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\S 1. Introduction.

S. Smale [S] classified the set of immersions of $S^{2}$ into $E^{n}(2<n)$ by regular
homotopy. M. Hirsch [Hr] generalized Smale’s result as follows: The regular
homotopy classes of a $C^{\infty}$ manifold $M^{m}$ to a $C^{\infty}$ manifold $N^{n}(m>n)$ are in $one_{\wedge}to$

one correspondence with homotopy classes of bundle maps of tangent bundle $T(M^{m})$

to $T(N^{n})$ . This Smale-Hirsch theorem is a theorem about global moves of homo-
topy. To attack the Poincar\’e Conjecture, W. Haken [Hk] examined local moves
between immersions of a 2-sphere into a homotopy 3-ball $N^{3}$ . What he found
is that $\partial N^{S}$ can be deformed into a 3-ball in $N^{S}$ by four types of local deforma-
tions, elementary deformations, such that these four types of deformations take
place in a special order. It is natural to consider the following question: how
many kinds of elementary deformations are needed, for two given immersions
which are regularly homotopic, to convert one immersion to the other? Or
more generally, how many kinds of elementary deformations are needed to con-
vert one nice map to another nice map? A nice map is a piecewise linear map
of a surface into a 3-manifold whose singularities consist of a finite number of
double curves, triple points and branch points.

In this Paper we shall consider deformations of a homotopy between two
nice maps of a surface in a 3-manifold into a finite sequence of elementary de-
formations. Elementary deformations are basic local moves of nice maps.

This is the first of two Papers devoted to the study of deformations of a
homotopy between two nice maps of a surface to a 3-manifold into a finite se-
quence of elementary deformations. In the second paper [HN], we shall prove
the following:

Theorem. $Jf$ two maps $f$ and $g$ are nice maps of a closed surface into the
interior of a 3-manifold, and if they are homotoPic, then one deforms to the
other by a finite sequence of six kinds of deformations and their inverses which
we call elementary deformations.
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In this note we shall define special deformations, which are compositions of
the elementary deformations, and prove a special case (Disk-trade lemma) of the
above. Pushing-disk lemma (Lemma 2.3) is a key lemma of Theorem. The
proof of Theorem is parallel to the one of Pushing-disk lemma.

We work in the piecewise linear category.
The interior, closure, and boundary of $(\cdots)$ are denoted by Int $(\cdots)$ , Cl $(\cdots)$ ,

and $\partial(\cdots)$ respectively. The unit interval and the closed interval [–1, 1] will
be denoted by $I$ and $J$ respectively.

We use the deflnitions and notations in [R] and [Z] without notice.
For a map $f:F^{2}\rightarrow M^{3}$ of a closed surface to a 3-manifold, the singularities

of $f$ is the closure of the set of those points $x\in f(F^{2})$ for which $f^{-1}(x)$ consists
of more than one point. A point $x\in f(F^{2})$ is called a regular point, if it does

not belong to the sungularities of $f$ (see [P]). The map $f$ is said to be nice,

provided that the singularities of $f$ consist of double curves in which two sheets
pierce each other, triple points in which three sheets pierce each other, and
branch points from each of which exactly one double curve originates, and that
at each point of $F^{2}$ whose image is not a branch point, the map $f$ is locally
homeomorphic. Neighborhoods of the singularities of $f$ are shown in Figure 1.1.
We consider that neither triple points nor branch poihts belong to double curves.
Hence the image of $f$ is the disjoint union of the set of regular points, the set

A neighborhood of
a regular point. A neighbord of a

double point which is
homeomorphic to the
set $(J\times O O\times J)\times I$.

A neighborhood of a
branch $N^{int}$ which is
a cone over flgure 8.

Fig. 1.1
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Figure 1.2

of double curves, the set of triple points, and the set of branch points.
We define as follows two kinds of modiflcation on the set of nice maps of

a surface $F^{2}$ to a manifold $M^{S}$ . Let $f:F^{2}\rightarrow M^{3}$ be a nice map. Modification $\Gamma$

of $f$ to a new nice map $g:F^{2}\rightarrow M^{3}$ is called an h-move, if there exist a disk $D^{2}$

in $F^{2}$ and a ball $B^{3}$ in $M^{3}$ such that the maps $f$ and $g$ coincide outside the disk $D^{2}$

and such that the images $f(D^{2})$ and $g(D^{2})$ lie in the interior of the ball $B^{s}$ . The
pair $(D^{2}, B^{s})$ is called a suPport Pair of the h-move $\Gamma$. An h-move $\Gamma$ of $f$ to $g$

is called an elementary deformation of type $i(i=0,1,2,3,4,5,6)$ , if one of the
following conditions holds for a support pair $(D^{2}, B^{3})$ of the h-move $\Gamma$ (see

Figure 1.2 and Figure 1.3.):

Type $0$. There exists an orientation preserving homeomorphism of $B^{3}$ to
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Fig. 1.3

itself that is the identity on the boundary of $B^{3}$ and that sends $f\{F^{2}$) $\cap B^{8}$ to
$g(F^{g})\cap B^{3}$ .

Type1. The intersection $B^{3}\cap f(F^{2})$ consists of two disjoint disk. The union
$f(D^{f})Ug(D^{2})$ bounds a 3-ball in $B^{3}$ whose interior intersects $f(F^{g})$ by an open
disk.

$TyPe2$ . The intersection $B^{8}\cap f(B^{2})$ consists of three disks, two of which
pierce each other by a double curve and the other one contains $f(D^{2})$ without
intersecting the two disks. The union $f(D^{2})\cup g(D^{2})$ bounds a 3-ball in $B^{s}$ which
intersects each of the three disks by a disk, one of these is $f(D^{2})$ and the other
two disks pierce each other by a double curve.

Type3. The intersection $B\cap f(F^{2})$ consists of four disks, three of which
pierce each other and the other one contains $f(D^{2})$ without intersecting the three
disks. The union $f(D^{2})\cup g(D^{g})$ bounds a 3-ball in $B^{8}$ which intersects each of
the four disks by a disk, one of these four disks is $f(D^{2})$ and the other three
disks pierce each other.

Type4. The intersection $B^{S}\cap f(F^{2})$ consists of a disk. The intersection
$B^{3}\cap g(F^{2})$ contains exactly two branch points and one double curve which ori-
ginates from one of the branch points and terminates the other branch point.

Type5. The intersection $B^{s}\cap f(F^{f})$ consists of a disk containing $f(D^{2})$ and
a singular disk containing exactly one branch point and a double curve which
originates from the branch point. The union $f(D^{2})\cup g(D^{t})$ bounds a ball in $B^{3}$

which intersects $f(F^{2})$ by the disk $f(D^{2})$ and a singular disk branch point and a
double curve.

Type6. The intersection $B^{3}\cap f(F^{2})$ consists of two disks which intersect
each other by two double curves, say $L_{1}$ and $L_{2}$ . The same situation holds for
the intersection $B^{8}\cap g(F^{2})$ . But each of the double curves in $B^{8}\cap g(F^{2})$ originates
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from an end point of $L_{1}$ and terminates an end point of $L_{2}$ .

Each inverse deformation of an elementary deformation of Type $i$ is called
an elementary deformation of Type $;-1$ which we also call an elementary de-
formation. We ignore elementary deformations of Type $0$ in the proofs. Namely
we do not mention where and when we use elementary deformations of Type
$0$ in each proof.

Our deformations of Type 1, 2, 6 correspond to Haken’s deformations of
Type la, $1b,$ $2$ respectively. Haken’s deformation of Type 3 is the composition
of his deformations of Type $1b$ and 2. To deform nice maps, deformations of
Type 3, 4, 5 are deflnitely needed.

We use the sign $///to$ indicate the end of proofs.

\S 2. Special deformations.

In this section we investigate elementary deformations and develop elemen-
tary techniques.

Let $f_{1},$ $f_{l}$ : $F^{2}\rightarrow M^{3}$ be nice maps, one of which is obtained from the other

Fig. 2.1
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by a single h-move with a support pair $(D^{2}, B^{3})$ . We say that $f_{1}$ deforms $tof_{2}$

by shifting-branch-point (along a curve $L$ ), if their images in $B^{s}$ are like those
shown in Figure 2.1.

Lemma 2.1. (Shifting-branch-point) Let $f_{1},$ $f_{2}$ : $F^{2}\rightarrow M^{3}$ be nice maps. If
one of them deforms to the other by shifting-branch-point, then there exists a
finite sequence of elementary deformations which deforms one to the other.

Proof. First apply an elementary deformation of Type 5, and then an
elementary deformation of Type 6. The detail will be omitted (see Figure 2.1).///

Let $f_{1},$ $f_{2}$ : $F^{2}\rightarrow M^{3}$ be nice maps, one of which is obtained from the other
by a single h-move with a support pair $(D^{2}, B^{8})$ . We say that $f_{1}$ deforms to $f_{2}$

by squeezing-off, if their images in $B^{s}$ are like those shown in Figure 2.2.

Fig. 2.2

Lemma 2.2. (Squeezing-off) Let $f_{1},$ $f_{8}$ : $F^{2}\rightarrow M^{3}$ be nice maps. If one of
them deforms to the other by squeezing-off, then there exists a finife sequence of
elementary deformations of Type 4 and Type 6 which deforms one to the other.

Proof. The detail will be omitted (see Figure 2.2). ///

A loop means a simple closed curve. A loop is said to be essential in an
annulus, if it does not bounds a disk in the annulus.

Let $f_{0},$ $f_{8}$ : $F^{g}\rightarrow M^{3}$ be nice maps, one of which is obtained from the other
by a single h-move with a support pair $(D^{g}, B^{s})$ . SupPose that each of the maps
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$f_{0}$ and $f_{3}$ embeds a regular neighborhood $N^{2}$ of $D^{2}$ into the ball $B^{3}$ and that
the union $f_{0}(D^{2})\cup f_{3}(D^{2})$ bounds a ball $B_{*}^{3}$ in $B^{8}$ . Then we say that $f_{0}$ deforms
to $f_{3}$ by a pushing-disk through the ball $B_{*}^{3}$ . If the ball $B_{*}^{3}$ is a relative regular
neighborhood of a simple arc $L$ relative to $\partial L$ (see $[Hd]$ for the deflhition),

then we say that $f_{0}$ deforms to $f_{3}$ by a pushing-disk along the curve $L$ . If the
ball $B_{*}^{3}$ is a relative regular neighborhood of a disk $D_{*}^{2}$ relative to $\partial D_{*}^{g}$ then we
say that $f_{0}$ deforms to $f_{3}$ by a pushing-disk-along the disk $D_{*}^{2}$ (see Figure 2.3).

Dimension is reduced to two.
Fig. 2.3 Fig. 2.4

Lemma 2.3. (Pushing-disk lemma) Let $f_{0},$ $f_{3}$ : $F^{2}\rightarrow M^{3}$ be nice maps. If one
deforms to the other by a Pushing-disk, then there exists a finite sequence a finite
sequence of elementary deformations which deforms $f_{0}$ to $f_{3}$ .

Proof. We use the same notations in the definition of pushing-disk. There
are two cases.

Case 1. $ B_{*}^{3}\cap f_{0}(N^{2}-D^{2}=\emptyset$ : There exists a homeomorphism $\phi:B_{*}^{3}\rightarrow I\times I\times I$

such that $\psi^{-1}(I\times I\times 1\cup\partial(I\times I)\times I)=f_{0}(D^{2})$ and $\psi^{-1}(I\times I\times 0)=f_{3}(D^{2})$ . If we choose
$\phi$ suitably, by general position argument there exists a triangulation $T$ of $I\times I$

such that
(CO) for each vertex $v$ of $T,$ $\phi^{-1}(v\times I)$ does not meet the singularities of $f_{0}|$

$(F^{2}-Int(N^{g}))$ ,
(C1) for each l-simplex $\zeta$ of $T,$ $\psi^{-1}(\zeta\times I)$ does not meet the triple points nor

branch points of $f_{0}|(F^{2}-Int(N^{2}))$ , and each connected component of $\psi^{-1}$

$(\zeta\times I)\cap f_{0}$( $F^{2}$–Int $(N^{2})$ ) is an arc or homeomorphic to the set $J\times 0\cup 0\times J$,

(C2) for each 2-simplex $\tau^{2}$ of $T$, each connected component of $\psi^{-1}(\tau^{2}\times I)\cap$

$f_{0}(F^{2}-Int(N^{2}))$ is homeomorphic to a disk, a cone over figure 8, $(J\times 0\cup$

$O\times J)\times I$, or the set $I\times J\times 0\cup J\times 0\times J\cup 0\times J\times J$ (see Fugure 2.4),

(C3) if $\psi_{i}=\psi\circ(f_{i}|D^{2})(i=0,3)$ , then $\psi_{0^{\circ}}\psi_{3}^{-1}(v\times 0)=v\times 1$ for each vertex $v$ of $T$

in Int $(I\times I)$ , and
(C4) if $X=I\times I\times 1\cup\partial(I\times I)\times I$, then $\psi_{0}\circ\phi_{3}^{-1}(\sigma\times 0)=\sigma\times I\cap X$ for each simplex $\sigma$

of $T(\dim\sigma>0)$ .
Let $T_{0}$ be the set of vertices of $T$, which do not lie in $\partial(I\times I)$ . Let $V_{0}^{2}$ be
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a small regular neighborhood of $T_{0}$ in $I\times I$, and $V_{1}^{2}$ a small regular neighbor-
hood of $V_{0}^{2}$ in $I\times I$. Then $V_{1}^{2}$ –Int $(V_{0}^{l})$ :consists of mutually disjoint annuli.
Thanks to Conditions (CO), (C3), and (C4), by a finite sequence of elementary
deformations of Type 1, we can push the disks $\phi^{-1}(V_{1}^{2}\times 1)$ along the curve $\phi^{-1}$

$(v\times I)$ for each vertex $v$ in $T_{0}$ to deform the map $f_{0}$ to a map $f_{1}$ such that
(1) $f_{1}$ and $f_{0}$ coincide outside the disks $\psi_{0}^{-1}(V_{1}^{2}\times 1)$ ,
(2) $f_{1}$ and $f_{3}$ coincide on the disks $\phi_{0}^{-1}(V_{0}^{2}\times 1)$ ,
(3) $\phi Qf_{1}(D^{2})=\partial(I\times I)\chi I\cup(I\times I-V_{0}^{2})\times 1\cup\partial V_{0}^{2}\times I\cup V_{0}^{2}\times 0$ , and
(4) if $P^{2}=C1(I\times I-V_{0}^{|2})$ and $\psi_{1}=\phi\circ(f_{1}|D^{2})$ , then $\psi_{1^{o}}\psi_{3}^{-1}((\zeta\cap P^{2})\chi 0)=\partial(\zeta\cap P^{2})\times I$

$\cup(\zeta\cap P^{2})\times 1$ for each l-simplex $\zeta$ of $T$ (we may need elementary deforma-
tions of Type $0$ to get properties (3) and (4)).

Let $T_{1}$ be the set of l-simplexes of $T$, which do not lie in $\partial(I\times I)$ . Let $W_{0}^{2}$

be a small reguIar neighborhood of $T_{1}\cap P^{2}$ in $P^{2}$ . Then $W_{0}^{2}$ consists of mu-
tually disjoint disks. Let $W_{1}^{2}$ be a small regular neighborhood of $W_{0}^{2}$ in $P^{2}$.
Thanks to Conditions (C1), (C4), and (4) above, by a finite sequence of elemen-
tary deformations of Type 2 and 6, we can push the disks $\psi^{-1}(W_{1}^{2}\times 1\cup(W_{1}^{2}\cap$

On each step, only
the quoter of the
image is drawn

Fig. 2.5
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$V_{0}^{2})\times I)$ along the disks $\psi^{-1}(\zeta\cap P^{2})\times I$ for each l-simplex $\zeta$ of $T$ to deform the
map $f_{1}$ to a map $f_{2}$ such that
(1) $f_{2}$ and $f_{8}$ coincide on the set $\psi_{\overline{s}}^{1}(V_{0}^{2}\cup W_{0}^{2})$ , and
(2) if $Q^{2}=C1(I\times I-(V_{0}^{2}\cup W_{0}^{2}))$ , then $\phi\circ f_{2}(D^{2})=(V_{0}^{2}\cup W_{0}^{2})\times 0\cup Q\times 1\cup\partial Q\times I$ (again

we may need elementary deformation of Type $0$ to get the property (2)).
Finally thanks to Conditions (C2) and (2) above, the map $f_{2}$ deforms to the

map $f_{s}$ by a finite sequence of elementary deformations. Therefore the map $f_{0}$

deforms to the map $f_{2}$ by a finite sequence of elementary deformations.

Case 2: $f_{0}(N^{2}-D^{2})\subset B_{*}^{8}$ : Let $S^{1}$ be an essential loop in $N^{2}-D^{2}$ near $\partial D^{2}$,
$i.e.,$ $S^{1}$ which does not bound a disk in $N^{2}-D^{2}$ . Let $A^{2}$ be the annulus on $N^{f}$

bounded by the loops $S^{1}$ and $\partial D^{2}$ . We push out the annulus $f_{0}(A^{2})$ from the
ball $B_{*}^{3}$ as follows (see Figure 2.5). Let $x$ be a point in $S^{1}$ . By an elementary
deformation of Type 1, we can push out a regular neighborhood of $x$ from the
ball $B_{*}^{3}$ through the disk $f_{0}(D^{2})$ . By an elementary deformation $f_{0}$ of Type 6, we
can push out the remaining of $S^{1}$ . Now a reguIar neighborhood of $S^{1}$ is outside
the ball $B_{*}^{3}$ . Then on $f_{0}(D^{2})$ two parallel double curves appear near $f_{0}(\partial D^{2})$ .
The double curve nearer to $f_{0}(\partial D^{2})$ splits off a torus $G^{2}$ from the deformed
singular disk such that the solid torus $H^{8}$, bounded by the torus $G^{2}$, intersects
with $f_{0}(F^{2}-N^{2})$ only by mutually disjoint disks. Hence by squeezing-off, the
inverse process of shifting-branch-point, and an elementary deformation of Type
$4^{-1}$ , we can eliminate the torus, so that $f_{0}(A^{2})$ is completely outside the ball $B_{*}^{\epsilon}$ .
By this modification on the annulus Cl $(N^{2}-D^{2})$ , we can deform the map $f_{0}$ to
a map $f_{0}$ and also the map $f_{3}$ to a map $f_{3}^{\prime}$ simultaneously. Set $N_{1}^{2}=D^{2}\cap A^{2}$ .
Then we have $ B_{*}^{s}\cap f_{0}^{\prime}(N_{1}^{2}-D^{2})=\emptyset$ . Hence by Case 1, the map $f_{0}^{\prime}$ can be de-
formed to the map $f_{3}^{\prime}$ by a finite sequence of elementary deformations. There-
fore the result follows from the deformations $f_{0}\rightarrow f_{0}^{\prime}\rightarrow f_{3}^{\prime}\rightarrow f_{3}.///$

An annulus is said to be unknotted in a 3-ball, if it lies on a disk in the 3-
ball.

Lemma 2.4. (Rewinding lemma) Let $f_{1}$ : $F^{2}\rightarrow M^{3}$ be a nice map into the in-
terior of $M^{s}$. Let $S^{1}$ be a loop in $F^{2}$ and $A^{2}$ a regular neighborhood of $S^{1}$ in
$F^{2}$. SuPpose that $f_{1}|A^{2}$ : $A^{2}\rightarrow M^{3}$ is an embedding, and that $f_{1}(A^{f})$ lies in a ball
$B^{3}$ in $M^{3}$. If $f_{1}(S^{1})$ is unknotted in $B^{s}$, then for any $\epsilon>0$ there exists a $mce$ map
$f_{2}$ : $F^{2}\rightarrow M^{B}$ such that (1) $d(f_{1}, f_{2})<\epsilon,$ (2) the maps $f_{1}$ and $f_{2}$ coincids outside $N^{2}$,
(3) there exists a finits sequence of elementary deformations of Type 4 which de-
forms the map $f_{1}$ to the map $f_{2}$ , and (4) the map $f_{2}$ embeds a regular neighbor-
hood of $S^{1}$ in $A^{2}$ onto an unknotted annulus in $B^{3},$ $i.e.$ , the annulus which lies on
a disk in $B^{3}$.

Proof. The map $f_{1}$ may deform to a map $f*$ by an elementary deforma-
tion of Type 4 such that (1) $f_{*}(F^{2}=f_{1}(F^{2})\cup S_{*}^{2}$ , where $S_{*}^{2}$ is a 2-sphere with
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Fig. 2.6

Fig. 2.7

$f_{1}(F^{2})\cap S_{*}^{2}$ being the induced double curve of $f*$ , say $L,$ (2) $f_{*}^{-1}(S_{*}^{2})$ is a disk in
$A^{2}$ and is penetrated by the loop $S^{1}$ , and (3) $f_{*}(S^{1})\supset f_{1}(S^{1})$ (see Figure 2.6).

Let $P$ be an intersection point of the two circles $S^{1}$ and $f_{*}^{-1}(L)$ . If we
slide $S^{1}$ left or right near the point $P$, then the image $f_{*}(S^{1})$ may be a loop.
Moreover for a small regular neighborhood $A_{1}^{2}$ of $S^{1}$ in $F^{2}$ , this sliding of $S^{1}$

left or right makes $f_{*}(A_{1}^{2})$ a full-twist clockwise or counter-clockwise with
respect to $f_{1}(A_{1}^{2})$ (see Figure 2.7). The decreases the twisting number of the
annulus $f_{1}(A_{1}^{2})$ by one. If we repeat this process, we get a desired map $f_{2}.///$

Lemma 2.5. Let $f_{1},$ $f_{4}$ : $F^{2}\rightarrow M^{S}$ be $mce$ maps, one of which is obtained from
the other by an h-move with a suPpor $f$ pair $(D^{2}, B^{3})$ . SuPpose that $f_{1}|D^{2}$ : $D^{2}\rightarrow M^{\epsilon}$

deforms to $f_{4}|D^{2}$ by an elementary deformation of Type4. Then $f_{1}$ deforms to
$f_{4}$ by a finite sequence of the elementary deformations (see Figure 2.8).
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Fig. 2.8

Proof. By the assumption, the restriction $f_{1}|D^{\epsilon}$ is an embedding, and the
restriction $f_{4}|D^{8}$ possesses a double curve $L$ and two branch points. Now
$(f_{4}|D^{8})^{-1}(L)$ is a circle which bounds a disk $D_{1}^{2}$ in $D^{2}$ . Then $S^{f}=f_{4}(D_{1}^{2})$ is a
sphere which bounds a ball $B_{*}^{3}$ in the ball $B^{8}$ . The ball $B_{*}^{3}$ may intersects
$f_{4}(F^{2}-D)$ . First on the disk $D^{2}$ we deform the map $f_{1}$ to a map $f_{2}$ by an
elementary deformation of Type 4 such that
(1). the double curve $L^{\prime}$ of $f_{2}$ is contained in the curve $L$ ,
(2) the maps $f_{2}|D^{s}$ and $f|D^{2}$ possess a branch point in common,
(3) $(f_{2}|D^{f})^{-1}(L^{\prime})$ bounds the disk $D_{1}^{2}$, and
(4) $f_{8}(D^{g})$ is contained in the ball $B_{*}^{3}$ .
Next we several times deform the map $f_{2}$ to a map $f_{3}$ by shifting-branch-point
along the curve Cl $(L-L^{\prime})$ such that
(1) $f_{\epsilon}(D_{1}^{t})$ is contained in the ball $B_{*}^{3}$ ,
(2) $f_{s}$ and $f_{4}$ differ only on a disk $D_{2}^{2}$ in Int $D_{1}^{2}$ , and
(3) $f_{\epsilon}(D_{g}^{1})\cup f_{4}(D_{2}^{2})$ bounds a ball.
Then we can deform $f_{8}$ to $f_{4}$ by pushing-disk through the ball bounded by
$f_{\epsilon}(D_{2}^{a})Uf_{4}(D_{2}^{2}).///$

Lemma 2.6. Let $f_{1},$ $f_{2}$ : $F^{2}\rightarrow M^{3}$ be nice maps. SuPpose that the map $f_{1}$

deforms to the map $f_{\mathfrak{g}}$ by a single h-move with a $suPport$ Pair $(D^{2}, B^{s})$ . SuPpose
that $f_{1}|D^{8}$ : $D^{2}\rightarrow B^{8}$ is an embedding, and that, for a regular neighborhood $N^{2}$ of
$D^{2}$ in $F^{2}$, the restriction $f_{2}|N^{2}$ : $N^{2}\rightarrow B^{3}$ is an embedding. Then the map $f_{1}$ de-
forms to the map $f_{2}$ by a finite sequence of the elementary deformations.

Proof. There are two cases.

Case 1: The disk $f_{2}(N^{\epsilon})$ is proper in $B^{s}$ : Let $A^{2}=N^{2}-Int(D^{2})$ . Let $s_{*}$ be
the set of singularities of $f_{1}|N^{2}$ . Then $s_{*}$ consists of loops and simple arcs
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connecting branch points on $f_{1}(\partial D^{2})$ . We may assume that each of the arcs
are proper in both the disk $f_{1}(D^{2})$ and the annulus $f_{1}(A^{2})$ . We use induction
on the number of components of $ S*\cdot$

If $ S_{*}=\emptyset$ , then it is clear that the map $f_{1}$ deforms to the map $f_{2}$ by push-
ing-disks.

SuPpose that there exists a loop in $s_{*}$ which is a non-essential loop in the
annulus $f_{1}(A^{2}),$ $i.e.$ , the $1p$ which bounds a disk in $f_{1}(A^{f})$ . Let $L$ be a non-
essential loop which is inner-most with respect to the annulus $f_{1}(A^{2})$ . Then $L$

bounds two disks: a disk $D_{1}^{2}$ in $f_{1}(D^{2})$ and a disk $D_{2}^{2}$ in $f_{1}(A^{f})$ . Let $D_{3}^{2}$ be a
disk such that
(1) the disk $D_{3}^{2}$ is parallel to the disk $D_{2}^{2}$ ,
\langle 2) $D_{s}^{2}\cap f_{1}(D^{2})=\partial D_{s}^{2}$ ,
(3) $ D_{S}^{2}\cap f_{1}(A^{2})=\emptyset$ , and
(4) $\partial D_{s}^{2}$ bounds the disk $D_{4}^{2}$ in $f_{1}(D^{2})$ which contains the disk $D_{1}^{g}$ .
Since $D_{3}^{2}\cup D_{4}^{2}$ bounds the ball $B_{1}^{3}$ in $B^{\epsilon}$, by Pushing-disk lemma we can push
the disk $D_{4}^{2}$ to the disk $D_{s}^{2}$ through the ball $B_{1}^{3}$ to eliminate the loop $L$ from $s_{*}$ .
This decreases the number of the components of $s_{*}$ . Thus we can assume
that there are no non-essential loops.

Suppose that there exists a loop in $s_{*}$ which is essential in the annulus
$f_{1}(A^{2})$ , i.e., the loop which does not bound a disk in $f_{1}(A^{2})$ . Let $L$ be the es-
sential loop in $S*which$ is outer-most in $f_{1}(A^{2})$ . Then $L$ bounds two disks: a
disk $D_{1}^{2}$ in $f_{1}(D^{g})$ and a disk $D_{2}^{2}$ in $f_{2}(N^{2})$ . Let $B_{1}^{\epsilon}$ be the complimentary ball
of the proper disk $(f_{2}(N^{2})-D_{2}^{2})\cup D_{1}^{2}$ in $B^{8}$ which contains a boundary collar of
$D_{2}^{2}$ . The ball $B_{1}^{8}$ allows us to eliminate the loop $L$ from $s_{*}$ by Pushing-disk
lemma as follows (see Figure 2.9): Let $N_{1}^{2}$ be a regular $neighborhd$ of $D_{1}^{2}$

Dimension is reduced to two.

Fig. 2.9



ON ELEMENTARY DEPORMATIONS OF MAPS 115

in $f_{1}(D^{2})$ . Take a very thin boundary collar $C^{3}$ of $B_{1}^{3}$ which intersects $N_{1}^{2}$ by
an annulus. Let $S^{2}$ be the connected component of $\partial C^{3}$ different from $\partial B_{1}^{3}$ .
Then $S^{2}\cap N_{1}^{2}$ is a loop. Since $S^{2}$ is a 2-sphere, the loop $S^{2}\cap N_{1}^{2}$ bounds the disk
$D_{3}^{2}$ in $S^{2}$ which does not meet $f_{1}(A^{2})$ . Now $D_{3}^{2}$ misses $f_{2}(N^{2})$ and intersects
$f_{1}(D^{g})$ by the loop $S^{2}\cap N_{1}^{2}$ which is $\partial D_{s}^{2}$ . The $1p\partial D_{3}^{2}$ bounds the disk $D_{4}^{2}$ in
the disk $f_{1}(D^{f})$ . Since $D_{s}^{2}\cup D_{4}^{2}$ bounds a ball in $B^{s}$, by Pushing-disk lemma we
can push the disk $D_{4}^{2}$ to the disk $D_{3}^{2}$ through the ball to eliminate the loop $L$

from $s_{*}$ . This decreases the number of the components of $s_{*}$ . Hence we can
assume that there is no loop in $s_{*}$ .

Suppose that there exists a simple arc in $s_{*}$ which is an inner-most proper
arc in $f_{1}(A^{2})$ . Then we can eliminate the arc from $s_{*}$ by an elementary de-
formation of Type $4^{-1}$ or an inverse process of Lemma 2.5. Hence we have
$ S_{*}=\emptyset$ . This case has been shown.

Case 2. The disk $f_{2}(N^{2})$ is not proper in $B^{3}$ : Let $A^{2}=N^{2}-Int(D^{g})$ . Since
$f_{2}(N^{2})$ is a disk in $B^{3}$, there exists an annulus $A_{1}^{2}$ in $B^{3}$ such that
(1) $A_{1}^{2}\cap f_{2}(N^{2})$ is a boundary loop $L_{1}$ of $A_{1}^{l}$ and an essential loop on the open

annulus $f_{2}(Int(A^{2}))$ , and
(2) $A_{1}^{2}\cap\partial B$ ’ is the boundary loop $L_{2}$ of $A_{1}^{2}$ different from $L_{1}$ (see Figure 2.10).
We will push a regular neighborhood of $L_{1}$ in $f_{2}(N^{2})$ out of $B^{3}$ along the an-

Fig. 2.10
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nulus $A_{1}^{2}$ as follows (see Figure 2.10): Let $W^{3}$ be a very thin relative regular
neighborhood of $A_{1}^{2}$ in $M^{3}$ relative to the boundary loop $L_{1}$ such that
(1) $W^{8}\cap f_{g}(N^{2})\subset\partial W^{3}$ ,
(2) $W\cap f_{2}(N^{2})$ is a regular neighborhood of $L_{1}$ in $f_{g}(A^{2})$ , and
(3) $C1(\partial W^{3}-f_{2}(N^{2}))\cap B^{3}$ consists of two annuli each of which is parallel to the

annulus $A_{1}^{2}$ (see Figure 2.10).

Now $W^{\epsilon}$ is a union of two balls $B_{1}^{3}$ and $B_{2}^{3}$ such that $B_{1}^{3}\cap B_{2}^{3}$ is a union of two
disks. Then the map $f_{2}$ deforms to a map $f_{2}^{\prime}$ by two consecutive pushing-
disks; a pushing-disk through $B_{1}^{3}$ and a pushing-disk through $B_{2}^{3}$ . At the same
time these two consecutive Pushing-disks deform the map $f_{1}$ to a map $f_{1}^{\prime}$ . The
maps $f_{1}^{\prime}$ and $f_{2}^{\prime}$ send a small regular $ne\ddagger ghborhd$ of $(f_{2}|N^{2})^{-1}(L_{1})$ in $A^{g}$ out-
side the ball $B^{3}$ . Let $N_{1}^{2}$ be the connected component of $(f_{2}^{\prime}|N^{f})^{-1}(B^{3})$ which
contains the disk $D^{2}$ . Then $N_{1}^{2}$ is a disk such that $f_{2}^{\prime}(N_{1}^{2})$ is a proper disk in
$B^{8}$ and $f_{2}^{\prime}|N_{1}^{2}$ is an embedding. Furthermore $f_{1}^{\prime}$ and $f_{f}^{\prime}$ differ only on the disk
$D^{2}$ and $f_{1}^{\prime}|D^{2}$ is an embedding. Hence $f_{1}^{\prime}$ deforms to $f_{2}^{\prime}$ by a flnite sequence
of elementary deformations by Case 1. Therefore by the deformations $ f_{1}\rightarrow f_{1}^{\prime}\rightarrow$

$f_{2}^{\prime}\rightarrow f_{2}$ the map $f_{1}$ deforms to the map $f_{2}$ by a finite sequence of elementary
deformations. $/’$/

Corollary 2.7. (Disk-trade lemma) Let $f_{1},$ $f_{2}F^{2}\rightarrow M^{8}$ be nice maps, one of
which deforms to the other by a single h-move with a suppOrf pair $(D, B)$ .
$SuPPose$ that restrictions $f_{1}|D^{z},$ $f_{8}|D^{2}$ : $D^{2}\rightarrow B^{\epsilon}$ are embeddings, and that for a regular
neighborhood $N^{2}$ of $D^{z}$ in $F^{f}$, the image $f_{1}$($N^{2}$-Int $(D^{2})$ ) is an unknotted annulus
in $B^{8}$. Then the map $f_{1}$ deforms to the map $f_{2}$ by a finite sequence of elementary

deformations.
Proof. Let $f_{8}$ : $F^{2}\rightarrow M^{\epsilon}$ be a nice map such that $f_{3}$ and $f_{1}$ coincide outside

the disk $D^{t}$ and such that $f_{3}|N^{2}$ is an embedding of $N^{f}$ into the ball $B^{\epsilon}$ . Then
each of the maps $f_{1}$ and $f_{3}$ deforms to the map $f_{s}$ by a finite sequence of
elementary deformations by the above lemma. Therefore the result follows. $/’/$

In Case 2 Lemma 2.6 we have proved the following:

Lemma 2.8. Let $f:F^{g}\rightarrow M^{\epsilon}$ be a nice map which sends a disk $D^{2}$ in $F^{\epsilon}$ into
the interior of a ball $B^{s}$ in $M^{S}$. SuPpose that there exists a regular neighbor $\cdot$

hood $N^{2}$ of $D$ in $F^{2}$ such that
(1) $f(N^{8})\subset B$ , and
(2) if $A^{2}=C1(N^{e}-C^{2})$ , then $f(A^{2})$ is an unknotted annulus in $B^{S}$ .

Let $L$ be an essential loop in Int $A^{2}$ . Then there exists a nice map $f^{\prime}$ ; $F^{2}\rightarrow M^{\epsilon}$

such that
(1) $f$ and $f^{\prime}$ differ only on a small regular neighborhood of $L$ in Int $(A)$ ,
(2) $f$ deforms to $f^{\prime}$ by a fimte sequence of elementary deformations,
(3) for a regufar neighborhood $N_{1}^{t}$ of $D$“ in $N^{2}$ , we have $f^{\prime}(N_{1}^{2})\cap\partial B=f^{\prime}(\partial N_{1}^{2})$ , and
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(4) $f^{\prime}(C1(N_{1}^{2}-D^{2}))$ is an unhnotted annulus in $B^{3}$ .
Lemma 2.9. Let $f;F^{2}\rightarrow M^{2}$ be a $mce$ map. Supp0se that the map $f$ sends

a disk $N^{2}$ in $F^{2}$ into the interior of a ball $B^{s}$ in $M^{s}$ and that for a boundary
collar $A^{2}$ of $N^{2},$ $f(A^{2})$ is an unknotted annulus in $B^{3}$ . Then there exists a nice
map $f^{\prime}$ : $F^{2}\rightarrow M^{2}$ such that
(1) $f^{\prime}(N^{2})\subset B^{3}$,
(2) $f^{\prime}|N^{2}$ is an immersion,
(3) maps $f^{\prime}$ and $f$ coincide on a neighborhood of Cl $(F^{2}-N^{2})$ , and
(4) $f$ deforms to $f^{\prime}$ by a finite sequence of elementary deformations.

Proof. Since $f(A^{2})$ is unknotted, the number of branch points of $f|N^{2}$ is
even. Choose mutually disjoint arcs on $f(N^{8})$ , each of which connects a pair
of branch points. Apply shifting-branch-points along the arcs and inverse pro-
cess of squeezing-off to eliminate the branch points. Since any nice map with-
out branch points is an immersion, the result follows.///

\S 3. Decomposing a homotopy into h-moves.

Let $d$ be a metric of $M^{s}$ . Let $T_{1}$ be a triangulation of $M^{3}$ . Let $\delta_{1}$ be a
Lebesgue number of the covering which consists of all open star neighborhoods
of vertices of $T_{1}$ . Let $T_{2}$ be a subdivision of $T_{1}$ with mesh $(T_{2})<\delta_{1}/10$ . Let
$\delta_{2}<\delta_{1}/10$ be a Lebesgue number of the covering which consists of all open star
neighborhoods of vertices of $T_{2}$ . Let $T_{8}$ be a subdivision of $T_{2}$ with mesh $(T_{3})$

$<\delta_{2}/10$ . Let $\delta<\delta_{2}/10$ be a Lebesgue number of the coverinng which consists of
all open star neighborhoods of vertices of $T_{3}$ .

Lemma 3.1. Let $f_{1},$ $f_{4}$ : $F^{2}\rightarrow M^{3}$ be nice immersions. If $ d(f_{1}, f_{4})<\delta$, then
there exists a finite sequence of h-moves which deforms the map $f_{1}$ to the map
$f_{4}$ .

Proof. Let $K$ be a triangulation of $F^{2}$ such that for a subdivision $T_{4}$ of
$T_{3}$ the maps $f_{1},$ $f_{4}$ : $K\rightarrow T_{4}$ are simplicial. Note that for each simplex $\zeta$ of $K$

the diameter of $f_{4}(\zeta)$ is less than $\delta_{2}/10$ . Since $ d(f_{1}(v), f_{4}(v))<\delta$ for each vertex
$v$ of $K$, the two points $f_{1}(v)$ and $f_{4}(v)$ lie in the open star neighborhood of a
vertex of $T_{3}$ whose daimeter is less than $\delta_{2}/5$ . Hence there exists a simple
curve from $f_{1}(v)$ to $f_{4}(v)$ whose diameter is less than $\delta_{2}/5$ . Applying pushing-
disk’s along curves, we have a flnite sequence of h-moves which deforms the
map $f_{1}$ to a nice map $f_{2}$ such that the maps $f_{2}$ and $f_{4}$ coincide on a regualr
neighborhood of the O-skeleton of $K$, and such that $d(f_{1}, f_{2})<\delta_{2}/5$ . Since $d(f_{2}$,
$f_{4})<3\delta_{S}/10$, we have the following: diam $(f_{g}(\sigma^{1})\cup f_{4}(\sigma^{1}))<\delta_{2}$ for each 1-simplex
$\sigma^{1}$ of $K$. Hence $f_{2}(\sigma^{1})\cup f_{4}(\sigma^{1})$ lies in the open star neighborhood of a vertex
of $T_{2}$ . Thus there exists a finite sequence of h-moves which deforms the map
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$f_{2}$ to a map $f_{3}$ such that the maps $f_{3}$ and $f_{4}$ coincide on a regular neighbor-
hood of the l-skeleton of $K$, and such that $d(f_{2}, f_{S})<\delta_{1}/5$ . Since $d(f_{2}, f_{4})<$

$3\delta_{2}/10<\delta_{1}/10$ , we have the following: $d(f_{3}, f_{4})<3\delta_{1}/10$ . Hence diam $(f_{s}(\tau^{2})\cup$

$f_{4}(\tau^{2}))<\delta_{1}$ for each 2-simplex $\tau$ of $K$. Thus $f_{3}(\tau^{2})\cup f_{4}(\tau^{2})$ lies in the open star
neighborhood of a vertex of $T_{1}$ . Therefore there exists a flnite sequence of h-
moves which deforms the map $f_{8}$ to the map $f_{4}$ . This completes the proof of
Lemma $3.1.$ ///

Lemma 3.2. Let $f_{1}$ : $F^{2}\rightarrow M^{3}$ be a continuous map with $f_{1}(F^{2})\subset Int(M^{s})$ .
Then for any $\epsilon>0$ there exists a nice immersion $f_{s}$ with $ d(f_{1}, f_{s})<\epsilon$ .

Proof. By the general position argument there exists a nice map $f_{2}$ with
$d(f_{g}, f_{1})<\epsilon/2$ . Suppose that $P_{1}$ and $P_{2}$ are branch points of $f_{2}$ . Then on $f_{1}(F^{g})$

there is a simple curve $L$ from $P_{1}$ to $P_{2}$ such that the curve $L$ does not contain
any triple points nor any branch points except the two end points $P_{1}$ and $P_{\epsilon}$ ,
and such that the curve $L$ contains finitely many double points. Applying
shifting-branch-point along the curve $L$ , we may assume that the curve $L$ does
not contain any double points. Thus we can apply the inverse process of
squeezing-off to diminish two branch points, if we choose the curve $L$ suitabley
(see Figure 3.1). ///

Fig. 3.1

Theorem. Let $f,$ $g;F^{2}\rightarrow M^{3}$ be $mce$ maps. SuppOse that the maps $f$ and $g$

are homotopic. Then thers exists a finite sequence of h-moves which deforms the
map $f$ to the map $g$ .

Proof. Let $H:F^{2}\times I\rightarrow M^{8}$ be a homotopy with $H_{0}=f$ and $H_{1}=g$ , where
for each $t\in J,$ $H_{t}$ : $F^{2}\rightarrow M^{3}$ is the map deflned by $H_{t}(x)=H(x, t)$ for all $x\in F^{2}$ .
Let $\delta$ be a positive number in Lemma 3.1 for a triangulation of $M^{3}$ . Since the
surface $F^{2}$ is compact, there exists a partition of $I;0=t_{0}<t_{1}\cdots<t_{n}$ with $d(H_{i-1}$ ,
$H_{i})<\delta/3$ for each $i=1,$ $n$ . For each $i=1,$ $\cdots,$ $n-1$ let $H^{*}$ be a nice immer-
sion with $d(H_{i}, H_{t}^{*})<\delta/3$ assured by Lemma 3.2. Since for $i=0$ or $n$ there
exists a finite sequence of elementary deformations which deforms $H_{i}$ to a nice
immersion by the same argument with the one in Lemma 3.2, the result follows
from Lemma $3.1.$ ///
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