ON ELEMENTARY DEFORMATIONS OF MAPS OF SURFACES INTO 3-MANIFOLDS I

By
Tatsuo Homma and Teruo Nagase

(Received February 25, 1985)

§ 1. Introduction.

S. Smale [S] classified the set of immersions of S^{2} into $E^{n}(2<n)$ by regular homotopy. M. Hirsch [Hr] generalized Smale's result as follows: The regular homotopy classes of a C^{∞} manifold M^{m} to a C^{∞} manifold $N^{n}(m>n)$ are in onèto one correspondence with homotopy classes of bundle maps of tangent bundle $T\left(M^{m}\right)$ to $T\left(N^{n}\right)$. This Smale-Hirsch theorem is a theorem about global moves of homotopy. To attack the Poincaré Conjecture, W. Haken [Hk] examined local moves between immersions of a 2 -sphere into a homotopy 3 -ball N^{3}. What he found is that ∂N^{3} can be deformed into a 3-ball in N^{3} by four types of local deformations, elementary deformations, such that these four types of deformations take place in a special order. It is natural to consider the following question: how many kinds of elementary deformations are needed, for two given immersions which are regularly homotopic, to convert one immersion to the other? Or more generally, how many kinds of elementary deformations are needed to convert one nice map to another nice map? A nice map is a piecewise linear map of a surface into a 3 -manifold whose singularities consist of a finite number of double curves, triple points and branch points.

In this paper we shall consider deformations of a homotopy between two nice maps of a surface in a 3-manifold into a finite sequence of elementary deformations. Elementary deformations are basic local moves of nice maps.

This is the first of two papers devoted to the study of deformations of a homotopy between two nice maps of a surface to a 3 -manifold into a finite sequence of elementary deformations. In the second paper [HN], we shall prove the following:

Theorem. Jf two maps f and g are nice maps of a closed surface into the interior of a 3-manifold, and if they are homotopic, then one deforms to the other by a finite sequence of six kinds of deformations and their inverses which we call elementary deformations.

In this note we shall define special deformations, which are compositions of the elementary deformations, and prove a special case (Disk-trade lemma) of the above. Pushing-disk lemma (Lemma 2.3) is a key lemma of Theorem. The proof of Theorem is parallel to the one of Pushing-disk lemma.

We work in the piecewise linear category.
The interior, closure, and boundary of (\cdots) are denoted by $\operatorname{Int}(\cdots), \mathrm{Cl}(\cdots)$, and $\partial(\cdots)$ respectively. The unit interval and the closed interval $[-1,1]$ will be denoted by I and J respectively.

We use the definitions and notations in [R] and [Z] without notice.
For a map $f: F^{2} \rightarrow M^{3}$ of a closed surface to a 3 -manifold, the singularities of f is the closure of the set of those points $x \in f\left(F^{2}\right)$ for which $f^{-1}(x)$ consists of more than one point. A point $x \in f\left(F^{2}\right)$ is called a regular point, if it does not belong to the sungularities of f (see [P]). The map f is said to be nice, provided that the singularities of f consist of double curves in which two sheets pierce each other, triple points in which three sheets pierce each other, and branch points from each of which exactly one double curve originates, and that at each point of F^{2} whose image is not a branch point, the map f is locally homeomorphic. Neighborhoods of the singularities of f are shown in Figure 1.1. We consider that neither triple points nor branch poihts belong to double curves. Hence the image of f is the disjoint union of the set of regular points, the set

Fig. 1.1

Figure 1.2
of double curves, the set of triple points, and the set of branch points.
We define as follows two kinds of modification on the set of nice maps of a surface F^{2} to a manifold M^{3}. Let $f: F^{2} \rightarrow M^{3}$ be a nice map. Modification Γ of f to a new nice map $g: F^{2} \rightarrow M^{3}$ is called an h-move, if there exist a disk D^{2} in F^{2} and a ball B^{s} in M^{3} such that the maps f and g coincide outside the disk D^{2} and such that the images $f\left(D^{2}\right)$ and $g\left(D^{2}\right)$ lie in the interior of the ball B^{3}. The pair $\left(D^{2}, B^{3}\right)$ is called a support pair of the h-move Γ. An h-move Γ of f to g is called an elementary deformation of type $i(i=0,1,2,3,4,5,6)$, if one of the following conditions holds for a support pair (D^{2}, B^{3}) of the h-move Γ (see Figure 1.2 and Figure 1.3.):

Type 0 . There exists an orientation preserving homeomorphism of B^{3} to

Fig. 1.3
itself that is the identity on the boundary of B^{3} and that sends $f\left(F^{2}\right) \cap B^{3}$ to $g\left(F^{2}\right) \cap B^{3}$.

Type 1. The intersection $B^{3} \cap f\left(F^{2}\right)$ consists of two disjoint disk. The union $f\left(D^{2}\right) \cup g\left(D^{2}\right)$ bounds a 3-ball in B^{3} whose interior intersects $f\left(F^{2}\right)$ by an open disk.

Type 2. The intersection $B^{3} \cap f\left(B^{2}\right)$ consists of three disks, two of which pierce each other by a double curve and the other one contains $f\left(D^{2}\right)$ without intersecting the two disks. The union $f\left(D^{2}\right) \cup g\left(D^{2}\right)$ bounds a 3 -ball in B^{3} which intersects each of the three disks by a disk, one of these is $f\left(D^{2}\right)$ and the other two disks pierce each other by a double curve.

Type 3. The intersection $B^{8} \cap f\left(F^{2}\right)$ consists of four disks, three of which pierce each other and the other one contains $f\left(D^{2}\right)$ without intersecting the three disks. The union $f\left(D^{2}\right) \cup g\left(D^{2}\right)$ bounds a 3 -ball in B^{8} which intersects each of the four disks by a disk, one of these four disks is $f\left(D^{2}\right)$ and the other three disks pierce each other.

Type 4. The intersection $B^{3} \cap f\left(F^{2}\right)$ consists of a disk. The intersection $B^{3} \cap g\left(F^{2}\right)$ contains exactly two branch points and one double curve which originates from one of the branch points and terminates the other branch point.

Type 5. The intersection $B^{3} \cap f\left(F^{2}\right)$ consists of a disk containing $f\left(D^{2}\right)$ and a singular disk containing exactly one branch point and a double curve which originates from the branch point. The union $f\left(D^{2}\right) \cup g\left(D^{2}\right)$ bounds a ball in B^{3} which intersects $f\left(F^{2}\right)$ by the disk $f\left(D^{2}\right)$ and a singular disk branch point and a double curve.

Type 6. The intersection $B^{3} \cap f\left(F^{2}\right)$ consists of two disks which intersect each other by two double curves, say L_{1} and L_{2}. 'The same situation holds for the intersection $B^{3} \cap g\left(F^{2}\right)$. But each of the double curves in $B^{3} \cap g\left(F^{2}\right)$ originates
from an end point of L_{1} and terminates an end point of L_{2}.
Each inverse deformation of an elementary deformation of Type i is called an elementary deformation of Type i^{-1}, which we also call an elementary deformation. We ignore elementary deformations of Type 0 in the proofs. Namely we do not mention where and when we use elementary deformations of Type 0 in each proof.

Our deformations of Type 1,2,6 correspond to Haken's deformations of Type $1 a, 1 b, 2$ respectively. Haken's deformation of Type 3 is the composition of his deformations of Type $1 b$ and 2 . To deform nice maps, deformations of Type 3, 4, 5 are definitely needed.

We use the sign /// to indicate the end of proofs.

§ 2. Special deformations.

In this section we investigate elementary deformations and develop elementary techniques.

Let $f_{1}, f_{2}: F^{2} \rightarrow M^{3}$ be nice maps, one of which is obtained from the other

Fig. 2.1
by a single h-move with a support pair (D^{2}, B^{3}). We say that f_{1} deforms to f_{2} by shifting-branch-point (along a curve L), if their images in B^{3} are like those shown in Figure 2.1.

Lemma 2.1. (Shifting-branch-point) Let $f_{1}, f_{2}: F^{2} \rightarrow M^{3}$ be nice maps. If one of them deforms to the other by shifting-branch-point, then there exists a finite sequence of elementary deformations which deforms one to the other.

Proof. First apply an elementary deformation of Type 5, and then an elementary deformation of Type 6. The detail will be omitted (see Figure 2.1).///

Let $f_{1}, f_{2}: F^{2} \rightarrow M^{3}$ be nice maps, one of which is obtained from the other by a single h-move with a support pair (D^{2}, B^{3}). We say that f_{1} deforms to f_{2} by squeezing-off, if their images in B^{3} are like those shown in Figure 2.2.

Fig. 2.2
Lemma 2.2. (Squeezing-off) Let $f_{1}, f_{2}: F^{2} \rightarrow M^{3}$ be nice maps. If one of them deforms to the other by squeezing-off, then there exists a finite sequence of elementary deformations of Type 4 and Type 6 which deforms one to the other.

Proof. The detail will be omitted (see Figure 2.2). ///
A loop means a simple closed curve. A loop is said to be essential in an annulus, if it does not bounds a disk in the annulus.

Let $f_{0}, f_{3}: F^{2} \rightarrow M^{3}$ be nice maps, one of which is obtained from the other by a single h-move with a support pair (D^{2}, B^{3}). Suppose that each of the maps
f_{0} and f_{3} embeds a regular neighborhood N^{2} of D^{2} into the ball B^{3} and that the union $f_{0}\left(D^{2}\right) \cup f_{3}\left(D^{2}\right)$ bounds a ball B_{*}^{3} in B^{3}. Then we say that f_{0} deforms to f_{3} by a pushing-disk through the ball B_{*}^{3}. If the ball B_{*}^{3} is a relative regular neighborhood of a simple arc L relative to ∂L (see $[H d]$ for the defihition), then we say that f_{0} deforms to f_{3} by a pushing-disk along the curve L. If the ball B_{*}^{3} is a relative regular neighborhood of a disk $D_{\boldsymbol{*}}^{2}$ relative to ∂D_{*}^{2} then we say that f_{0} deforms to f_{s} by a pushing-disk-along the disk D_{*}^{2} (see Figure 2.3).

Dimension is reduced to two.
Fig. 2.3

Fig. 2.4

Lemma 2.3. (Pushing-disk lemma) Let $f_{0}, f_{3}: F^{2} \rightarrow M^{3}$ be nice maps. If one deforms to the other by a pushing-disk, then there exists a finite sequence a finite sequence of elementary deformations which deforms f_{0} to f_{3}.

Proof. We use the same notations in the definition of pushing-disk. There are two cases.

Case 1. $B_{*}^{3} \cap f_{0}\left(N^{2}-D^{2}=\varnothing\right.$: There exists a homeomorphism $\psi: B_{*}^{3} \rightarrow I \times I \times I$ such that $\psi^{-1}(I \times I \times 1 \cup \partial(I \times I) \times I)=f_{0}\left(D^{2}\right)$ and $\psi^{-1}(I \times I \times 0)=f_{\mathbf{s}}\left(D^{2}\right)$. If we choose ψ suitably, by general position argument there exists a triangulation T of $I \times I$ such that
(C0) for each vertex v of $T, \psi^{-1}(v \times I)$ does not meet the singularities of $f_{0} \mid$ ($F^{2}-\operatorname{Int}\left(N^{2}\right)$),
(C1) for each 1 -simplex ζ of $T, \psi^{-1}(\zeta \times I)$ does not meet the triple points nor branch points of $f_{0} \mid\left(F^{2}-\operatorname{Int}\left(N^{2}\right)\right)$, and each connected component of ψ^{-1} $(\zeta \times I) \cap f_{0}\left(F^{2}-\operatorname{Int}\left(N^{2}\right)\right)$ is an arc or homeomorphic to the set $J \times 0 \cup 0 \times J$,
(C2) for each 2-simplex τ^{2} of T, each connected component of $\phi^{-1}\left(\tau^{2} \times I\right) \cap$ $f_{0}\left(F^{2}-\operatorname{Int}\left(N^{2}\right)\right.$) is homeomorphic to a disk, a cone over figure 8 , ($J \times 0 \cup$ $0 \times J) \times I$, or the set $J \times J \times 0 \cup J \times 0 \times J \cup 0 \times J \times J$ (see Fugure 2.4),
(C3) if $\psi_{i}=\psi \cdot\left(f_{i} \mid D^{2}\right)(i=0,3)$, then $\psi_{0}{ }^{\circ} \psi_{3}^{-1}(v \times 0)=v \times 1$ for each vertex v of T in $\operatorname{Int}(I \times I)$, and
(C4) if $X=I \times I \times 1 \cup \partial(I \times I) \times I$, then $\psi_{0}{ }^{\circ} \psi_{3}^{-1}(\sigma \times 0)=\sigma \times I \cap X$ for each simplex σ of $T(\operatorname{dim} \sigma>0)$.
Let T_{0} be the set of vertices of T, which do not lie in $\partial(I \times I)$. Let V_{0}^{2} be
a small regular neighborhood of T_{0} in $I \times I$, and V_{1}^{2} a small regular neighborhood of V_{0}^{2} in $I \times I$. Then $V_{1}^{2}-\operatorname{Int}\left(V_{0}^{2}\right)$ consists of mutually disjoint annuli. Thanks to Conditions (C0), (C3), and (C4), by a finite sequence of elementary deformations of Type 1 , we can push the disks $\phi^{-1}\left(V_{1}^{2} \times 1\right)$ along the curve ψ^{-1} ($v \times I$) for each vertex v in T_{0} to deform the map f_{0} to a map f_{1} such that
(1) f_{1} and f_{0} coincide outside the disks $\psi_{0}^{-1}\left(V_{1}^{2} \times 1\right)$,
(2) f_{1} and f_{s} coincide on the disks $\psi_{0}^{-1}\left(V_{0}^{2} \times 1\right)$,
(3) $\psi \circ f_{1}\left(D^{2}\right)=\partial(I \times I) \times I \cup\left(I \times I-V_{0}^{2}\right) \times 1 \cup \partial V_{0}^{2} \times I \cup V_{0}^{2} \times 0$, and
(4) if $P^{2}=\mathrm{Cl}\left(I \times I-V_{0}^{2}\right)$ and $\psi_{1}=\psi \bullet\left(f_{1} \mid D^{2}\right)$, then $\left.\psi_{1} \circ \psi_{3}^{-1}\left(\zeta \cap P^{2}\right) \times 0\right)=\partial\left(\zeta \cap P^{2}\right) \times I$ $\cup\left(\zeta \cap P^{2}\right) \times 1$ for each 1 -simplex ζ of T (we may need elementary deformations of Type 0 to get properties (3) and (4)).
Let T_{1} be the set of 1 -simplexes of T, which do not lie in $\partial(I \times I)$. Let W_{0}^{2} be a small regular neighborhood of $T_{1} \cap P^{2}$ in P^{2}. Then W_{0}^{2} consists of mutually disjoint disks. Let W_{1}^{2} be a small regular neighborhood of W_{0}^{2} in P^{2}. Thanks to Conditions (C1), (C4), and (4) above, by a finite sequence of elementary deformations of Type 2 and 6 , we can push the disks $\psi^{-1}\left(W_{1}^{2} \times 1 \cup\left(W_{1}^{2} \cap\right.\right.$

disk along this disk

off

On each step, only the quoter of the image is drawn

Fig. 2.5
$\left.V_{0}^{2}\right) \times I$) along the disks $\psi^{-1}\left(\zeta \cap P^{2}\right) \times I$ for each 1 -simplex ζ of T to deform the $\operatorname{map} f_{1}$ to a map f_{2} such that
(1) f_{2} and f_{3} coincide on the set $\psi_{3}^{-1}\left(V_{0}^{2} \cup W_{0}^{2}\right)$, and
(2) if $Q^{2}=\mathrm{Cl}\left(I \times I-\left(V_{0}^{2} \cup W_{0}^{2}\right)\right.$), then $\psi \circ f_{2}\left(D^{2}\right)=\left(V_{0}^{2} \cup W_{0}^{2}\right) \times 0 \cup Q \times 1 \cup \partial Q \times I$ (again we may need elementary deformation of Type 0 to get the property (2)).
Finally thanks to Conditions (C2) and (2) above, the map f_{2} deforms to the $\operatorname{map} f_{s}$ by a finite sequence of elementary deformations. Therefore the map f_{0} deforms to the map f_{2} by a finite sequence of elementary deformations.

Case 2: $f_{0}\left(N^{2}-D^{2}\right) \subset B_{*}^{3}$: Let S^{1} be an essential loop in $N^{2}-D^{2}$ near ∂D^{2}, i.e., S^{1} which does not bound a disk in $N^{2}-D^{2}$. Let A^{2} be the annulus on N^{2} bounded by the loops S^{1} and ∂D^{2}. We push out the annulus $f_{0}\left(A^{2}\right)$ from the ball B_{*}^{3} as follows (see Figure 2.5). Let x be a point in S^{1}. By an elementary deformation of Type 1, we can push out a regular neighborhood of x from the ball B_{*}^{3} through the disk $f_{0}\left(D^{2}\right)$. By an elementary deformation f_{0} of Type 6 , we can push out the remaining of S^{1}. Now a regular neighborhood of S^{1} is outside the ball B_{*}^{s}. Then on $f_{0}\left(D^{2}\right)$ two parallel double curves appear near $f_{0}\left(\partial D^{2}\right)$. The double curve nearer to $f_{0}\left(\partial D^{2}\right)$ splits off a torus G^{2} from the deformed singular disk such that the solid torus H^{3}, bounded by the torus G^{2}, intersects with $f_{0}\left(F^{2}-N^{2}\right)$ only by mutually disjoint disks. Hence by squeezing-off, the inverse process of shifting-branch-point, and an elementary deformation of Type 4^{-1}, we can eliminate the torus, so that $f_{0}\left(A^{2}\right)$ is completely outside the ball B_{*}^{3}. By this modification on the annulus $\mathrm{Cl}\left(N^{2}-D^{2}\right)$, we can deform the map f_{0} to a map f_{0} and also the map f_{3} to a map f_{s}^{\prime} simultaneously. Set $N_{1}^{2}=D^{2} \cap A^{2}$. Then we have $B_{*}^{3} \cap f_{0}^{\prime}\left(N_{1}^{2}-D^{2}\right)=\varnothing$. Hence by Case 1 , the map f_{0}^{\prime} can be deformed to the map f_{3}^{\prime} by a finite sequence of elementary deformations. Therefore the result follows from the deformations $f_{0} \rightarrow f_{0}^{\prime} \rightarrow f_{3}^{\prime} \rightarrow f_{3} / / / /$

An annulus is said to be unknotted in a 3-ball, if it lies on a disk in the 3ball.

Lemma 2.4. (Rewinding lemma) Let $f_{1}: F^{2} \rightarrow M^{3}$ be a nice map into the interior of M^{3}. Let S^{1} be a loop in F^{2} and A^{2} a regular neighborhood of S^{1} in F^{2}. Suppose that $f_{1} \mid A^{2}: A^{2} \rightarrow M^{3}$ is an embedding, and that $f_{1}\left(A^{2}\right)$ lies in a ball B^{3} in M^{3}. If $f_{1}\left(S^{1}\right)$ is unknotted in B^{3}, then for any $\varepsilon>0$ there exists a nice map $f_{2}: F^{2} \rightarrow M^{8}$ such that (1) $d\left(f_{1}, f_{2}\right)<\varepsilon$, (2) the maps f_{1} and f_{2} coincids outside N^{2}, (3) there exists a finits sequence of elementary deformations of Type 4 which deforms the map f_{1} to the map f_{2}, and (4) the map f_{2} embeds a regular neighborhood of S^{1} in A^{2} onto an unknotted annulus in B^{3}, i.e., the annulus which lies on a disk in B^{3}.

Proof. The map f_{1} may deform to a map f_{*} by an elementary deformation of Type 4 such that (1) $f_{*}\left(F^{2}=f_{1}\left(F^{2}\right) \cup S_{*}^{2}\right.$, where S_{*}^{2} is a 2 -sphere with

Fig. 2.6

Fig. 2.7
$f_{1}\left(F^{2}\right) \cap S_{*}^{2}$ being the induced double curve of f_{*}, say L, (2) $f_{*}^{-1}\left(S_{*}^{2}\right)$ is a disk in A^{2} and is penetrated by the loop S^{1}, and (3) $f_{*}\left(S^{1}\right) \supset f_{1}\left(S^{1}\right)$ (see Figure 2.6).

Let P be an intersection point of the two circles S^{1} and $f_{*}^{-1}(L)$. If we slide S^{1} left or right near the point P, then the image $f_{*}\left(S^{1}\right)$ may be a loop. Moreover for a small regular neighborhood A_{1}^{2} of S^{1} in F^{2}, this sliding of S^{1} left or right makes $f_{*}\left(A_{1}^{2}\right)$ a full-twist clockwise or counter-clockwise with respect to $f_{1}\left(A_{1}^{2}\right)$ (see Figure 2.7). The decreases the twisting number of the annulus $f_{1}\left(A_{1}^{2}\right)$ by one. If we repeat this process, we get a desired map $f_{2} \cdot / / /$

Lemma 2.5. Let $f_{1}, f_{4}: F^{2} \rightarrow M^{3}$ be nice maps, one of which is obtained from the other by an h-move with a support pair $\left(D^{2}, B^{3}\right)$. Suppose that $f_{1} \mid D^{2}: D^{2} \rightarrow M^{3}$ deforms to $f_{4} \mid D^{2}$ by an elementary deformation of Type 4. Then f_{1} deforms to f_{4} by a finite sequence of the elementary deformations (see Figure 2.8).

Fig. 2.8
Proof. By the assumption, the restriction $f_{1} \mid D^{2}$ is an embedding, and the restriction $f_{4} \mid D^{2}$ possesses a double curve L and two branch points. Now $\left(f_{4} \mid D^{2}\right)^{-1}(L)$ is a circle which bounds a disk D_{1}^{2} in D^{2}. Then $S^{2}=f_{4}\left(D_{1}^{2}\right)$ is a sphere which bounds a ball B_{*}^{s} in the ball B^{8}. The ball B_{*}^{3} may intersects $f_{4}\left(F^{2}-D^{2}\right)$. First on the disk D^{2} we deform the map f_{1} to a map f_{2} by an elementary deformation of Type 4 such that
(1) the double curve L^{\prime} of f_{2} is contained in the curve L,
(2) the maps $f_{2} \mid D^{2}$ and $f_{4} \mid D^{2}$ possess a branch point in common,
(3) $\left(f_{2} \mid D^{2}\right)^{-1}\left(L^{\prime}\right)$ bounds the disk D_{1}^{2}, and
(4) $f_{2}\left(D^{2}\right)$ is contained in the ball B_{*}^{3}.

Next we several times deform the map f_{2} to a map f_{3} by shifting-branch-point along the curve $\mathrm{Cl}\left(L-L^{\prime}\right)$ such that
(1) $f_{8}\left(D_{1}^{2}\right)$ is contained in the ball B_{*}^{3},
(2) f_{s} and f_{4} differ only on a disk D_{2}^{2} in Int D_{1}^{2}, and
(3) $f_{8}\left(D_{2}^{2}\right) \cup f_{4}\left(D_{2}^{2}\right)$ bounds a ball.

Then we can deform f_{8} to f_{4} by pushing-disk through the ball bounded by $f_{3}\left(D_{2}^{2}\right) \cup f_{4}\left(D_{2}^{2}\right) . / / /$

Lemma 2.6. Let $f_{1}, f_{2}: F^{2} \rightarrow M^{3}$ be nice maps. Suppose that the map f_{1} deforms to the map f_{2} by a single h-move with a support pair ($\left.D^{2}, B^{3}\right)$. Suppose that $f_{1} \mid D^{2}: D^{2} \rightarrow B^{8}$ is an embedding, and that, for a regular neighborhood N^{2} of D^{2} in F^{2}, the restriction $f_{2} \mid N^{2}: N^{2} \rightarrow B^{3}$ is an embedding. Then the map f_{1} deforms to the map f_{2} by a finite sequence of the elementary deformations.

Proof. There are two cases.
Case 1: The disk $f_{2}\left(N^{2}\right)$ is proper in B^{3} : Let $A^{2}=N^{2}-\operatorname{Int}\left(D^{2}\right)$. Let S_{*} be the set of singularities of $f_{1} \mid N^{2}$. Then S_{*} consists of loops and simple arcs
connecting branch points on $f_{1}\left(\partial D^{2}\right)$. We may assume that each of the arcs are proper in both the disk $f_{1}\left(D^{2}\right)$ and the annulus $f_{1}\left(A^{2}\right)$. We use induction on the number of components of S_{*}.

If $S_{*}=\varnothing$, then it is clear that the map f_{1} deforms to the map f_{2} by push-ing-disks.

Suppose that there exists a loop in S_{*} which is a non-essential loop in the annulus $f_{1}\left(A^{2}\right)$, i.e., the loop which bounds a disk in $f_{1}\left(A^{2}\right)$. Let L be a nonessential loop which is inner-most with respect to the annulus $f_{1}\left(A^{2}\right)$. Then L bounds two disks: a disk D_{1}^{2} in $f_{1}\left(D^{2}\right)$ and a disk D_{2}^{2} in $f_{1}\left(A^{2}\right)$. Let D_{3}^{2} be a disk such that
(1) the disk D_{3}^{2} is parallel to the disk D_{2}^{2},
(2) $D_{3}^{2} \cap f_{1}\left(D^{2}\right)=\partial D_{3}^{2}$,
(3) $D_{3}^{2} \cap f_{1}\left(A^{2}\right)=\varnothing$, and
(4) ∂D_{3}^{2} bounds the disk D_{4}^{2} in $f_{1}\left(D^{2}\right)$ which contains the disk D_{1}^{2}.

Since $D_{3}^{2} \cup D_{4}^{2}$ bounds the ball B_{1}^{3} in B^{3}, by Pushing-disk lemma we can push the disk D_{4}^{2} to the disk D_{3}^{2} through the ball B_{1}^{3} to eliminate the loop L from S_{*}. This decreases the number of the components of S_{*}. Thus we can assume that there are no non-essential loops.

Suppose that there exists a loop in S_{*} which is essential in the annulus $f_{1}\left(A^{2}\right)$, i.e., the loop which does not bound a disk in $f_{1}\left(A^{2}\right)$. Let L be the essential loop in S_{*} which is outer-most in $f_{1}\left(A^{2}\right)$. Then L bounds two disks: a disk D_{1}^{2} in $f_{1}\left(D^{2}\right)$ and a disk D_{2}^{2} in $f_{2}\left(N^{2}\right)$. Let B_{1}^{3} be the complimentary ball of the proper disk $\left(f_{2}\left(N^{2}\right)-D_{2}^{2}\right) \cup D_{1}^{2}$ in B^{3} which contains a boundary collar of D_{2}^{2}. The ball B_{1}^{3} allows us to eliminate the loop L from S_{*} by Pushing-disk lemma as follows (see Figure 2.9): Let N_{1}^{2} be a regular neighborhood of D_{1}^{2}

Dimension is reduced to two.
Fig. 2.9
in $f_{1}\left(D^{2}\right)$. Take a very thin boundary collar C^{3} of B_{1}^{3} which intersects N_{1}^{2} by an annulus. Let S^{2} be the connected component of ∂C^{3} different from ∂B_{1}^{3}. Then $S^{2} \cap N_{1}^{2}$ is a loop. Since S^{2} is a 2 -sphere, the loop $S^{2} \cap N_{1}^{2}$ bounds the disk D_{3}^{2} in S^{2} which does not meet $f_{1}\left(A^{2}\right)$. Now D_{3}^{2} misses $f_{2}\left(N^{2}\right)$ and intersects $f_{1}\left(D^{2}\right)$ by the loop $S^{2} \cap N_{1}^{2}$ which is ∂D_{3}^{2}. The loop ∂D_{3}^{2} bounds the disk D_{4}^{2} in the disk $f_{1}\left(D^{2}\right)$. Since $D_{3}^{2} \cup D_{4}^{2}$ bounds a ball in B^{3}, by Pushing-disk lemma we can push the disk D_{4}^{2} to the disk D_{3}^{2} through the ball to eliminate the loop L from S_{*}. This decreases the number of the components of S_{*}. Hence we can assume that there is no loop in S_{*}.

Suppose that there exists a simple arc in S_{*} which is an inner-most proper arc in $f_{1}\left(A^{2}\right)$. Then we can eliminate the arc from S_{*} by an elementary deformation of Type 4^{-1} or an inverse process of Lemma 2.5. Hence we have $S_{*}=\varnothing$. This case has been shown.

Case 2. The disk $f_{2}\left(N^{2}\right)$ is not proper in $B^{3}:$ Let $A^{2}=N^{2}-\operatorname{Int}\left(D^{2}\right)$. Since $f_{2}\left(N^{2}\right)$ is a disk in B^{3}, there exists an annulus A_{1}^{2} in B^{3} such that
(1) $A_{1}^{2} \cap f_{2}\left(N^{2}\right)$ is a boundary loop L_{1} of A_{1}^{2} and an essential loop on the open annulus $f_{2}\left(\operatorname{Int}\left(A^{2}\right)\right)$, and
(2) $A_{1}^{2} \cap \partial B^{3}$ is the boundary loop L_{2} of A_{1}^{2} different from L_{1} (see Figure 2.10). We will push a regular neighborhood of L_{1} in $f_{2}\left(N^{2}\right)$ out of B^{3} along the an-

Fig. 2.10
nulus A_{1}^{2} as follows (see Figure 2.10): Let W^{3} be a very thin relative regular neighborhood of A_{1}^{2} in M^{3} relative to the boundary loop L_{1} such that
(1) $W^{8} \cap f_{8}\left(N^{2}\right) \subset \partial W^{3}$,
(2) $W^{3} \cap f_{2}\left(N^{2}\right)$ is a regular neighborhood of L_{1} in $f_{2}\left(A^{2}\right)$, and
(3) $\mathrm{Cl}\left(\partial W^{3}-f_{2}\left(N^{2}\right)\right) \cap B^{3}$ consists of two annuli each of which is parallel to the annulus A_{1}^{2} (see Figure 2.10).
Now W^{8} is a union of two balls B_{1}^{3} and B_{2}^{3} such that $B_{1}^{3} \cap B_{2}^{8}$ is a union of two disks. Then the map f_{2} deforms to a map f_{2}^{\prime} by two consecutive pushingdisks; a pushing-disk through B_{1}^{3} and a pushing-disk through B_{2}^{3}. At the same time these two consecutive Pushing-disks deform the map f_{1} to a map f_{1}^{\prime}. The maps f_{1}^{\prime} and f_{2}^{\prime} send a small regular neighborhood of $\left(f_{2} \mid N^{2}\right)^{-1}\left(L_{1}\right)$ in A^{2} outside the ball B^{3}. Let N_{1}^{2} be the connected component of $\left(f_{2}^{\prime} \mid N^{2}\right)^{-1}\left(B^{3}\right)$ which contains the disk D^{2}. Then N_{1}^{2} is a disk such that $f_{2}^{\prime}\left(N_{1}^{2}\right)$ is a proper disk in B^{3} and $f_{2}^{\prime} \mid N_{1}^{2}$ is an embedding. Furthermore f_{1}^{\prime} and f_{2}^{\prime} differ only on the disk D^{2} and $f_{1}^{\prime} \mid D^{2}$ is an embedding. Hence f_{1}^{\prime} deforms to f_{2}^{\prime} by a finite sequence of elementary deformations by Case 1 . Therefore by the deformations $f_{1} \rightarrow f_{1}^{\prime} \rightarrow$ $f_{2}^{\prime} \rightarrow f_{2}$ the map f_{1} deforms to the map f_{2} by a finite sequence of elementary deformations.///

Corollary 2.7. (Disk-trade lemma) Let $f_{1}, f_{2} F^{2} \rightarrow M^{3}$ be nice maps, one of which deforms to the other by a single h-move with a support pair (D^{2}, B^{s}). Suppose that restrictions $f_{1}\left|D^{2}, f_{2}\right| D^{2}: D^{2} \rightarrow B^{8}$ are embeddings, and that for a regular neighborhood N^{2} of D^{2} in F^{2}, the image $f_{1}\left(N^{2}-\operatorname{Int}\left(D^{2}\right)\right.$) is an unknotted annulus in B^{8}. Then the map f_{1} deforms to the map f_{2} by a finite sequence of elementary deformations.

Proof. Let $f_{\mathrm{s}}: F^{2} \rightarrow M^{8}$ be a nice map such that $f_{\mathrm{s}^{\prime}}$ and f_{1} coincide outside the disk D^{2} and such that $f_{3} \mid N^{2}$ is an embedding of N^{2} into the ball B^{3}. Then each of the maps f_{1} and f_{2} deforms to the map f_{8} by a finite sequence of elementary deformations by the above lemma. Therefore the result follows.///

In Case 2 Lemma 2.6 we have proved the following:
Lemma 2.8. Let $f: F^{2} \rightarrow M^{3}$ be a nice map which sends a disk D^{2} in F^{2} into the interior of a ball B^{3} in M^{3}. Suppose that there exists a regular neighborhood N^{2} of D^{2} in F^{2} such that
(1) $f\left(N^{2}\right) \subset B^{3}$, and
(2) if $A^{2}=\mathrm{Cl}\left(N^{2}-C^{2}\right)$, then $f\left(A^{2}\right)$ is an unknotted annulus in B^{8}.

Let L be an essential loop in Int A^{2}. Then there exists a nice map $f^{\prime}: F^{2} \rightarrow M^{3}$ such that
(1) f and f^{\prime} differ only on a small regular neighborhood of L in $\operatorname{Int}\left(A^{2}\right)$,
(2) f deforms to f^{\prime} by a finite sequence of elementary deformations,
(3) for a regular neighborhood N_{1}^{2} of D^{2} in N^{2}, we have $f^{\prime}\left(N_{1}^{2}\right) \cap \partial B^{3}=f^{\prime}\left(\partial N_{1}^{2}\right)$, and
(4) $f^{\prime}\left(\mathrm{Cl}\left(N_{1}^{2}-D^{2}\right)\right)$ is an unknotted annulus in B^{3}.

Lemma 2.9. Let $f ; F^{2} \rightarrow M^{2}$ be a nice map. Suppose that the map f sends a disk N^{2} in F^{2} into the interior of a ball B^{3} in M^{3} and that for a boundary collar A^{2} of $N^{2}, f\left(A^{2}\right)$ is an unknotted annulus in B^{3}. Then there exists a nice map $f^{\prime}: F^{2} \rightarrow M^{2}$ such that
(1) $f^{\prime}\left(N^{2}\right) \subset B^{3}$,
(2) $f^{\prime} \mid N^{2}$ is an immersion,
(3) maps f^{\prime} and f coincide on a neighborhood of $\mathrm{Cl}\left(F^{2}-N^{2}\right)$, and
(4) f deforms to f^{\prime} by a finite sequence of elementary deformations.

Proof. Since $f\left(A^{2}\right)$ is unknotted, the number of branch points of $f \mid N^{2}$ is even. Choose mutually disjoint arcs on $f\left(N^{3}\right)$, each of which connects a pair of branch points. Apply shifting-branch-points along the arcs and inverse process of squeezing-off to eliminate the branch points. Since any nice map without branch points is an immersion, the result follows.///

§ 3. Decomposing a homotopy into h-moves.

Let d be a metric of M^{3}. Let T_{1} be a triangulation of M^{3}. Let δ_{1} be a Lebesgue number of the covering which consists of all open star neighborhoods of vertices of T_{1}. Let T_{2} be a subdivision of T_{1} with $\operatorname{mesh}\left(T_{2}\right)<\delta_{1} / 10$. Let $\delta_{2}<\delta_{1} / 10$ be a Lebesgue number of the covering which consists of all open star neighborhoods of vertices of T_{2}. Let T_{3} be a subdivision of T_{2} with mesh $\left(T_{3}\right)$ $<\delta_{2} / 10$. Let $\delta<\delta_{2} / 10$ be a Lebesgue number of the covering which consists of all open star neighborhoods of vertices of T_{3}.

Lemma 3.1. Let $f_{1}, f_{4}: F^{2} \rightarrow M^{3}$ be nice immersions. If $d\left(f_{1}, f_{4}\right)<\delta$, then there exists a finite sequence of h-moves which deforms the map f_{1} to the map f_{4}.

Proof. Let K be a triangulation of F^{2} such that for a subdivision T_{4} of T_{3} the maps $f_{1}, f_{4}: K \rightarrow T_{4}$ are simplicial. Note that for each simplex ζ of K the diameter of $f_{4}(\zeta)$ is less than $\delta_{2} / 10$. Since $d\left(f_{1}(v), f_{4}(v)\right)<\delta$ for each vertex v of K, the two points $f_{1}(v)$ and $f_{4}(v)$ lie in the open star neighborhood of a vertex of T_{3} whose daimeter is less than $\delta_{2} / 5$. Hence there exists a simple curve from $f_{1}(v)$ to $f_{4}(v)$ whose diameter is less than $\delta_{2} / 5$. Applying pushingdisk's along curves, we have a finite sequence of h-moves which deforms the map f_{1} to a nice map f_{2} such that the maps f_{2} and f_{4} coincide on a regualr neighborhood of the 0 -skeleton of K, and such that $d\left(f_{1}, f_{2}\right)<\delta_{2} / 5$. Since $d\left(f_{2}\right.$, $\left.f_{4}\right)<3 \delta_{2} / 10$, we have the following: $\operatorname{diam}\left(f_{2}\left(\sigma^{1}\right) \cup f_{4}\left(\sigma^{1}\right)\right)<\delta_{2}$ for each 1 -simplex σ^{1} of K. Hence $f_{2}\left(\sigma^{1}\right) \cup f_{4}\left(\sigma^{1}\right)$ lies in the open star neighborhood of a vertex of T_{2}. Thus there exists a finite sequence of h-moves which deforms the map
f_{2} to a map f_{3} such that the maps f_{3} and f_{4} coincide on a regular neighborhood of the 1 -skeleton of K, and such that $d\left(f_{2}, f_{3}\right)<\delta_{1} / 5$. Since $d\left(f_{2}, f_{4}\right)<$ $3 \delta_{2} / 10<\delta_{1} / 10$, we have the following: $d\left(f_{3}, f_{4}\right)<3 \delta_{1} / 10$. Hence $\operatorname{diam}\left(f_{3}\left(\tau^{2}\right) \cup\right.$ $\left.f_{4}\left(\tau^{2}\right)\right)<\delta_{1}$ for each 2 -simplex τ of K. Thus $f_{3}\left(\tau^{2}\right) \cup f_{4}\left(\tau^{2}\right)$ lies in the open star neighborhood of a vertex of T_{1}. Therefore there exists a finite sequence of h moves which deforms the map f_{3} to the map f_{4}. This completes the proof of Lemma 3.1.///

Lemma 3.2. Let $f_{1}: F^{2} \rightarrow M^{3}$ be a continuous map with $f_{1}\left(F^{2}\right) \subset \operatorname{Int}\left(M^{3}\right)$. Then for any $\varepsilon>0$ there exists a nice immersion f_{s} with $d\left(f_{1}, f_{3}\right)<\varepsilon$.

Proof. By the general position argument there exists a nice map f_{2} with $d\left(f_{2}, f_{1}\right)<\varepsilon / 2$. Suppose that P_{1} and P_{2} are branch points of f_{2}. Then on $f_{1}\left(F^{2}\right)$ there is a simple curve L from P_{1} to P_{2} such that the curve L does not contain any triple points nor any branch points except the two end points P_{1} and P_{2}, and such that the curve L contains finitely many double points. Applying shifting-branch-point along the curve L, we may assume that the curve L does not contain any double points. Thus we can apply the inverse process of squeezing-off to diminish two branch points, if we choose the curve L suitabley (see Figure 3.1).///

Fig. 3.1
Theorem. Let $f, g: F^{2} \rightarrow M^{3}$ be nice maps. Suppose that the maps f and g are homotopic. Then thers exists a finite sequence of h-moves which deforms the map f to the map g.

Proof. Let $H: F^{2} \times I \rightarrow M^{3}$ be a homotopy with $H_{0}=f$ and $H_{1}=g$, where for each $t \in J, H_{t}: F^{2} \rightarrow M^{3}$ is the map defined by $H_{t}(x)=H(x, t)$ for all $x \in F^{2}$. Let δ be a positive number in Lemma 3.1 for a triangulation of M^{3}. Since the surface F^{2} is compact, there exists a partition of $I ; 0=t_{0}<t_{1} \cdots<t_{n}$ with $d\left(H_{i-1}\right.$, $\left.H_{i}\right)<\delta / 3$ for each $i=1, \cdots, n$. For each $i=1, \cdots, n-1$ let H^{*} be a nice immersion with $d\left(H_{i}, H_{i}^{*}\right)<\delta / 3$ assured by Lemma 3.2. Since for $i=0$ or n there exists a finite sequence of elementary deformations which deforms H_{i} to a nice immersion by the same argument with the one in Lemma 3.2, the result follows from Lemma 3.1.///

References

[Hd] J.F.P. Hudson: Piecewise Linear Topology (Mathematics Lecture Note Series) New York: W.A. Benjamin, Inc. 1969.
[Hk] W. Haken: On homotopy 3-spheres, Illinois J. of Math. 10, 159-178 (1966).
[HN] T. Homma \& T. Nagase: On elementary deformations of maps of surfaces into 3-manifolds II (preprint).
[Hr] M. W. Hirsch : Immersions of manifolds, Trans. Amer. Math. Soc. 93, 242-276 (1959).
[P] C.D. Papakyriakopoulos: On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) 66, 1-26 (1957).
[R] D. Rolfsen: Knots and Links, Math. Lecture Series 7, Publish or Perish Inc. 1976.
[S] S. Smale: A classification of immersions of the two-sphere, Trans. Amer. Math. Soc. 90, 281-290 (1958).
[Z] E. C. Zeeman: Seminor on Combinatorial Topology, Publ. Inst. des Hautes Etudes Sci, Paris, 1963 (mimeographed notes).

Department of Information Science
Tokpo Institute of Technslogy
Oh-okayama, Meguro-ku,
Tokyo 152 Japan
Department of Mathematics
Tokai University
Hiratuka, Kanagawa 259-12 Japan

