Yokohama Mathematical Journal Vol. 33, 1985

ON THE TOTAL CURVATURE OF NON-COMPACT RIEMANNIAN MANIFOLDS II

By

Masao Maeda

(Received January 21, 1985)

1. Let M be a 2-dimensional connected complete Riemannian manifold with non-negative Guassian curvature K. Then by Cohn-Vossen, it was proved that M is isometric to a flat open Möbius band or a flat cylinder or a manifold which is diffeomorphic to an Euclidean plane and its total curvature $\iint_{M} K \, dv$ satisfies an inequality

$$(1) \qquad \qquad 0 \leq \iint_{M} K \, dv \leq 2\pi$$

where dv is the volume element of M induced from the Riemannian metric of M. And in [5], we gave a simple proof of the inequality (1) by showing that there exists a family of geodesic quadraterals $\{Q_i\}_{i=1,2,\dots}$ each of which has interior angles whose sum does not exceed 4π and satisfies (using the same notation Q_i to denote the domain bounded by Q_i)

$$Q_i \subset Q_{i+1, i=1, 2, \cdots}$$
 and $\bigcup_{i=1}^{\infty} Q_i = M$.

Then by applying the Gauss-Bonnet's Theorem to Q_i , we have

$$\iint_{M} K \, dv = \lim_{i \to \infty} \iint_{Q_i} K \, dv \leq 2\pi \, dv$$

And successively in [6], we gave another proof of the inequality (1) by giving a geometrical significance of the total curvature. It is stated as follows.

For a point $p \in M$, let $T_p^1(M)$ be the subset of the tangent space $T_p(M)$ at p of M consisting of all unit tangent vectors in $T_p(M)$. Then with the Riemannian metric induced from the inner product of $T_p(M)$, $T_p^1(M)$ is a 1-dimensional Riemannian manifold isometric to a unit circle in a 2-dimensional Euclidean plane $R^2 (\cong T_p(M))$. Thus we can consider the Riemannian measure on $T_p^1(M)$ and measure $T_p^1(M)=2\pi$. Let A(p) be the subset of $T_p^1(M)$ given by

$$A(p) := \{ v \in T^{1}_{p}(M) : \text{geodesic } \gamma : [0, \infty) \to M, \ \gamma(t) = \exp_{p} tv \text{ is a ray} \}$$

where $\exp_p: T_p(M) \to M$ is the exponential mapping of M and geodesic $\gamma: [0, \infty)$

 $\rightarrow M$ is called a ray when any subarc of γ is a shortest connection between its ends points. As is easily seen, A(p) is a closed subset of $T_p^1(M)$ and hence we can consider the measure of A(p). In this situation, we have proved in [4], [6] that for any point $p \in M$,

(2)
$$\iint_{M} K \, dv \ge 2\pi - \text{measure } A(p)$$

and for any $\varepsilon > 0$, there exists a compact domain D such that for all point $q \in M-D$,

(3)
$$\iint_{M} K \, dv \leq 2\pi - \text{measure } A(q) + \varepsilon.$$

Thus combining (2) and (3), we have

(4)
$$\iint_{\mathcal{M}} K \, dv = 2\pi - \inf_{p \in \mathcal{M}} \text{ measure } A(p).$$

From (2), (3) and (4), we can get a geometrical significance of the total curvature. And in particular, we have the inequality

$$(1) \qquad \qquad 0 \leq \iint_{\mathcal{M}} K \, dv \leq 2\pi \; ,$$

because measure $A(p) \ge 0$.

Now the purpose of this note is to give another simple proof of the inequality (1). And from its proof, we will give a slight generalization for the result mentioned above.

2. Let M be a 2-dimensional complete Riemannian manifold diffeomorphic to an Euclidean plane. In the following, we use the same notations mentioned in the above introduction. For a point $p \in M$, we assume that there exists a point $v_0 \in T_p^1(M)$ which is an interior point of A(p). Let $U(v_0)$ be an open connected neighbourhood of v_0 with boundary $\partial U(v_0) = \{v_1, v_2\}$ satisfying $U(v_0) \subset A(p)$ and $D \subset M$ where D is the domain defined by

$$D = \{q \in M : q = \exp_p tv \text{ for } v \in U(v_0), t > 0\}.$$

Let $\widetilde{U}(v_0)$ be the domain in $T_p(M)$ defined by

 $\tilde{U}(v_0) = \{v \in T_p(M) : v = tw \text{ for } w \in U(v_0) \text{ and } t > 0\}.$

Then by definition of $U(v_0) \subset A(p)$,

$$\exp_{\boldsymbol{v}} | \widetilde{U}(v_0) : \widetilde{U}(v_0) \to D$$

is a diffeomorphism. So we can consider a polar coordinate system (r, θ) on D around p such that $0 < r < \infty$ and $\theta_1 < \theta < \theta_2$ where $\theta_1 = \lim_{\substack{v \to v_1 \\ v \in U(v_0)}} \theta(v)$ and $\theta_2 = \lim_{\substack{v \to v_2 \\ v \in U(v_0)}} \theta(v)$.

Using this polar coordinates, the volume element of M is expressed as

$$dv = \varphi(r, \theta) dr d\theta$$
.

Since $g(\partial/\partial r, \partial/\partial \theta) = 0$ because of Gauss-Lemma and $g(\partial/\partial r, \partial/\partial r) = 1$,

$$\varphi(r, \theta) = \sqrt{g(\partial/\partial \theta, \partial/\partial \theta)}$$

where g is the Riemannian metric of M. By definition, $\partial/\partial\theta$ is a Jacobi field Y along a geodesic $c: [0, \infty) \to M$ given by $\theta(c(t)) = \text{constant } \theta_0$ for all t > 0 which satisfy Y(0)=0, $Y'(0) \perp c(0)$ and ||Y'(0)||=1 where "'" denotes the covariant derivative along a curve and $||\cdot||$ the norm of the vectors. Thus $\varphi(r, \theta_0)$ is a solution of the Jacobi equation

$$f'' + K(r, \theta_0)f = 0$$

with the initial values f(0)=0 and f'(0)=1 where $K(r, \theta_0)$ is the Gaussian curvature of M at point (r, θ_0) . If we put $\varphi(0, \theta)=0$ for all $\theta \in [\theta_1, \theta_2]$, then φ is extended continuously for all point (r, θ) , $0 \leq r$, $\theta_1 \leq \theta \leq \theta_2$. For each s > 0, let D_s be the domain defined by

$$D_s = \{q \in \overline{D} : 0 \leq r(q) \leq s \text{ and } \theta_1 \leq \theta(q) \leq \theta_2\}.$$

By definition, $D_s \subset D_{s'}$ if $s \leq s'$ and $\bigcup_{s \geq 0} D_s = \overline{D}$.

Here we put further assumption that the Gaussian curvature of M is non-negative. Then

$$\iint_{D_s} K \, dv = \int_0^s \int_{\theta_1}^{\theta_2} K(r, \, \theta) \varphi(r, \, \theta) dr d\theta$$

is a monotone non-decreasing function of s and hence

$$\int_{\bar{D}} K \, dv = \lim_{s \to \infty} \iint_{D_s} K \, dv \, .$$

Now for each $s \ge 0$, let $\Phi_s: [\theta_1, \theta_2] \rightarrow R$ be the function defined by

$$\Phi_{s}(\theta) = \int_{0}^{s} K(r, \theta) \varphi(r, \theta) dr, \quad \theta \in [\theta_{1}, \theta_{2}].$$

Clearly each Φ_s is a continuous function. Let $\Phi: [\theta_1, \theta_2] \to R$ be the function defined by

$$\Phi(\theta) = \lim_{s \to \infty} \Phi_s(\theta) \quad \left(= \int_0^\infty K(r, \theta) \varphi(r, \theta) dr\right)$$

for $\theta \in [\theta_1, \theta_2]$.

Lemma 1. Φ is well defined for all $\theta \in [\theta_1, \theta_2]$ and $0 \leq \Phi(\theta) \leq 1$ for all $\theta \in [\theta_1, \theta_2]$.

Proof. Since $\varphi''(r, \theta) + K(r, \theta)\varphi(r, \theta) = 0$ and $\varphi'(0, \theta) = 1$ for all $\theta \in [\theta_1, \theta_2]$, it holds

M. MAEDA

$$\int_{0}^{s} K(r, \theta)\varphi(r, \theta)dr = -\int_{0}^{s} \varphi''(r, \theta)dr$$
$$= \varphi'(0, \theta) - \varphi'(s, \theta)$$
$$= 1 - \varphi'(s, \theta).$$

And also $\varphi''(r, \theta) = -K(r, \theta)\varphi(r, \theta) \leq 0$ for all $r \geq 0$. Because $\varphi(r, \theta) > 0$ for all r > 0. For, if $\varphi(r_0, \theta) = 0$ for some $r_0 > 0$, then the point (r_0, θ) is a conjugate point of p along the geodesic $c: \theta = \text{constant}$. This is a contradiction. Thus $\varphi'(r, \theta)$ is monotone non-decreasing with respect to r. Hence if there exists r' > 0 such that $\varphi'(r', \theta) < 0$, then $\varphi'(r, \theta) \leq \varphi'(r', \theta) < 0$ for all $r \geq r'$. So we can find r > 0 such that $\varphi(r, \theta) = 0$. This is a contradiction. Thus $0 \leq \varphi'(r, \theta) \leq 1$ for all $r \geq 0$ and hence $\lim_{r \to \infty} (1 - \varphi'(r, \theta))$ exists for each $\theta \in [\theta_1, \theta_2]$. q. e. d.

From above lemma, for any s>0, it holds

$$\begin{split} \iint_{D_s} K \, dv &= \int_{\theta_1}^{\theta_2} \int_0^s K(r, \, \theta) \varphi(r, \, \theta) dr d\theta \\ &= \int_{\theta_1}^{\theta_2} \Phi_s(\theta) d\theta \\ &\leq \int_{\theta_1}^{\theta_2} \Phi(\theta) d\theta \leq \theta_2 - \theta_1. \end{split}$$

So, since $\int_{D_s} K dv$ is monotone non-decreasing function of s, there exists the limit and

$$0 \leq \lim_{s \to \infty} \iint_{D_s} K \, dv = \iint_{\overline{D}} K \, dv \leq \theta_2 - \theta_1 \, .$$

Summarizing the above, we have

Proposition 1. Let M be a 2-dimensional complete connected Riemannian manifold with non-negative Gaussian curvature K. For a point $p \in M$, let U be a connected domain in A(p) and D the domain in M defined by

 $D = \{q \in M : q = \exp_p tv \text{ for } v \in U \text{ and } t > 0\}.$

Then it holds

$$0 \leq \iint_{\overline{D}} K \, dv \leq \text{measure } U = \not<_{\overline{D}}(v, w) \,,$$

where $\{v, w\} = \partial U$ and $\langle v, w \rangle$ denotes the interior angle between the vectors v and w measured on D.

Now let $W \subset M_p - A(p)$ be a connected component and $v, w \in T_p^1(M)$ the boundary of W. Since A(p) is closed, W is open and hence $v, w \in A(p)$. Let γ_1 and γ_2 are two rays defined by $\gamma_1(t) = \exp_p t v$ and $\gamma_2(t) = \exp_p t w$. Then, by geodesic $\gamma_1 \circ \gamma_2 : (-\infty, \infty) \to M$ defined by

96

$$\gamma_1 \circ \gamma_2(t) = \begin{cases} \gamma_1(-t), & t \leq 0 \\ \gamma_2(t), & t > 0, \end{cases}$$

M is devided into two mutually disjoint domaines D_1 and D_2 i. e. $\overline{D}_1 \cup \overline{D}_2 = M$, $D_1 \cap D_2 = \emptyset$ and $\partial D_1 = \partial D_2 = \gamma_1 \circ \gamma_2((-\infty, \infty))$. Without loss of generality, we can assume that D_1 is the domain satisfying

$$\{q \in M : q = \exp_p tv', v' \in W, 0 < t \leq r(p)\} \subset D_1$$

where r(p) is the convexity radius of p. Then in [6], we proved the following

Proposition 2. In the above situation, it holds

$$\iint_{\overline{D}_1} K \, dv = \text{measure } w = \measuredangle_{D_1}(v, w) \, .$$

Let $D \subset M$ be a domain whose boundary ∂D is an union of the images of two rays σ_1 and σ_2 starting from p i. e. $\partial D = \sigma_1([0, \infty)) \cup \sigma_2([0, \infty))$ and $D_p \subset T_p^1(M)$ the set defined by

$$D_p = \{ v' \in T_p^1(M) : \exp_p t v' \in \overline{D} \text{ for } 0 \leq t \leq r(p) \}.$$

Then measure $D_p = \not\prec_D(\dot{\sigma}_1(0), \dot{\sigma}_2(0))$ and D_p is the union of closed connected domaines $\{\overline{U}_{\alpha}\}_{\alpha \in A}$ and $\{\overline{W}_{\beta}\}_{\beta \in B}$ which satisfy the following conditions;

- (i) $U_{\alpha} \subset A(p) \cap D_p$ is open and \overline{U}_{α} is a connected component of $A(p) \cap D_p$ for each $\alpha \in A$
- (ii) $W_{\beta} \subset (M A(p)) \cap D_p$ is open and W_{β} is a connected component of $(M A(p)) \cap D_p$ for each $\beta \in B$
- (iii) $\{U_{\alpha}\}_{\alpha \in A}$ and $\{W_{\beta}\}_{\beta \in B}$ are mutually disjoint, because $A(p) \subset T_{p}^{1}(M)$ is closed.

For each U_{α} , $\alpha \in A$, let D_{α} be the domain in M defined by

$$D_{\alpha} = \{q \in M : q = \exp_{p} tv \text{ for } v \in U_{\alpha} \text{ and } t > 0\}.$$

Then from Proposition 1, it holds

(5)
$$0 \leq \iint_{\bar{D}_{\alpha}} K \, dv \leq \text{measure } U_{\alpha} = \ll_{D_{\alpha}} (v_{\alpha}, w_{\alpha}) \, .$$

Here $\{v_{\alpha}, w_{\alpha}\} = \partial U_{\alpha}$. And for each W_{β} , $\beta \in B$, let D'_{β} be the domain bounded by two rays γ_1 and γ_2 defined by $\gamma_1(t) = \exp_p t v'$ and $\gamma_2(t) = \exp_p t w'$ where $\partial W_{\beta} = \{v'_{\beta}, w'_{\beta}\}$ and satisfy

$$\{q \in M : q = \exp_p tv \text{ for } v \in W_\beta \text{ and } 0 < t < r(p)\} \subset D'_\beta.$$

Then from Proposition 2, it holds

(6)
$$0 \leq \iint_{\bar{D}'_{\beta}} K \, dv = \text{measure } \bar{D}'_{\beta} = \ll_{D'_{\beta}} (v'_{\beta}, w'_{\beta}).$$

M. MAEDA

By definition, $\{D_{\alpha}\}_{\alpha \in A}$ and $\{D'_{\beta}\}_{\beta \in B}$ are mutually disjoint and $(\bigcup_{\alpha \in A} \overline{D}_{\alpha}) \cup (\bigcup_{\beta \in B} \overline{D}'_{\beta})$ = \overline{D} . So if we put $D_1 := \bigcup_{\alpha \in A} D_{\alpha}$ and $D_2 := \bigcup_{\beta \in B} D'_{\beta}$, then we have

(7) $\iint_{\bar{D}_1} K \, dv = \sum_{\alpha \in A} \text{ measure } (U_{\alpha}),$

(8)
$$\iint_{\bar{D}_2} K \, dv \leq \sum_{\beta \in B} \text{ measure } (W_{\beta})$$

and $\sum_{\alpha \in A}$ measure $(U_{\alpha}) + \sum_{\beta \in B}$ measure $(W_{\beta}) =$ measure $(D_p) = \langle D_p(\sigma_1(0), \sigma_2(0)) \rangle$. Thus summarizing the above, we have

Theorem A. Let M be a 2-dimensional complete Riemannian manifold with non-negative Gaussian curvature K diffeomorphic to an Euclidean plane. Let D be a domain in M bounded by two rays σ_1 and σ_2 . Then it holds

$$0 \leq \iint_{\overline{D}} K \, dv \leq \langle D(\dot{\sigma}_1(0), \dot{\sigma}_2(0)) \, .$$

This theorem is a generalization of the result obtained by Cohn-Vossen. Indeed from above theorem, we have

Corollary. Let M be a 2-dimensional complete Riemannian manifold with non-negative Gaussian curvature K diffeomorphic to an Euclidean plane. Then it holds

$$0 \leq \iint_{\mathcal{M}} K \, dv \leq 2\pi$$
.

Proof. From Lemma 1 in [5; p. 96], there exists a point $p \in M$ such that there exists at least two rays σ_1 and σ_2 starting from p. Then by the geodesic $\sigma_1 \circ \sigma_2 : (-\infty, \infty) \to M$, M is devided into two mutually disjoint domains D_1 and D_2 whose boundary $\partial D_1 = \partial D_2$ equals $\sigma_1 \circ \sigma_2((-\infty, \infty))$. For these $D_{i, i=1, 2}$, from above theorem we have

$$\begin{split} & \iint_{\bar{D}_{i}} K \, dv \leq \ll_{D_{i}} (\dot{\sigma}_{1}(0), \, \dot{\sigma}_{2}(0)) \,, \quad i = 1, \, 2 \,. \\ & \iint_{M} K \, dv = \iint_{\bar{D}_{1}} K \, dv + \iint_{\bar{D}_{2}} K \, dv \\ & \leq \ll_{D_{1}} (\dot{\sigma}_{1}(0), \, \dot{\sigma}_{2}(0)) + \ll_{D_{2}} (\dot{\sigma}_{1}(0), \, \dot{\sigma}_{2}(0)) \\ & = 2\pi \,. \end{split}$$
q. e. d.

Thus

3. In this section, we will give another generalization of the result by Cohn-Vossen (Corollary of Theorem A in \S 2).

Proposition 3. Let M be a 2-dimensional complete Riemannian manifold.

Then the Gaussian curvature K of M is non-negative if and only if the following condition (*) holds

(*) for any point $p \in M$ and any geodesic $\gamma : [0, \infty) \to M$ starting from p, any Jacobi field Y along γ with initial values Y(0)=0, $Y'(0) \perp \dot{\gamma}(0)$ satisfies

$$||Y'(s)|| \leq ||Y'(0)||$$

as long as γ has no conjugate point of p in (0, s).

Proof. If $K \ge 0$, then by a proof of Rauch's comparison theorem, we easily see that the condition (*) holds, see [3; pp. 178~]. Conversely under the condition (*), we assume that there exist a point $p \in M$ such that K(p) < 0. Let $\sigma: [0, \infty) \to M$ be a geodesic starting from p and Y a Jacobi field along σ satisfying Y(0)=0, $Y'(0) \perp \dot{\sigma}(0)$. Then Y is expressed as $Y=\varphi P$ where P is a parallel vector field along σ satisfying P(0)=Y'(0)/||Y'(0)|| and $\varphi: [0, \infty) \to R$ is a C^{∞} solution of the Jacobi equation $\varphi''(s)+K(\sigma(s)\varphi(s)=0$ with initial values $\varphi(0)=0, \varphi'(0)=||Y'(0)||$. By continuity, we can find a constant s_0 such that $K \circ \sigma \mid [0, s_0] < 0$ and $\varphi \mid [0, s_0) \ge 0$. Thus $\int_0^{s_0} K(\sigma(s))\varphi(s)ds$ is negative. On the other hand, by definition of φ , we have

$$\int_{0}^{s_{0}} K(\sigma(s))\varphi(s)ds = -\int_{0}^{s_{0}} \varphi''(s)ds$$

= $\varphi'(0) - \varphi'(s_{0})$
= $\|Y'(0)\| - \|Y'(s_{0})\| \ge 0$.

And this is a contradiction.

q. e. d.

Noticing this proposition, we will extend the result by Cohn-Vossen slightly in a following manner.

Theorem B. Let M be a complete Riemannian manifold diffeomorphic to an Euclidean plane and satisfies the following two conditions;

- (i) Gaussian curvature K of M is non-negative outside some compact subset C of M
- (ii) there exists a point $p \in M$ such that for any geodesic $\gamma : [0, \infty) \to M$ starting from p, any Jacobi field Y along γ with initial values Y(0)=0, $Y'(0) \perp \dot{\gamma}(0)$ satisfies

$$||Y'(s)|| \leq ||Y'(0)||$$

as long as γ has no conjugate points of p in (0, s).

Then it holds

$$0 \leq \iint_{\mathcal{M}} K \, dv \leq 2\pi$$

For a while, we assume that M satisfies the condition (i) only. For a ray $c: [0, \infty) \rightarrow M$ starting from p, put

$$B_c := \bigcup_{t \ge 0} B_t(c(t))$$

where $B_r(q)$ denotes the open geodesic ball with radius $r \ge 0$ centerd at $q \in M$. For a $t \ge 0$, let $c_t : [0, \infty) \to M$ be a ray defined by $c_t(s) = c(t+s)$. Then we can easily check that the family of sets $\{B_{c_t}^c\}_{t\ge 0}$, $B_{c_t}^c := M - B_{c_t}$ satisfy the following;

(1) $B_{c_t}^c \subset B_{c_t}^c$, if $t \leq t'$ and

(2)
$$\bigcup_{t\geq 0} B_{c_t}^c = M.$$

From property (2), we can find a constant $t_0 > 0$ such that $B_{c_{t_0}} \supset C$. Then just as the proof of Theorem 1.2 in [1; p. 415], we can prove that B_{c_t} is totally convex for all $t > t_0$. Here a subset $A \subset M$ is called totally convex if for any two points $p, q \in A$ and for any geodesic $\beta : [0, d(p, q)] \rightarrow M$, connecting between p and q, $\beta([0, d(p, q)]) \subset A$.

Now, let D be a domain in M bounded by two rays σ and τ starting from p satisfying the following condition;

any $v \in T_p^1(M)$, $v \neq \dot{\sigma}(0)$, $v \neq \dot{\tau}(0)$ such that $\exp_p t v \in D$ for 0 < t < r(p), $v \in A(p)$.

We do not exclude the case $\sigma = \tau$ (in this case $D = M - \sigma([0, \infty))$). For these σ and τ , we apply the above argument. Let t_0 and t_1 be two numbers such that $B_{\sigma_{t_0}}^c \supset C$ and $B_{\tau_1}^c \supset C$. Then for any $t > t' := \max(t_0, t_1)$, $B_{\sigma_t}^c$ and $B_{\tau_t}^c$ are totally convex. Put $D_t := \overline{D} \cap B_{\sigma_t}^c \cap B_{\tau_t}^c$ for each t > t'. Then D_t is compact for each t > t'. For, if D_t is not compact, then there exists a divergent sequence $\{q_i\}_{i=1,2,\cdots}$ contained in D_t . Let $c_i : [0, d(p, q_i)] \rightarrow M$ be a shortest geodesic from p to q_i , $i=1, 2, \cdots$. Then $c_i([0, d(p, q_i)]) \subset B_{\sigma_t}^c \cap B_{\tau_t}^c$ for all $i=1, 2, \cdots$, because $B_{\sigma_t}^c$ and $B_{\tau_t}^c$ are totally convex. Also for $i=1, 2, \cdots$, $c_i([0, d(p, q_i)]) \subset \overline{D}$ because its boundary σ and τ are rays. Thus $c_i([0, d(p, q_i)]) \subset D_t$ for all $i=1, 2, \cdots$. Choose a convergent subsequence $\{\delta_{i_j}(0)\}_{j=1,2,\cdots} \subset \{c_i(0)\}_{i=1,2,\cdots}$ and let $v \in T_p^1(M)$ be its limit vector. Then the geodesic $c : [0, \infty) \rightarrow M$ defined by $c(t) = \exp_p tv$ is a ray which is different from σ and τ . This contradicts the definition of D. So $\{D_t\}_{t>t'}$ is a family of compact connected convex subsets of M and satisfies the following properties;

(1) $D_{t_1} \subset D_{t_2}$ if $t' < t_1 < t_2$ (2) $\bigcup_{t \leq t'} D_t = D$.

For the definition of convex set and its following properties, see [1; pp. 417-420]. From Theorem 1.6 [1; p. 418], $\partial D_t := D_t - \text{Int. } D_t$ is a connected 1-dimensional manifold (possibly non-smooth) for t > t'. We can easily see that $\sigma([0, t]) \subset B^c_{\sigma_t} \cap B^c_{\tau_t}$ and $\tau([0, t]) \subset B^c_{\sigma_t} \cap B^c_{\tau_t}$ for t > t'. So $\partial D_t - (\sigma([0, t]) \cup \tau([0, t])) =$

 $D \cap \partial(B^c_{\sigma_t} \cap B^c_{\tau_t})$ and from above construction, $D \cap \partial(B^c_{\sigma_t} \cap B^c_{\tau_t})$ is a 1-dimensional connected manifold with boundary $\{\sigma(t), \tau(t)\}$ for t > t'. Then putting $E_t := D \cap \partial(B^c_{\sigma_t} \cap B^c_{\tau_t})$, just as the proof of the Lemma in [4; p. 2], we have

Lemma 2. $\iint_D K \, dv \ge \not\leqslant_D (\dot{\sigma}(0), \, \dot{\tau}(0)) \ge 0.$

In the proof of the Lemma in [4], assumption that M is non-negatively curved is only used to show the existance of $\{E_t\}_{t>t_0}$ having certain properties which is satisfied for the familly of $\{E_t\}_{t>t'}$ obtained as above.

Proof of Theorem B. As is easily checked, Lemma 1 in §2 remains valid under the assumption of Theorem B. Thus Proposition 1 in §2 holds good under the assumption of Theorem B. Then combining this with Lemma 2, just as the proof of Theorem A, we can prove that

$$0 \leq \iint_{\mathcal{M}} K \, dv \, .$$

And in any cases, it holds

$$\iint_{\mathcal{M}} K \, dv \leq 2\pi \chi(M) = 2\pi$$

by Cohn-Vossen.

q. e. d.

References

- [1] J Cheeger and D. Gromoll: On the Structure of Complete Manifolds of Nonnegative Curvature, Ann. of Math. 96 (1972), 413-443.
- [2] S. Cohn-Vossen: Kürzeste Wege und Total krümmung auf Flächen, Compositio Math. 2 (1935), 63-133.
- [3] D. Gromoll, W. Klingenberg and W. Meyer: Riemannsche Geometrie im Grossen, Springer-Verlag, 1968.
- [4] M. Maeda: On the Existance of Rays, Sci. Rep. Yokohama National University, Sec. I, 26 (1979), 1-4.
- [5] M. Maeda: On the Total Curvature of Non-compact Riemannian Manifolds, Kodai Math. Sem. Rep. 29 (1974), 95-99.
- [6] M. Maeda: A Geometric Significance of Total Curvature on Complete Open Surfaces, Geometry of Geodesics and Related Topics, Advanced Studies in Pure Mathematics 3, Kinokuniya, Tokyo and North-Holland Publ.
- K. Shiga: On a Relation Between the Total Curvature and the Measure of Rays, Tsukuba J. Math. 6 (1982), 41-50.

Department of Mathematics Faculty of Education Yokohama National University