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1. Let M be a 2-dimensional connected complete Rigmannian manifold with
non-negative Guassian curvature K. Then by Cohn-Vossen, it was proved that
M is isometric to a flat open Mobius band or a flat cylinder or a manifold which

is diffeomorphic to an Euclidean plane and its total curvature SSMK dv satisfies

an inequality
(1) o=((- K dvz2z

where dv is the volume element of M induced from the Riemannian metric of
M. And in [5], we gave a simple proof of the inequality (1) by showing that
there exists a family of geodesic quadraterals {Q;}:-i ... each of which has
interior angles whose sum does not exeed 4r and satisfies (using the same
notation @Q; to denote the domain bounded by Q)

Q:CQi41,i=1,2,.. and ingi:M-
Then by applying the Gauss-Bonnet’s Theorem to @Q;, we have
SS Kdvzlimgg K dv=<2z.
M -0 Qi

And successively in [6], we gave another proof of the inequality (1) by giving
a geometrical significance of the total curvature. It is stated as follows.

For a point peM, let T3(M) be the subset of the tangent space T,(M) at
p of M consisting of all unit tangent vectors in T ,(M). Then with the
Riemannian metric induced from the inner product of T,(M), T3(M) is a
1-dimensional Riemannian manifold isometric to a unit circle in a 2-dimensional
Euclidean plane R* (=T ,(M)). Thus we can consider the Riemannian measure
on T4(M) and measure ThL(M)=2rx. Let A(p) be the subset of T}(M) given by

A(p) :={veTH(M): geodesic 7:[0, co)— M, r(t)=exp,tv is a ray}

where exp,: T,(M)— M is the exponential mapping of M and geodesic y:[0, o)
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— M is called a ray when any subarc of 7 is a shortest connection between its
ends points. As is easily seen, A(p) is a closed subset of T%(M) and hence we
can consider the measure of A(p). In this situation, we have proved in [4], [4], [6]
that for any point peM,

(2) SSMK dv=2m —measure A(p)

and for any >0, there exists a compact domain D such that for all point
geEM—D,

(3) SSMK dv=2nr—measure A(g)+e¢.

Thus combining (2) and (3), we have
(4) SSMK dv=27—int measure A(p).

From (2), (3) and (4), we can get a geometrical significance of the total curva-
ture. And in particular, we have the inequality

(1) OégsyK dv=2x

because measure A(p)=0.

Now the purpose of this note is to give another simple proof of the inequal-
ity (1). And from its proof, we will give a slight generalization for the result
mentioned above.

2. Let M be a 2-dimensional complete Riemannian manifold diffeomorphic to an
Euclidean plane. In the following, we use the same notations mentioned in the
above introduction. For a point pM, we assume that there exists a point
v,€TL(M) which is an interior point of A(p). Let U(v,) be an open connected
neighbourhood of v, with boundary 6U(vo)={v,, v.} satisfying U(v,)C A(p) and
Dc M where D is the domain defined by

D={ge M: q=expytv for velU(v,), t>0}.
Let f(v,) be the domain in T,(M) defined by
Dwo)={veT,(M):v=tw for weU(v,) and ¢>0}.
Then by definition of U(v,)C A(p),
exp, | U (o) : U(vy)— D

is a diffeomorphism. So we can consider a polar coordinate system (», §) on D
around p such that 0<r<co and 8,<0<8@, where 6,= hm 6(v) and 0,=lim @(v).

veU (vg) DEUz('Oo)
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Using this polar coordinates, the volume element of M is expressed as
dv=¢(r, 8)drd@ .
Since g(d/dr, d/d8)=0 because of Gauss-Lemma and g(d/dr, /or)=1,
o(r, 0)=+/g(3/0, 3/28)

where g is the Riemannian metric of M. By definition, /00 is a Jacobi field
Y along a geodesic c:[0, co)— M given by 6(c(t))=constant 4, for all >0 which
satisfy Y (0)=0, Y’(0)Lc(0) and ||Y’(0)]=1 where “’” denotes the covariant
derivative along a curve and |-|| the norm of the vectors. Thus ¢(r, 6,) is a
solution of the Jacobi equation

f”+K(r’ 00)f=0

with the initial values f(0)=0 and f’(0)=1 where K(r, 6,) is the Gaussian cur-
vature of M at point (r, §,). If we put ¢(0, §)=0 for all §<[6,, 6.], then ¢
is extended continuously for all point (r, 8), 0=r, 6,<60=<80,. For each s>0,
let D, be the domain defined by

D,={geD:0=r(g)<s and 6,=6(q)<0,}.
By definition, D,C D, if s<s’ and \J D,=D.
820

Here we put further assumption that the Gaussian curvature of M is non-
negative. Then

([, & av={ (K0, 03p(r, O)drdo
Dy 0 01 ’ ’
is a monotone non-decreasing function of s and hence

SﬁK dv=limSSD3K dv.

8—00

Now for each s=0, let @,:[f,, §,]— R be the function defined by
0.0)={ K(r, O)p(r, 0)dr, 0<[0s, 6].
Clearly each @, is a continuous function. Let @:[#,, §,]— R be the function
defined by
00)=lim 0.0) (="K, O)otr, O)ar)
for <6, 6.].

Lemma 1. @ is well defined for all 6<[0,, 6,] and 0=D(0)<1 for all
6<(4,, 6,].

Proof. Since ¢”(r, 8)+K(r, 6)p(r, 6)=0 and ¢’(0, §)=1 for all 6[6,, 0.],
it holds
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S:K(r, 8)o(r, 0)dr=——S:(p”(r, 0)dr

=¢'(0, )—¢'(s, 6)
=1—g’(s, 0).

And also ¢”(r, 0)=—K(r, 8)p(r, 6)=0 for all »=0. Because ¢(r, §)>0 for all
r>0. For, if ¢(ro, §)=0 for some r,>0, then the point (r,, #) is a conjugate
point of p along the geodesic c¢: §=constant. This is a contradiction. Thus
¢’'(r, 8) is monotone non-decreasing with respect to ». Hence if there exists
r’>0 such that ¢’(»’, )<0, then ¢’(r, 8)<¢’(r’, 8)<0 for all »=r’. So we can
find >0 such that ¢(», )=0. This is a contradiction. Thus 0=¢’(r, §)<1 for
all »=0 and hence 1£r£(1—¢’(r, 0)) exists for each 8<[8,, 6,]. q. e. d.

From above lemma, for any s>0, it holds

{§,x dvz-S::S:K(r, 0)p(r, 6)drd6
=[, 0010

gg"”cb(a)dogez—el.
0,

So, since SD K dv is monotone non-decreasing function of s, there exists the
3

limit and

§—co

Oélimggp K dv=SSﬁK dv=6,—90,.
Summarizing the above, we have

Proposition 1. Let M be a 2-dimensional complete connected Riemannian
manifold with non-negative Gaussian curvature K. For a point pcM, let U be
a connected domain in A(p) and D the domain in M defined by

D={qeM: g=exp,tv for velU and t>0}.
Then it holds

Ogsgl_)K dvZ=measure U=< v, w),

where {v, w}=0U and L p(v, w) denotes the interior angle between the vectors v
and w measured on D.

Now let WCM,—A(p) be a connected component and v, wET},(M) the
boundary of W. Since A(p) is closed, W is open and hence v, we A(p). Let 7,
and 7, are two rays defined by r,(t)=exp,tv and 7,(t)=exp,tw. Then, by geo-
desic 7;°72:(—o0, 00)— M defined by
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Tl(’_t> » téo

1°7:(t)=
r T { TZ(t) y t>07

M is devided into two mutually disjoint domaines D, and D, i.e. D,\UD,=M,
DiNDy=@ and 0D,=0Dy=y,°y,((—o0, o0)). Without loss of generality, we can
assume that D, is the domain satisfying

{ge M: g=exp,tv’, v eW, 0<t=r(p)}CD,
where »(p) is the convexity radius of p. Then in [6], we proved the following

Proposition 2. In the above situation, it holds
SSﬁ K dv=measure w=<p,(v, w).
1

Let DCM be a domain whose boundary @D is an union of the images
of two rays ¢, and ¢, starting from p i.e. dD=a,([0, 00))Ua4([0, o)) and
D,CTL(M) the set defined by

D,={v'eTLM): exp,tv'eD for 0<t=r(p)}.

Then measure D,=<5(6,(0), 65(0)) and D, is the union of closed connected
domaines {U,},cs and {Ws} ses which satisfy the following conditions;

(i) U.CA(p)N\D, is open and U, is a connected component of A(p)N\D,
for each ac A
(ii) Wg(M—A(p))ND, is open and Wy is a connected component of
(M—A(p))N\D, for each BB
(i) {Ua}aca and {Wg}sep are mutually disjoint, because A(p)CTH(M) is
closed.
For each U,, ac A, let D, be the domain in M defined by

D,={qeM: g=exp,tv for velU, and t>0}.
Then from it holds

(5) Ogsg_ K dv=measure U,=<p,(Va, Wa) -

a

Here {v,, wa}=0U,. And for each W;, BB, let Dy be the domain bounded
by two rays 7, and 7, defined by 7,(t)=exp,tv’ and r.(t)=exp,tw’ where oW
={v}, wp} and satisfy

{geM: g=exp,tv for veW, and 0<t<r(p)}CDj.
Then from it holds
(6) 0§SS_ K dv=measure D=-Lp,(vh, w}).

D8
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By definition, {D.}sc4 and {Dj}scp are mutually disjoint and q9) E“)U(p\e{g D%)
=D. So if we put D,:= \) D, and D,:=\ Dj, then we have

(7) SSEIK dv= .EA measure (U,),
(8) SgﬁzK dv§ﬂ§8 measure (W)

and a%)A measure (U “)+p§3 measure (Wg)=measure (D,)=<p(d,(0), 65(0)). Thus

summarizing the above, we have

Theorem A. Let M be a 2-dimensional complete Riemannian manifold with
non-negative Gaussian curvature K diffeomorphic to an Euclidean plane. Let D
be a domain in M bounded by two rays e, and a,. Then it holds

ogSS_K dv=Ln(61(0), 35(0)).
D

This theorem is a generalization of the result obtained by Cohn-Vossen.
Indeed from above theorem, we have

Corollary. Let M be a 2-dimensional complete Riemannian manifold with

non-negative Gaussian curvature K diffeomorphic to an Euclidean plane. Then it
holds

ogSSMK dv<2z .

Proof. From Lemma 1 in [5; p. 96], there exists a point p&M such that
there exists at least two rays ¢, and ¢, starting from p. Then by the geodesic
01203 (—o0, c0)—> M, M is devided into two mutually disjoint domains D, and
D, whose boundary 9D,=dD, equals ¢,°0,((—o0, 0)). For these D; ;... from
above theorem we have

[, K 4= %0,00:0), 340, i=1, 2.
Thus

] & av={ 5K dv+ (|, K dv

= Xp,(61(0), ¢2(0)+<p,(61(0), 65(0))
=2r . q.e. d.

3. In this section, we will give another generalization of the result by Cohn-

Vossen (Corollary| of Theorem A in §2).

Proposition 3. Let M be a 2-dimensional complete Riemannian manifold.
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Then the Gaussian curvature K of M is non-negative if and only if the following
condition (*) holds

(*) for any point pe M and any geodesic y:[0, o0)— M starting from p, any
Jacobi field Y along v with initial values Y (0)=0, Y’(0).17(0) satisfies
1Y’ (OI=1Y7 )

as long as y has no conjugate point of p in (0, s).

Proof. If K=0, then by a proof of Rauch’s comparison theorem, we easily
see that the condition (*) holds, see [3; pp. 178~]. Conversely under the con-
dition (*), we assume that there exist a point p=M such that K(p)<0. Let
0 :[0, c0)— M be a geodesic starting from p and Y a Jacobi field along ¢ satis-
fying Y(0)=0, Y’(0)L4(0). Then Y is expressed as Y=¢P where P is a
parallel vector field along ¢ satisfying P(0)=Y"(0)/|Y’(0)]| and ¢:[0, c0)—R is
a C= solution of the Jacobi equation ©”(s)+K(a(s)p(s)=0 with initial values
¢(0)=0, ¢’(0)=]|Y’(0)]. By continuity, we can find a constant s, such that

K-a][0, 1<0 and ¢|[0, sn=0. Thus | K(a(sNg(s)ds is negative. On the

other hand, by definition of ¢, we have
S:oK(a(s))go(s)ds=——S:oga”(s)ds

=¢’(0)—¢’(s0)
=Y O —11Y'(s)]|20.
And this is a contradiction. q. e d.

Noticing this proposition, we will extend the result by Cohn-Vossen slightly
in a following manner.

Theorem B. Let M be a complete Riemannian manifold dzﬁ’eomorphzc to an
Euclidean plane and satisfies the following two conditions;

(i) Gaussian curvature K of M is non-negative outside some compact subset
Cof M

(i) there exists a point p=M such that for any geodesic t: [0 o) M
starting from p, any Jacobi field Y along y with initial values Y (0)=0,
Y’(0) L 7(0) satisfies

1Y’ (=Y
as long as y has no conjugate points of p in (0, s).
Then it holds
o=(| K dvs2z
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For a while, we assume that M satisfies the condition (i) only. For a ray
¢: [0, co)— M starting from p, put

B.:=\J Bu(c(t)

where B,(g) denotes the open geodesic ball with radius »=0 centerd at geM.
For a t=0, let ¢.: [0, co)— M be a ray defined by c,(s)=c(t+s). Then we can
easily check that the family of sets {B¢,} .0, B¢,:=M—B,, satisfy the following;

() Bg,CBg, if t<t’ and
@ \JBg=M.

From property (2), we can find a constant #,>0 such that Bg,o:)C. Then
just as the proof of Theorem 1.2 in [1; p. 415], we can prove that B, is totally
convex for all t>t,, Here a subset ACM is called totally convex if for any
two points p, g A and for any geodesic §: [0, d(p, ¢)]— M, connecting between
p and ¢, B([O, d(p, 9 A.

Now, let D be a domain in M bounded by two rays ¢ and t starting from
p satisfying the following condition ;

any veTL(M), v+#4(0), v##(0) such that exp,tveD for 0<t<r(p), ve
A(p).

We do not exclude the case =t (in this case D=M—g([0, 0))). For these
¢ and v, we apply the above argument. Let ¢, and ¢, be two numbers such
that BS,ODC and th:JC. Then for any t>t':=max(t, t,), B, and B:, are
totally convex. Put D, :=17ntan$, for each ¢t>¢’. Then D, is compact for
each t>¢’. For, if D, is not compact, then there exists a divergent sequence
{g¢} =1, ¢,... contained in D,. Let c;:[0, d(p, ¢;)]— M be a shortest geodesic from
p to gq; i=1,2, ---. Then ¢«([0, d(p, g.))) BN B¢, for all i=1, 2, ---, because
Bg, and B, are totally convex. Also for i=1, 2, -, ¢«([0, d(p, ¢)1)CD because
its boundary ¢ and 7 are rays. Thus ¢,([0, d(p, ¢,)])CD, for all /=1, 2, ---.
Choose a convergent subsequence {¢:,(0)} =1,2,..C{¢{(0)}i=1,»,.. and let veTL(M)
be its limit vector. Then the geodesic c:[0, co)— M defined by c(t)=exp,tv is
a ray which is different from ¢ and z. This contradicts the definition of D.
So {D:}>e is a family of compact connected convex subsets of M and satisfies
the following properties;

(1) D, CD,, if t’<t;<t,
(2) t\>JUD;=D.

For the definition of convex set and its following properties, see [1; pp. 417-
420]. From Theorem 1.6 [1; p. 418], 0D, :=D,—Int. D, is a connected 1-dimen-
sional manifold (possibly non-smooth) for ¢>t’. We can easily see that ¢([0, t])
CB;,NB:, and ([0, tDCB;,NB:, for t>t’. So aD,—(a([0, t])Uz([O, t1)=
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DNa(B;,NB¢,) and from above construction, DN3(BS,NBE,) is a 1-dimensional
connected manifold with boundary {¢(?), z(¢)} for ¢>t’. Then putting E,:=
DNa(B;,NB¢,), just as the proof of the Lemma in [4; p. 2], we have

Lemma 2. SSDK dv=Lp(6(0), £(0))=0.

In the proof of the Lemma in [4], assumption that M is non-negatively
curved is only used to show the existance of {E;},>;, having certain properties
which is satisfied for the familly of {E,},>, obtained as above.

Proof of As is easily checked, in § 2 remains valid
under the assumption of Thus in §2 holds good under
the assumption of Theorem B. Then combining this with just as the
proof of Theorem A, we can prove that

o=({ Kav.
And in any cases, it holds

SSMK dv<27UM)=2x

by Cohn-Vossen. q. e. d.
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