x—0.
A4, f satisfies a Lipschitz condition, i.e.,

2.3) | fx)—f(x)| S M| 21— x,].

A5. {&,} is a strictly stationary, absolutely regular sequence of random varia-
bles such that E&=0 and B(n)=0(e~*") for some A>0.
Now, for any m and for n(=m-1) let

2.4) Va=@(§n—2n-)—E{p(En—2xn-0)| F2 ™)
and
(2.5) ‘ Zn=E{p(En—2n-)|FT ™} —f(Xn-m-1).
Then, there exists a constant L such that ’

| V.|SL a.s.

if Al is satisfied.

Theorem 1. If f(x)=0 only for x=0 and if Al, A2, A4 and A5 hold, then
for any T(>0), e(>0) and n sufficiently large

(2.6) P(|xn—0| Ze)<exp [—ant ™ 'min(L. =D, S (-T))~p]
where p is an arbitrary positive number such that

0<p<L~* min (L, —f(T), f(—T)).

Remark 1. From it is easily follows that x,—6 with probabi-
lity one if conditions of are satisfied.

Theorem 2. Assume that A1-A5 hold. Then
2.7 E|x,—0|**=0(n"?")
for all p’(6<p’<p).
Theorem 3. Assume that A1-A2 hold. Then
(2.8) v/ 1 (xn—8) —> N, (2r—1)"¢?
where 1 is the one defined in A3 and
2.9) a*=r(0+2 3 r(j)>0

with
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(2.10) r(N=EP(&)P(&;).

Remark 2. It is known that if Al and A5 hold, then the series in the
right hand side of converges absolutely.

In proofs, ¢, with or without subscript, will be used as a positive constant
whose value is not always same, [s] denotes the largest integer m such that
m=s and I(s) denotes the indicator of the set A.

3. Auxiliary lemmas.

In this and following sections, we assume that {£,} is absolutely regular.
The next lemma is well known.

Lemma A. If Xis 9% measurable and | X|=<c, and if Y is F n-measurable
and |Y|Zc,, then
3.1) |EXY—EXEY|Z4cic.f(n).

Lemma 3.1. Let h(x, v) be a Borel measurable function such that |h(x, y)| =K,
for all x and y. Let X be an F%-measurable random variable and let Y be an
g7, .-measurable random variable. Further, let H(x)=Eh(x, Y). Then

(3.2) E|E{h(X, Y)| G} —H(X)| =2K.B(m).

Proof. Let Q and R be probability distributions of X and Y, respectively.
Let P be the joint distribution (X, Y) and P(y|z) a regular conditional probabi-
lity distribution of Y given X=x. Then

R.H.S of <3.2>=S|Sh<x, y)P(dylx)—Sh(x, Y)R(dy)|Q(dx)

éKo“lP(dylx)—R(dy)IQ(dx)

=K, Var [P—Q X R]

where Var [P—Q x R] denotes the total variation of P—QxR. But, in [4] it
was proved that

Var [I_’—QXR]———Z,B(m).
Hence, we have

In proofs of Theorems, without loss of generality, we assume that 6=0
and so instead of we consider

{xn+1=xn+(n+1)“¢($n+1—xn) ,

x, is arbitrary.

3.3)

To prove Theorems, above, proof of theorems in are examined and,
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where needed, slightly changed, but the ideas are those of [1].
Now, for j=m-+1 and 1<i<m, let

3.4) 05,40 =E{P(§;—x;- 0| F{7 —E{P(&;—x;-1) | F{77Y)
Then, by [2.4) and [3.4)
3.5) 5= 25 i

and each summand in the right hand side of is a sum of martingale dif-
ferences. So, by the technique in [3] we have the following lemmas which
correspond to the ones in [1].

Lemma 3.2. Let m(=1) and a(=1) be arbitrary. Let k=m-+2. Assume
0=C=s(m+1)Laloga If Al and A5 hold, then

C”(k——m—Z)} ’

(3.6) P( j§, ]"1VJ§C)§(m+ 1)exp {—m

Proof. The proof is similar to that of Lemma 1 in [3] and so is omitted
Next, let a, be a positive constant such that ¢,A>3 where 1 is the one in
Ab5.

Lemma 3.3. Let n be sufficiently large and m=[a, log n]. Suppose that
0=C=8L log 2, Al and A5 hold.
(i) If D is a positive constant, then for any k (m+2=<k=<a,n)

8.7 P(— :V.‘;, JV=-C il J"’-i—D)é exp (—aynt/t-r)
= = .

where a, and a, are positive constants and p(0<p<C/L) is arbitrary.
(ii) If D=0(log log n), then hold for all k, (m+2=Ek=(logn)*).

Proof. We use the technique in [3]. is obvious if C>L.
Firstly, we consider case (i). Suppose that 0<C<L and put

bo=[e e~ @/ Dp,~(CILyCIL]

a,= exp {—(4—!—%)-[&—},

then it is clear that m+4-2<k=<a,n implies m+2=<k=<k,.
By the definition of 2, and Al we have that for any #(0=<t<L"!; log 2)

If we put

P( % jv;=—C 3 j+D)

<P( % v,=—c 3 i+ 2Ly +p( 5 jv,s-2L)
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1

N il >
j=2knj 7]j1,—_-2L)

< 3V P( 3 iz @L)/(m+1D)

J=kn

S(m-+1)e %L/(m+D exp (t’L”jik j'z),
=kn

Putting

t={m+0L 3 7"

J=kn

and noting m=0(log n), we have
The proof of (ii) is carried out analogously and so omitted.
For any m(=1), let

(3.8) ho=, 3 kTG —xam0)

Lemma 3.4. Let m=[a,log al. Then, there exists a positive constant b such
(3.9) |Z,|<bn tlogn  a.s.
where Z, is the one defined by (2.5).
Proof. Firstly, we show that for any positive constant C
(3.10) | E{p(En—Xn-m-1+cn~t log n)| Fp-™"1}
—f(Xp-m-1—cn~tlog n)| =n"!  a.s.
Since by Lemma 3.1, Al and A5
P(|E{p(Ern—%n-m-1tcn~t log n)| F7~ ™"}
—f(Xp-m-1—cn~tlog n)| >n"1)
SnE|E{pEr—%n-m-1+cn~tlog n)| Fr-m"1}
—f(Xn-m-1—cn”* log n)|
=2MnB(m)=2Mn-?,

so by Borel-Cantelli’s lemma we have
Now, by (3.1) and

(3.11) xn=xn—m+hn
with

|he ) S Km(n—m—1)"'<cn"'logn as.
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since ¢ is bounded. Hence, using A2, A5, A4 and (3.17) we have
E{p(En—xn-0| FT™ ™7}
=F{pn—2%n-m-1—ha-)|FF ™71}
SE{pEn—%Xn-m-1+cn~tlog n)| FT™"1}
=f(Xn-m-1—cn~tlog n)+n*

Sf(xXn-m-1)+cntlogn a.s.
and similarly we have

E{pn—2-0)| T ™ Y} =f(Xp-m-1)—cn"*logn  a.s.

Thus, therproof is completed.

4. Proofs of Theorems 1 and 2.

Proof of In what follows, @, is (the one in the preceding
section. Let m=[a,log n]. Let 6(0<d<1) be a number such that [nd]=m-+1
and define the events

. &
B:{ min xEBn]—mi—jg"‘: xngs}
0sjsn-[én]-1 2

. €
Am+1={ min  x;=—, xn_2_s}
1sjsn-m-1 2

& . &
Ak—-{xk—m-1<?: k-msrglsl'rl;l-m—lxj:?, xngs}
(b=m+2, m+3, ---, n—1)

An={xn_m_1<—;—, xnge}».

By [2.4) and [2.5)] we can write x, as
Xn=Xn_1+n" P& —%n-1)

4.1) =X 0V 240 (o mee)
=x,+ FZIJ"le+j=§+1J"‘Zj+j=2k+lj"‘f(xj-m+l)

(m+1=k=n—1).

Putting £=[dn] and using the fact that f is nonincreasing we have

P(x5,1=2T, B)

. &
ép(xcan]§2T, min XiZ s

dn]j-msjsn-m-1
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K3 n n .
Xt 2 JVWi+ X 57ZA4 X ]'lf(xj_m_1)§s)
J=[0n]+1 j=[éni+1 j=E[6n+1

sP(— 3 jWVsT—etf(5) T B iZy)

j=[0nl+1 j=réni+1 J=rénl+1

Since by
N -1 < b1
'Ek j Zj‘=ck
and f(e/2)<0, we can choose & so small that

2T+f(5) ¥ i+ B izl

2 J=[6n]+1 J=[0n]+1

for all n sufficiently large. Hence, using
Plxm=2T, B=P(— 3 j1V,<—1)

j=[0nl+1
4.2)

=c,exp(—cyn).

Proceeding as above and taking into account of the fact that f(x;_n-1)<0
for j (k+1=j=n, [0n]+1=<k=<n—1), we obtain

P(xnze, B)S 3 P(A,)

k=[0n]+1

< % P(x,,_,,,_1<i,_ S WSk —et > j“Zj).

k=[dn3j+1 2 J=k+1 J=k+1

We note that if x,_,-,<e/2 and % is sufficiently large, then

k
xk:xk—m—1+j=k2_mj_l¢(ej—xj—l)

= % aemesh Kt Dk—m) 1 <55
and
n ._1 . -a_
J_=Zk)+1] Z’<8 a.s.
Hence, by
P(x,Ze, IS 3 P(AW)
k=[0n]+1
7 7 &
< — Yy <
(4.3) =k=E§]+1P( j=§:+1 ] VJ: 8 )
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n

= 2 ciexp(—cgk)

T k=[dn1+1
for all n sufficiently large.

Finally, to estimate P(x;5,;>2T), we put

Ane1={ min x;2T, x501>2T},
1sfs(0nl-m-1

A;n:: { min xj—m-lzTr x[6n3>2T}
ksjsfdn)-m-1

(k=m+2, m+3, ---, [dn]—1),
and

Atldn]': {xEJn]-m-1<T, x:3n3>2T}.
For n sufficiently large, let 2,=[b (log n)?] such that for k=k,
X5 =X p-martKm+1)k—m) ' Zx4-pn-1+3T/4

where T is an arbitrarily given positive number. Then for k(m-+2<k<k,)
lxklglxo"‘*“K:;llj-léC log log n
and so by

[dn]

< . )
=lxx|+2T+b 2 ;7 log
=c,;log logn a.s.

where 0<0<1 and ¢, is some positive constant. Hence, by (i)

[dn]
PAPSP(53-ma<T, — 3 j7V,SF(T)
Jj=k+1

TSI 3nd
iitx—2T+ 3 jZ,)
J=k+1

oy
ép(— [_6275] JTV=A(T) i%ﬁj 7™ +Fc, log log n)
J=k+1 Py %
<csexp (—cmn~f IIL-p)
for any p (0<p<—f(T)/L) and k (m+2=k<k,). We note that
P(AL+)Scsexp (—cgn=7 MiL-p),

For any k(k,<k=[a,0n], a, being some constant obtained from @).

PA’)<P(—— [621»] Y = T t%] _, T, = -tz
(Av= ;=k+1] =f j=k+1J —Z"';z J j)

=k +1

=c,exp (—cgn~/9E)
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using (i) and Lemma 3.4.
Finally, if 2=[a,0n] we have
[dn]
> J'Z;Zcn"tlogn a.s.
J=F+1

and so for all n sufficiently large
[dn]
> j"Z,-<T8— a.s.

J=E+1

Hence, by (i)

[énl

T
-y < )< —
J=k+1] Vj::: 8)=cl eXp( an).

P(Ap=P(—

Further
P(Afsn1)=0

for n sufficiently large. Consequently, we have
4.4) P(xtsni>2T)=exp (—cn 7 T/L-P)+exp (—c.qn)

for all n sufficiently large.
Thus, it follows from (4.2)-(4.4) that
@5 P(xnZ €)= P(xton1>2T)+ P(x321=2T, B)+P(xnZ¢, B)
' <exp (—c;n~DIL-r)Lexp (—c,n)

for all n sufficiently large.
Similarly, we have

(4.6) Px,=<—¢e)=<exp(—csn’ “T/L-r)texp (—c,n).

Thus, the proof is completed.

Proof of As before, let m=[a, log n]. We use Holst’s method
in [1]. The theorem is proved by induction. We note that

x5=x% 1 +n 2Pl —Xn-)+2n x5,

4.7)
F2n % {P(En—Xn- 1) —f(Xn- )} +207 %01 f (Xn-1)
By ((3.11)
xn—l':xn-m—1+hn—1
where

|hn_1! =cn tlogn a.s.
as in the proof of and by [2.4) and [2.5)
Zn-1{PpErn—xn-1)—f(Xn-1)}
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4.8) =Xn-2m VatXn-amZnTXn-2m {f(xn—zm)_f(xn-l)}
+hn—1 {¢($n—xn—1)_f(xn—1)} .

We remark that EV,=0, Xp-em is FP 2™-measurable and V, is F7_,-measurable,
so by Lemma A and the fact that |x,|<clogn a.s.

|Exn—2mVn‘ = |Exn-2m| |EVn‘+CP(m) IOg n=cn-3

We note that
| Z|Scntlogn a.s.
and by Al
|An-1{pEr—2n-1)—f(Xn-D} | Sen~'logn  a.s.

Furthermore, by A4
lf(xn-m-l)"'f(xn-l) I éMl xn-m—l’—xn—ll

SM|h,1|Scntlogn a.s.
we have
Exi <Ex}_+2n*E(xp-1f(Xz-1))

+centlog nE|xn-m-1| +cn2logn.

By A3 there are constants ¢ >0 and 7’ such that xf(x)<—7’x® for |[x|<e and
r>r'>1/2. Since xf(x)=<0, so

E(xn-1f(Xn-1)) SE(xn-1f(xn-D)I(1 xn-11 <&))
= =7 E(xh-1d(|x0-1] <e))
=—1'E(x%-)+7 E(x7- (| xn-1] Z€)).

As for all n sufficiently large

|x.]=clogn a.s.
so by
E(xL_I(|xp-1] =€))=0(n"1).

On the other hand, by

Elxp-m-1| =Ze.
Hence,

(4.9) Ex3<(1—2r'nY)Ex%_i;+cn2logn.
Using in we obtain from [(4.8) that
(4.10) Ex%.:o(n—min(zr',1—1-)):O(n—1+r>

where 7 is an arbitrary small positive number. From it follows that for




ASYMPTOTIC NORMALITY OF A RECURSIVE STOCHASTIC ALGORITHM

any small positive number 7
(4.11) Elxa| S{Ex3}?=0(n"1*7).
Now, let p be an integer such that p=2. By the Taylor expanéion
%01 = | 2y b AP Ta )|
= Xn-1 [P +2007 PEn—2n-1) | X0 | *P 7500

+cin2| x2P 2+ cn2P(log n)?Pt a.s.
Furthermore
| Xn-1]2P7*=|Xp-mo1thn1|??7*=| X p-m-1|*? ">+ By
where
Bo=cn ' 108 1| Xnom-1|2P 70 con 2P *2(log n)?P"%  a.s.

Using similar caliculations as in we get
Zn-1|Xn-1|*P"HPEn—Xn-1)—f(xn-1))
=(n-m-1thn-1)|%nome11 272+ Bo) Vot Zut f(n-mos)—f(Kn-1))
=Xn-m-1]Xn-m-1|2P Vot e | Xnom-1| P 7 | Xnom-1 | P72
+ean**%(log n)*? | Xp-m-1l
et Xnom-1|?P 2 +cn 2P+ (log n)?? a.s.
We remark that for all n sufficiently large
Exn-m-1l%n-m-1*772V,)
SE|xn-m-11*?7| EVy|+c (log n)*?~* f(m)
=cnd
Hence for an arbitrary small positive number ©
E|xn|*? = E|%n-1]*?+2pn  E{xn-1| Xn-11*?2f(xn-1)}
Fen ™ H{E Xn-m-1|*P T+ E|Xn-m-1|*P 7%}
+ean 7+ (log n)*PElxp-m-1l
+esn ™ Xnom-1| P Fcin P+ (log n)*?
=(1—=2p7'n )E|xn-1|*P+cn P+
since from we obtain as above

E@n-1| 0| 2 (tn-)) S —7"El ns| P+cn-?+e

149
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and for 2s=2p—1
Elx I 2s:0(n—s+r)

for all arbitary small positive number z. Hence, by in
E|x,|2?=0(n"mirE2r". p-0)=Q(n~P**)

for all z(>0) sufficiently small. By induction is obtained for all

even number 2p.
Now, for B(0<B<p)

E|x, |28 <(E|x,|%7)B!® =0(n-6-7)

for all z(>>0) sufficiently small.
Thus, the theorem holds for all values of p’(0<p’<p)"

5. Proof of Theorem 3.

Let m=[h, log n], as before. Let N be a number such that y(N+1)"'<l1.
we consider some sequences of positive number as in [1]. Define

(5.1) ﬁn k:{ j=$+1(1_7j_1): :k:N, N+1- teey, n—l
1’ k::n,
n -2
o oo { By}
and
(5'3) an,kzbnrﬁn.kk-l, k=N, N+1, -, n.
It is shown in that
(5.4) U,y SCNAID TR

Following lemmas were proved in [1].
Lemma B. We have
Cok'n TS Bn s =Dik'n7, k=N, N+1, -, n

for some C, and D, which do not depend on n and which fulfill 0<KCr=1=D <0

and
lkim C,= lkim D,=1.

Lemma C. For r>1/2

limp*b3n'=limn 3 85 sk *=(2r—1)
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Lemma D. Let y>1/2 and let {W,} be a sequence of real numbers con-
verging to W. If ky>N is a fixed positive integer, then

lim i al JWe=W.

n—oo k=kg

Hence, to prove [Theorem 3, it is enough to show

(5.5) Ibaxn —> N(O, 02

since by Lemma C
Tban~® — (2r—1)4/2 as n—oo,

Let n be so large that m+2=N. Let

To=y(xXn-1—Xn-m-1)+Z»
and

5n:5(xn—m-1)-
Then, using [(2.4), and A3 we can write x, as
(5.6)  xp=(1—ynNxp1+n"Vo+n10,4n"1T,
=,8n,m+2xm+2+k=%+ak_l,8n,k+k=%+ak-lﬁn,kak_i_k:%-”k—lﬁn,k?‘k-

Hence, to prove [5.5), it is enough to show that the following four relations
hold :

P
(57) ' bnﬁn.m+2xm+2 -_—> O)
n P
-1
(5.8) bnk=zm:+sk ﬁn,kﬁk——>0,
(5.9) by 3 EBusTs —>0,
k=m+38

(5.10) Su=bst 3 B BaiVi= 3 @nsVs—> NO, 02,

k=m+38 k=m+38

Since by [(5.3) and [(5.4)

buBn.mis=cmn/P Tm 1T

Scen®1(log n) —> 0 (n—o0),

if y>1/2 and by [Theorem 1 E|xn+.| is bounded, so holds.
Next, since by
Ex2=0(n"1+%)

for all z(>>0) sufficiently small and
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xp, —>0 a.s.

) holds. In fact, this conclusion is obtained by but we obtain it here

for completeness.

Let t>0. Since d(x)=o0(x), for t>0 we can find ¢>0 with the property

that
|0(x)| =t?|x].

Since x,—0 a.s., so we can choose N; so that
P(|x;1<e, jZN,)>1—t.
Then, for all z(>0) sufficiently small

P

ba, 33 k7 Baih

k +3

>t}

§t+P{

& -1
b"k sk ,Bn.kak

=m+

‘max | x| < }
>t jz?'v's [x;] =e

ét—l—P{t”bn gv B~ 1Baxlxil >t}

k=Ng

§t+tE{b,, g;v k-lﬁn,klxkl}

k=Ng

Stethy 33 k7B ukm 000t

k=Ng

=ct.

As b,f.,:,—0 for any fixed &, so we have
Thirdly, by

| Th| S her| 1 Ze [ Sckt logn.
Hence, using .

Elba 33 k7BasTs) sc(nomr 3 £7*) (log n)*
® pTm+s mkl k) = k=m+3 ‘
cn~Ylog n)? if r>1

={cn~(log n)* it r=1

cnt~¥(log n)? if 1/2<y<1.
and so '

(3 2
E(bn, 3 k78aaTs) —0  (n—00),

k=m
which implies




ASYMPTOTIC NORMALITY OF A RECURSIVE STOCHASTIC ALGORITHM 153

Finally, we prove Let ¢ be a positive number such that 1/2<¢<1
if y>1 and 2y)'<g<l if 1/2<y=1. Let
m-+2, i=1,
(5.11) kn()=1{i[n'"?], 1=2,3, +, rp—1
n, i=r,

where r,=[n?]. Then {k,()} has the following properties:

(5.12) ka(i+1)—ky(5)>2m+1 (G=1, -, rp,—1)
(5.13) lim n-* z":l B (G)-2=0

n—oo J=
(5.14) lim n /DT max {(kali-+ D —(kali))} =0

and if W,—W, then
=1l ku(i+1)-j

(5.15) lim > 2 QAn kAn e+ iWi=W (=0, 1, ---, m)

nooo i=1 k=kqy (D) +m+1
(cf. Lemma 5.5 in [1]).
For i(i=1, 2: ) 7’7,_—1), put
B (i+1)

(5.16) Xn,i— 2 an,jVj

j=kp (D +m+1

5.17) = ST a2 (0)

J=kp(H+m+1

m kp(itD-p

+2 p}: > QAn, 5 0n, k427 (D)

=1 k=kp () +m+1

and
(5.18) F o =Fin O+,

Since x,,; is ¥, ;-measurable and
E {xn i—l} =0
so {x,:} is a martingale difference array. Now, rewriting S, as

rn-1 ™m-1 m
Sa= iZ)l Xn,i+ 21 21 A,k ir+5 Vg +ss
- = F

we show that
rn—1

(5.19) ;1 Xn,i —> N(O: 02)

and
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™™m-1 m P
(5.20) ¢§1 ;;1 An, kpir+i Vigyes —> 0.
To prove (5.19), it is enough to show that
rTn-1 m 2
(5.21) 11=E[ Z_:l jz=31 an,kn(i)+jvk(i)+j:| —0

as n—oo. We note that since V;€%Fi ,, EV,=0 and |V,|<L a.s., so

(5.22) |EV, V| S2LBG—i—m)  if j—i—m>O0.
Hence, it follows from Lemma A, A5 and that as n—oo
(5.23) I,= :n;: k“’2=__1an,kn(i)+kan,kn(j)+lEan(i)+k an(j)+l
rn-1 m
=23 2 an,kn(i)+kan,kn(i)+lEan(t)+kan(i)+l

i=1 k,l=1

m
2 Qn Dk, ky D+ EVy w2 Vi i
15152 -1 o1 o nl (8 kn D+l

rn-1

<L'S

& QAn, kp(D+2®n, by () +1

>
=

1

m

> 2 an, Ep(D+k&n, kn(j)+lﬁ(kn(j)'_kn(’.)_2m) —0,

15i<fSry -1 k) 1=1

which implies
To prove [5.20), we need the following lemma.

Lemma 5.1. If Al and A5 hold, then for any >0 there exists an integer
my such that

(5.24) lo*—ah,| <e

and

(5.25) 8 b=k, | Scieto(d)
as n—oco, that is,

(5.26) lim 864, =0

where

The=r(0)+2 3 7).

Proof. We note that by Lemma Al and A5
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é r(z‘)l <c é B < cem1*,

Hence, for any ¢>0 we can choose m, satisfying [5.24)
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Let ¢ and m, be fixed. Let j be an arbitrary integer such that 0<j<m,.

By and
>

=1l kp(i)+m+1 ( )
a o 7

1=1 k=kp({)+mo+1 n, kQn, k47

Tn-1 .
=S nt T (ko)) - m

=1

™

<cnl-¥(nl-9)-2 Jog p 3
N i=1
écnl—zfn(l'q) (‘2+2)‘)(nq)-1+2r log n

=0(n"1*7 log n)

and
i TEI kp(i+1) () )
m a a r\y)=rg).
nes £ k= kp e mos1 n, kXn, k+57J @]
Hence
rp-1 kp(i+1) . . .
(527) Ay pAp, k+jr(.7) e 7’(_]) (]=0) ]-, M) mo)-
i=1 b=k (D+m+1

Further, by [5.4), and the definition of m,

Tn-1 m kplitD)-p
A, 2O, k4p | 7(D)]

-
[

p=mo+1 k=kp(i)+m+1
rn-1 m

=c 2 n'T M k() R+ 1)~k (D} 3 B(D)
i=1 p=my+1

ra-1
§C€n1_2r(nl"q)‘1+zr :2 Foeer
=1

(5.28)

écan—zrq(rn)—1+27‘

écan-27Q(nQ) —1+2r

=cs.

Now, follows from and (5.28), and the proof is completed.

Since {x,,:} is a martingale difference array with respect to &, ; so, in

order to prove [5.19), by Lemma 5.1 it suffices to show that

rn-1
(5.29) lim 3 E|E{x} ;|Fn, -1} —b% | =0

n—oo {=1
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and for any &>0.

(5.30) limrnZ—}IE{x%,iI(lxn_il >e¢)}=0.

n—oo =1

Firstly, we prove We note that

kp(i+D)
max |x, /= max an,;V;
lsisrp—-1 1sisry-1 | j=kp(@)+m+1
kp (41D
écn(llz)"r max J'?"l

1sisrp-1 j=kp(d)+m+1

scn®®T max (k1)) —(ka())}

Hence, (5.30) follows from
Now, we proceed to prove [(5.29). For : (1=/=r,—1) let

I£=E|E{x?s,i| F o, t-1} "“b?u.d-

Then
kp(i+1)
I,= a%,kEIE{V%!gn,i}—T’(O)I
k=R (D+m+1
kp(it)-m-1 m
+2k=kn§+m+1 El Ay, Ay, k+pE| E{V, Vk+p| Fa. i-1) —T(P)I
(5.31)

kp(i4+)-m=-1 ky(i+D) —k
Ay, Oy, k+pE|E{Vk Vk+p l gn,t—l} |

k=kp()-m-1 p=m+1

=J1u+Joi+Jais (say).
By and [(5.22)

Ep(i+D-m-1 kp(i+1) -k

el =2 " X 2 Qn @ kap[ | EVyViip| +cfk—ka(i)—m)]

k=kp(D+m+1 p=m+1

kp(i+)-m~1 kp(i+1) -k

Qn, 1 Qn, k40 {BO—m)+ B(k—k (D) —m)}

T r=kp@D+m+1  pZm+1
=c{n P 1(ky (@) 7}k +1)—kn(D)}

écn"r"'Q'qu“z'*’Z?’.

Thus
rn—-1
(56.32) ¢21 | Joi| Sen~7+19(y )" 1420
SenT0 — 0
as n—oo,

Let
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Uk:¢(5k—xk—1)_f(xk—m—1) .
Then
Vk:Uk"—'Zk

with Z, is the one defined by Hence, we have
E(ViVisp! Fri-)=EUrUpsp| Fn,i-)+Re,»
for k=k,(0)+m+1, -, ky(i+1)—p and p=0, 1, :--, m where
R, »| Sck™*logn  a.s.
since U, is bounded and by

|Z, | Sckllogn  a.s.

Now, let

dr=¢Er),

Hk=¢‘(5k"xk—1)—¢'(§k)
and

szf(xk—m-l)-
Then
UkUk+p=(</’k+Hk —fk)(¢k+p+Hk+p'—fk+p)
=@sPrip+Grp,  (say).

Since

|E{psrsp| Fn,1-1} —1r(0)| ScBlk—ka(D))
for k=k,G)+m+1, ---, ky(G+1)—p and p=0, 1, .-, m, so we have

Ep(i+D)

Il =, "3 ab aleBle—ka@)—m)

k=kp(D)+m+

(5.33)
+E|E{G, ol Fn,i-1} | +ckz']
and
m kpit)-p

(5.34) | Joel =2 p > Qn, 1 Qn, p+plCBR—Ry(1)—m)

=1 k=kp(d)+m+1

+E|\E{Gp, p|Fr, i-1} | Fck'm].

Now, we use the same method of estimation in [I]. Let n,.p=(k+p)~ /¥
(0<p=<m). Using Al, A2, Chebyshev’s inequality, the definition of f and A4
we have

E(¢k+p'Hk+p| EFﬂ,'i-l)

ZE(¢k+ka+p[I{0§xk+p-1§77k+p} +I{_0k+p§xk+p-1<0}
FI{1 X papet] > Daapt 1 Ficd)
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—C[E{ADErrp —Nr4p) | Friot} T E{DErsp Naan| Fayioa)
+P(| xp+p-11 > 5+p)]
ScL—fMasp) H (=N aep) T 9etp E{x%i po1| Fn,1-0} ]
=c[ne+pt 0t pE{xkip-11 Fn, i-1}]
0=p, p’=m. With the same method we can prove

E{¢k+p'Hk+p | Fa, 1-1} = —0[7]1:+p‘|‘77;+2pE{x12e+p—1 | Fa, 1-1}] .

The remaining terms of G, , can be estimated analogously. Hence, for p0=
p=1) we have

E|E{Gy.p|Fn, i1} | Sc[ s+ 05t Bt p- )+ 95 p E(xhs pom-1) ]S ch™ 419

and so from (5.33) and

kpUi+1)

l]nléck=knm+mai,kk"1’s’
and
Julze, "5 R
2% =Ck=kn(i)+man,kan,k+p .
Thus, from (5.33) and
‘ rn~-1 - rn-1
(5.35) max( 2 ul, 3 [Jul)—>0  (n—00).
i=1 i=1

Now, it follows from (3.32) and (3.35) that
T:_Z_: I,—>0 (n——)oo)

which implies that holds. So, the proof of is completed.
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