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1. Introduction.

Let {X;, —co<k<oo} be a strictly stationary mixing sequences of real-
valued random variables defined on a probability space (2, A, P). Thus, the
sequence {X,} satisfies either the ¢-mixing condition

P(AB)—P(A)P(B)

(1.1) n)= su 0
P ™R e PA) l

or the strong mixing condition

1.2) a(n)= sup | P(AB)—P(A)P(B)| |0,

AcHk  BeHD, ,

where #% denote the g-algebra generated by Xg, -+, Xp(a=<b). Assume EX,=
0 and EX%<co. For each n(=1) define S,= i}Xj and s,={ES%}¥%. We shall
=

say that the sequence {X,} satisfies the central limit theorem if

1L.3) limP(5 - Sw<r) =) 1" e *rdt=0(x).

N -0 Sn

In [3], several sufficient conditions under which the sequence {X,} satisfies
the central limit theorem were obtained but the problem of whether the follow-
ing conjecture holds remained unsolved :

Conjecture A. If a strictly stationary sequence {X 5} is ¢-mixing and
satisfies

(1.4) EX;=0, EXj<oo, lim V(3 X,)=00,
p2

n-—co
then it satisfies the central limit theorem.

The main object of this paper is to show if, for a ¢-mixing sequence {Xj}
satisfying [1.4), {S%/st} is uniformly integrable, then {X,} satisfies the central
limit theorem (Theorem 2).
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2. The central limit theorem for strong mixing sequences.
Firstly, we show a lemma.

Lemma. Let a strictly stationary sequence {X;} satisfy the strong mixing
condition with mixing coefficient a(n). Suppose EX;=0 and EX3}<oo. Suppose
further that {S%/si} is uniformly integrable. Then, the characteristic function
&) of Sn/s, may be written as

2
@.1) Galt)=1—5+1*Ro(0)
where R,(t)—0 uniformly in n as t—0.

Proof. By Taylor’s expansion, noting EX;=0, we can rewrite ¢,(¢) as

(2.2) ¢n(t) 1_..t____ 5 E[‘jn( 1h(Sn/sp) . 1)]

n

for some h(0<|h|<|t|). Since by assumption {S%/si} is uniformly integrable,
so for an arbitrary positive ¢, we can choose a number T=T(e) so large that

2.3) [ o 1({ T})]<e  for all »

where I(A) denotes the indicator of the set A. Then

©.4) l [ n (i (Snlsn) 1)]‘<TE[leth(Sn/sn) 1|1({ - T})]

sonSa({S )]

Since the first term in the righthand side of the above inequality tends uni-
formly in n to zero as t—0, so the conclusion follows from [2.2), (2.3) and (2.4).
Let G be the class of all slowly varying functions which satisfy the follow-
ing conditions:
If geG then there exists an integer-valued function 7,=7,(n) such that
74(n)—oo and y,=o(n) as n—oo and

.glr)
2.5) Ll_l’g 2(n) =1

holds for all integer-valued function r=#(n) satisfying »(n)=7.(n) and »=o(n).
In what follows, we shall agree to denote by [x] the integer part of x.

Theorem 1. Let the strictly stationary sequence {X;} satisfy the strong mix-
ing condition with mixing coefficient a(n). Suppose EX;=0 and EXj<oco. Suppose
further that {S%/si} is uniformly integrable. Then in order that the sequence
{X,} satisfies the central limit theorem it is necessary and sufficient that

(2.6) s2 =ES%=ng(n)—oo (n—o0)
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Proof. Firstly, we show that if holds for some geG, then {X;}
satisfies the central limit theorem. As in the proof of Theorem 18.4.1 in [3]
we put

A(my=max {aCnv D7, ==

logn
pma ([ 4C8 D], [25], 7o)
g=[n"1], k:[piq]'

Then, it is obvious that

(i) p—oo, g—o0, k—oo, p=0(n), g=o(p) as n-—o,

. ni-fgi+h .
(i) —1')2—=0(n"‘”3ﬁ’“)=0(1) if >0,
A
(iii) ka(‘])é%a(q)éa([n”‘])zﬁ%%yzo as n—oo,
Let :
2.8) Z,=2 z,="Se, and zp=13 4,
" sn’." e " Sp 1=0
where
1(p+O+p .
ei_j=i(p+q)+1Xj’ =0, 1, -+, k—1
= (i+1)(P+g) Xj; i=0,1, -, k_l,
J=i(p+q)+p+1
mw=_ 3 X,

J=k(Dp+@)+1

By the method used in the proof of Theorem 18.4.1 in Ibragimov and Linnik
(1971), we can prove that for any ¢>0 :

(2.9) P(|Z71>&)—>0 as n—oo.

So, by Lemma 18.4.1 in the limit distribution of Z, coincides with the limit
distribution of Z;. But, by (iii) we can prove that

(2.10) EetZn—(@u()*—0  (n—0)

where @,(t) is the characteristic function of sz§,. (See, the proof of (18.4.2)
in [3]). We note here that as E£,=0, so by Lemmal
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- s =1—5 B8 | (1S5 \p (450
(2.11) pul)=E fexplitsi'g =1—z 3t +(r 2 )Ra(t:2)

Where

REE _kpg(p)

, & ng(n)

since by assumption gG and by p(n)=7,.(n) and kp/n—1 as n—oco. Hence,
by

(2.12) (Pa®)* —> et as n— oo,

—1 as n—oo,

Now, it follows from and (2.14) that {X,} satisfies the central limit

theorem.
Conversely, we show that if {X,} satisfies the central theorem then
holds for some geG. By Theorem 18.1.1 in

(2.13) st =nh(n)

where h(n) is a slowly varying function of n. As in we put

pemax{[ 052 [

q°:[n1l‘]’ ko=[ pol% ].

 where A(n) is the same one as in [Z.7). Then, by the above method we can
prove that

(2.14)

(2.15) P(B7'S,<x) — O(x)

where

(2.16) Bn=kjsp,=kopoh(po).

Hence, by

(2.17) tim 229 i i KPP iy By

n—oco h(n) n-co kopo -0 nh(n) n—+00 S%
since by (2.14)

n
li =]
ﬂl—*ra kobo
and by [2.15) and [1.3)
lim B: =1.
n—co Sn

Analogously, we can prove that for any p such that p=o(n) and p(n)=p(n)
(with k=[n/(p+q.)])
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. h(p)
(2.18) nglo h(n) =1,

which implies heG (with 7,(n)=p.(n)). It follows from (2.13) and holds
for the function h(n). Thus, the proof is completed.

Remark. Let {X,} be a strictly stationary strong mixing sequence satisfy-
ing the following conditions :

(a) EX;=0, EXi<co and si—oco (n—oo).
(b) {Si/si} is uniformly integrable,
(¢) EXiX,=cn™ for all n sufficiently large where ¢ is positive constant.

Then, it follows from that the sequence {X,} does [not satisfy the
central limit theorem, since, in this case, for the function defined by s%=nh(n)
the relation

h(n)zK log n (n — )
holds and so A&G.

3. The central limit theorem for a general ¢-mixing sequence.

In this section, we consider a general ¢-mixing sequence.

Theorem 2. Suppose that a strictly stationary sequence {X;} is ¢-mixing and
satisfies EX,=0 and EX3<co. Assume that {S%/si} is uniformly integrable.

Then, in order that the sequence {X;} satisfies the central limit theorem it
is necessary and sufficient that

3.1 Lim si=ES%=00

holds.

Proof. It is enough to prove that if s2—co, then {X,} satisfies the central
limit theorem. We note that if s2—oo, then by Theorem 18.2.3 in

3.2) s% =nh(n)

with h(n) being a slowly varying function of n. So, by [Theorem 1, it suffices
to prove that h(n)eG.

As in we put
A(n)=max {(¢([n'/*]))**, 1/log n}
3.3) p(n)=max {{n(([n/*])/A(n))*/2], [n*!*/A(n)]}
gm)=[n'"],  k=[n/(p+q)].
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Then, it is obvious that
p — o, g — 0, g=o0(p), p==0(n), k — oo
n1—5q1+ﬂ
pz
krp(n)=(n/p)*d(g)=A(n) —> 0.

(3.4) =0(n1+8H112)=4(1) for some 8>0,

Using the above system {p, ¢, k} define {&,, -+, &,-1} and {5o, **, Ns-1, N} as
in the proof of [Theorem 1.
We note that by the Schwarz inequality

E{S €+n0} —2|E| T €tno

2 ' 1/2
Elsk-l+m-1+m12]

=ESL<E{ S €t} +[E| B €uno| Eleaitnaaitnals]”
=6 =

FE|&r- 1+ ne-1FH7:1%
1.e.,

S2 (k-1 (@) — 28 (k-1 (p+) Sn-(k-1) (p+g) =5
(3.5)

2 v » 2
=s (k-l)(p+q)+23(k—‘1)(p+q)3n—(k—l)(p+q)+3n—<k—1)(p+q) .

On the other hand, as by Lemma 18.2.3 in

h(m+-j)
osjsm h(m) =4 (m—)oo),

so by [3.2), and the fact g=o(p)

. SE_Gengre g n—(R=1)(p+q) h(p+q) h(n—(k—1)(p+q))
m—ss  —um kD h(p) h(p+9)

<16 lim —z(—i';-’"—)=o.

N0

Hence, in order to prove

. h(n) .
6.9 lim oy M Fa =

it is enough to show

. S-npr .
3.7 Ll-r-?o ———-—-—ks% =1.

Now, we note that
R-2 k-2 k-2 k-2 2
(3.8) Stk-» (p+q)=E< 1'.-—-20 &)-l—ZE( g}) Ei)( ,§o 771)_*-E( j=20 1]1) )
By (3.4) and the well-known inequality (Theorem 17.2.3) in [3])
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k-2 2 k-2
(3.9) E(Z )= 2 Ent+2 %, Ena

0sijs k-2

<kstt2ks? ’Z:f )
<ks:[142{k*¢(q)} /%]
=ks3(140(1))

and similarly

(3.10) E(S &)’ =ksya+o0).

Hence, follows from (3.7)-(3.10).
Let r=r(n) be any integer-valued function such that r=o(n) and r(n)=p(n).
Then, by the above method we can show that

. h(n) _
3.1 hm =

Thus, heG (with 7,(n)=p(n)) and the proof is completed.
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