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1. Let $M$ be a 2-dimensional connected complete Riemannian manifold with
non-negative Guassian curvature $K$. Then by Cohn-Vossen, it was proved that
$M$ is isometric to a flat open M\"obius band or a flat cylinder or a manifold which

is diffeomorphic to an Euclidean plane and its total curvature $\int\int_{H}Kdv$ satisfies

an inequality

(1) $ 0\leqq\int\int_{H}Kdv\leqq 2\pi$

where $dv$ is the volume element of $M$ induced from the Riemannian metric of
$M$. And in [5], we gave a simple proof of the inequality (1) by showing that
there exists a family of geodesic quadraterals $\{Q_{i}\}_{i=1}.’\ldots$ . each of which has
interior angles whose sum does not exeed $ 4\pi$ and satisfies (using the same
notation $Q_{i}$ to denote the domain bounded by $Q_{i}$ )

$ Q_{i}\subset Q_{i+1.:=1.2}\ldots$ . and $\bigcup_{i=1}^{\infty}Q_{i}=M$ .

Then by applying the Gauss-Bonnet’s Theorem to $Q_{i}$ , we have

$\int\int_{H}Kdv=\lim_{i\rightarrow\infty}\int\int_{Q_{i}}Kdv\leqq 2\pi$ .

And successively in [6], we gave another proof of the inequality (1) by giving
a geometrical significance of the total curvature. It is stated as follows.

For a point $p\in M$, let $T_{p}^{1}(M)$ be the subset of the tangent space $T_{p}(M)$ at
$P$ of $M$ consisting of all unit tangent vectors in $T_{p}(M)$ . Then with the
Riemannian metric induced from the inner product of $T_{p}(M)$ , $T_{p}^{1}(M)$ is a
l-dimensional Riemannian manifold isometric to a unit circle in a 2-dimensional
Euclidean plane $R^{2}(\cong T_{p}(M))$ . Thus we can consider the Riemannian measure
on $T_{p}^{1}(M)$ and measure $ T_{p}^{1}(M)=2\pi$ . Let $A(p)$ be the subset of $T_{p}^{1}(M)$ given by

$A(p):=$ { $v\in T_{p}^{1}(M)$ : geodesic 7: $[0,$ $\infty)\rightarrow M,$ $\gamma(t)=\exp_{p}tv$ is a ray}

where exp$p:T_{p}(M)\rightarrow M$ is the exponential mapping of $M$ and geodesic $\gamma:[0, \infty$ )
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$\rightarrow M$ is called a ray when any subarc of $\gamma$ is a shortest connection between its

ends points. As is easily seen, $A(p)$ is a closed subset of $T_{p}^{1}(M)$ and hence we
can consider the measure of $A(P)$ . In this situation, we have proved in [4], [6]

that for any point $p\in M$,

(2) $\int\int_{H}Kdv\geqq 2\pi$ –measure $A(p)$

and for any $\epsilon>0$ , there exists a compact domain $D$ such that for all point
$q\in M-D$ ,

(3) $\int\int_{H}Kdv\leqq 2\pi$ –measure $ A(q)+\epsilon$ .

Thus combining (2) and (3), we have

(4) $\int\int_{H}Kdv=2\pi-\inf_{p\in H}$ measure $A(P)$ .

From (2), (3) and (4), we can get a geometrical significance of the total curva-
ture. And in particular, we have the inequality

(1) $ 0\leqq\int\int_{H}Kdv\leqq 2\pi$ ,

because measure $A(p)\geqq 0$.
Now the purpose of this note is to give another simple $prf$ of the inequal-

ity (1). And from its proof, we will give a slight generalization for the result

mentioned above.

2. Let $M$ be a 2-dimensional complete Riemannian manifold $diffmorphic$ to an
Euclidean plane. In the following, we use the same notations mentioned in the
above introduction. For a point $p\in M$, we assume that there exists a point
$v_{0}\in T_{p}^{1}(M)$ which is an interior point of $A(p)$ . Let $U(v_{0})$ be an open connected
neighbourhood of $v_{0}$ with boundary $\partial U(v_{0})=\{v_{1}, v_{2}\}$ satisfying $U(v_{0})\subset A(p)$ and
$D\subset M$ where $D$ is the domain deflned by

$D=$ {$q\in M:q=\exp_{p}tv$ for $v\in U(v_{0}),$ $t>0$}.

Let $O(v_{0})$ be the domain in $T_{p}(M)$ defined by

$0(v_{0})=$ { $v\in T_{p}(M):v=tw$ for $w\in U(v_{0})$ and $f>0$}.

Then by deflnition of $U(v_{0})\subset A(p)$ ,

exp $p|O(v_{0}):O(v_{0})\rightarrow D$

is a diffeomorphism. So we can consider a polar coordinate system $(r, \theta)$ on $D$

around $p$ such that $ 0<r<\infty$ and $\theta_{1}<\theta<\theta_{2}$ where
$\theta_{1}=\lim_{v\rightarrow v}\theta(v)v\in U^{1}(v_{0)}$

and
$\theta_{2}=\lim_{v\in}\theta(v)\rightarrow ff_{(v_{0})}$
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Usin$g$ this polar coordinates, the volume element of $M$ is expressed as
$ dv=\varphi(r, \theta)drd\theta$ .

Since $g(\partial/\partial r, \partial/\partial\theta)=0$ because of Gauss-Lemma and $g(\partial/\partial r, \partial/\partial r)=1$ ,

$\varphi(r, \theta)=\sqrt{g(\partial/\partial\theta,\partial/\partial\theta)}$

where $g$ is the Riemannian metric of $M$. By definition, $\partial/\partial\theta$ is a Jacobi field
$Y$ along a geodesic $ c:[0, \infty$ ) $\rightarrow M$ given by $\theta(c(t))=constant\theta_{0}$ for all $t>0$ which
satisfy $Y(O)=0,$ $Y^{\prime}(O)\perp c(O)$ and $\Vert Y^{\prime}(0)\Vert=1$ where “ $j$ denotes the covariant
derivative along a curve and $\Vert\cdot\Vert$ the norm of the vectors. Thus $\varphi(r, \theta_{0})$ is a
solution of the Jacobi equation

$f^{\prime\prime}+K(r, \theta_{0})f=0$

with the initial values $f(O)=0$ and $f^{\prime}(0)=1$ where $K(r, \theta_{0})$ is the Gaussian cur-
vature of $M$ at point $(r, \theta_{0})$ . If we put $\varphi(0, \theta)=0$ for all $\theta\in[\theta_{1}, \theta_{2}]$ , then $\varphi$

is extended continuously for all point $(r, \theta),$ $0\leqq r,$ $\theta_{1}\leqq\theta\leqq\theta_{2}$ . For each $s>0$,
let $D_{\iota}$ be the domain defined by

$D_{s}=$ { $q\in\prod:0\leqq r(q)\leqq s$ and $\theta_{1}\leqq\theta(q)\leqq\theta_{2}$ }.

By definition, $D_{s}\subset D_{s^{\prime}}$ if $s\leqq s^{\prime}$ and $\bigcup_{\epsilon\geqq 0}D_{\epsilon}=\overline{D}$.
Here we put further assumption that the Gaussian curvature of $M$ is non-

negative. Then

$\int\int_{D_{\theta}}Kdv=\int_{0}^{l}\int_{\theta_{1}}^{\theta_{2}}K(r, \theta)\varphi(r, \theta)drd\theta$

is a monotone non-decreasing function of $s$ and hence

$\int_{E}Kdv=\lim_{\iota\rightarrow\infty}\int\int_{D_{l}}Kdv$ .
Now for each $s\geqq 0$, let $\Phi_{s}$ : $[\theta_{1}, \theta_{2}]\rightarrow R$ be the function defined by

$\Phi_{s}(\theta)=\int_{0}^{s}K(r, \theta)\varphi(r, \theta)dr$ , $\theta\in[\theta_{1}, \theta_{2}]$ .
Clearly each $\Phi_{s}$ is a continuous function. Let $\Phi:[\theta_{1}, \theta_{2}]\rightarrow R$ be the function
defined by

$\Phi(\theta)=\lim_{s\rightarrow\infty}\Phi_{s}(\theta)$
$(=\int_{0}^{\infty}K(r, \theta)\varphi(r, \theta)dr)$

for $\theta\in[\theta_{1}, \theta_{2}]$ .
Lemma 1. $\Phi$ is well defined for all $\theta\in[\theta_{1}, \theta_{l}]$ and $0\leqq\Phi(\theta)\leqq 1$ for all

$\theta\in[\theta_{1}, \theta_{2}]$ .
Proof. Since $\varphi^{\prime\prime}(r, \theta)+K(r, \theta)\varphi(r, \theta)=0$ and $\varphi^{\prime}(0, \theta)=1$ for all $\theta\in[\theta_{1}, \theta_{f}]$ ,

it holds
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$\int_{0}^{s}K(r, \theta)\varphi(r, \theta)dr=-\int_{0}^{s}\varphi^{\prime}(r, \theta)dr$

$=\varphi^{\prime}(0, \theta)-\varphi^{\prime}(s, \theta)$

$=1-\varphi^{\prime}(s, \theta)$ .
And also $\varphi^{\prime}(r, \theta)=-K(r, \theta)\varphi(r, \theta)\leqq 0$ for all $r\geqq 0$ . Because $\varphi(r, \theta)>0$ for all
$r>0$ . For, if $\varphi(r_{0}, \theta)=0$ for some $r_{0}>0$ , then the point $(r_{0}, \theta)$ is a conjugate
point of $P$ along the geodesic $c;\theta=constant$ . This is a contradiction. Thus
$\varphi^{\prime}(r, \theta)$ is monotone non-decreasing with respect to $r$. Hence if there exists
$r^{\prime}>0$ such that $\varphi^{\prime}(r^{\prime}, \theta)<0$, then $\varphi^{\prime}(r, \theta)\leqq\varphi^{\prime}(r^{\prime}, \theta)<0$ for all $r\geqq r^{\prime}$ . So we can
find $r>0$ such that $\varphi(r, \theta)=0$ . This is a contradiction. Thus $0\leqq\varphi^{\prime}(r, \theta)\leqq 1$ for
all $r\geqq 0$ and hence $\lim_{r\rightarrow\infty}(1-\varphi^{\prime}(r, \theta))$ exists for each $\theta\in[\theta_{1}, \theta_{2}]$ . $q$ . $e$ . $d$ .

From above lemma, for any $s>0$ , it holds

$\int\int_{D_{S}}Kdv=\int_{\theta_{1}}^{\theta_{t}}\int_{0}^{s}K(r, \theta)\varphi(r, \theta)drd\theta$

$=\int_{\theta_{1}}^{\theta_{2}}\Phi_{s}(\theta)d\theta$

$\leqq\int_{\theta_{1}}^{\theta_{2}}\Phi(\theta)d\theta\leqq\theta_{2}-\theta_{1}$ .
So, since $\int_{D_{\delta}}Kdv$ is monotone non-decreasing function of $s$ , there exists the

limit and
$0\leqq\lim_{s\rightarrow\infty}\int\int_{D_{S}}Kdv=\int\int_{D}Kdv\leqq\theta_{2}-\theta_{1}$ .

Summarizing the above, we have

Proposition 1. Let $M$ be a 2-dimensional complete connected Riemannian
manifold with non-negative Gaussian curvature K. For a point $p\in M$, let $U$ be
a connected domain in $A(P)$ and $D$ the domain in $M$ defined by

$D=$ {$q\in M:q=\exp_{p}tv$ for $v\in U$ and $t>0$}.
Then it holds

$0\leqq\int\int_{\overline{D}}Kdv\leqq measureU=<X_{D}(v, w)$ ,

where $\{v, w\}=\partial U$ $and<X_{D}(v, w)$ denotes the interior angle between the veclors $v$

and $w$ measured on $D$ .
Now let $W\subset M_{p}-A(p)$ be a connected component and $v,$ $w\in T_{p}^{1}(M)$ the

boundary of $W$ . Since $A(p)$ is closed, $W$ is open and hence $v,$ $w\in A(p)$ . Let $\gamma_{1}$

and $\gamma_{2}$ are two rays defined by $\gamma_{1}(t)=\exp_{p}tv$ and $\gamma_{2}(t)=\exp_{p}tw$ . Then, by geo-
desic $\gamma_{1^{\circ}}\gamma_{2}$ : $(-\infty, \infty)\rightarrow M$ defined by
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$\gamma_{1}\circ\gamma_{2}(t)=\left\{\begin{array}{ll}\gamma_{1}(-t), & t\leqq 0\\\gamma_{2}(t), & t>0,\end{array}\right.$

$M$ is devided into two mutually disjoint domaines $D_{1}$ and $D_{2}i$ . $e.\overline{D}_{1}\cup\overline{D}_{2}=M$,
$ D_{1}\cap D_{2}=\emptyset$ and $\partial D_{1}=\partial D_{2}=\gamma_{1^{o}}\gamma_{2}((-\infty, \infty))$ . Without loss of generality, we can
assume that $D_{1}$ is the domain satisfying

$\{q\in M:q=\exp_{p}tv^{\prime}, v^{\prime}\in W, 0<t\leqq r(P)\}\subset D_{1}$

where $r(P)$ is the convexity radius of $p$ . Then in [6], we proved the following

Proposition 2. In the above situation, it holds

$\int\int_{D_{1}}Kdv=measurew=<X_{D_{1}}(v, w)$ .

Let $D\subset M$ be a domain whose boundary $\partial D$ is an union of the images
of two rays $\sigma_{1}$ and $\sigma_{2}$ starting from $pi$ . $e$ . $\partial D=\sigma_{1}([0, \infty))\cup\sigma_{2}([0, \infty))$ and
$D_{p}\subset T_{p}^{1}(M)$ the set deflned by

$D_{p}=$ { $v^{\prime}\in T_{p}^{1}(M)$ : exp $ptv^{\prime}\in\overline{D}$ for $0\leqq t\leqq r(p)$ }.

Then measure $D_{p}=4_{D}(\delta_{1}(0),\dot{\sigma}_{2}(0))$ and $D_{p}$ is the union of closed connected
domaines $\{\overline{U}_{\alpha}\}_{a\in A}$ and $\{\overline{W}_{\beta}\}_{\beta\in B}$ which satisfy the following conditions;

(i) $U_{a}\subset A(p)\cap D_{p}$ is open and $U_{\alpha}$ is a connected component of $A(p)\cap D_{p}$

for each $\alpha\in A$

(ii) $W_{\beta}\subset(M-A(p))\cap D_{p}$ is open and $W_{\beta}$ is a connected component of
$(M-A(p))\cap D_{p}$ for each $\beta\in B$

(iii) $\{U_{\alpha}\}_{\alpha\in A}$ and $\{W_{\beta}\}_{\beta\in B}$ are mutually disjoint, because $A(p)\subset T_{p}^{1}(M)$ is
closed.

For each $U_{\alpha},$ $\alpha\in A$ , let $D_{a}$ be the domain in $M$ defined by

$D_{\alpha}=$ { $q\in M:q=\exp_{p}tv$ for $v\in U_{\alpha}$ and $t>0$}.

Then from Proposition 1, it holds

(5) $0\leqq\int\int_{\overline{D}_{a}}Kdv\leqq measureU_{a}=<X_{D_{a}}(v_{a}, w_{\alpha})$ .

Here $\{v_{\alpha}, w_{a}\}=\partial U_{a}$ . And for each $W_{\beta},$ $\beta\in B$ , let $D_{\beta}^{\prime}$ be the domain bounded
by two rays $\gamma_{1}$ and $\gamma_{2}$ defined by $\gamma_{1}(t)=\exp_{p}tv^{\prime}$ and $\gamma_{2}(t)=\exp_{p}tw^{\prime}$ where $\partial W_{\beta}$

$=\{v_{\beta}^{\prime}, w_{\beta}^{\prime}\}$ and satisfy

{$q\in M:q=\exp_{p}tv$ for $v\in W_{\beta}$ and $0<t<r(p)$ } $\subset D_{\beta}^{\prime}$ .
Then from Proposition 2, it holds

(6) $0\leqq\int\int_{\overline{D}_{\beta}^{\prime}}Kdv=measure\overline{D}_{\beta}^{\prime}=<X_{D_{\beta}^{\prime}}(v_{\beta}^{\prime}, w_{\beta}^{\prime})$ .
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By definition, $\{D_{a}\}_{a\in A}$ and $\{D_{\beta}^{\prime}\}_{\beta\in B}$ are mutually disjoint and $(\bigcup_{\alpha\in A}\overline{D}_{\alpha})\cup(\bigcup_{\in B}E_{\beta}^{\prime})\rho$

$=\overline{D}$. So if we put $D_{1}$
$:=\bigcup_{\alpha\in A}D_{a}$ and $D_{2}:=_{\beta}\bigcup_{\in B}D_{\beta}^{\prime}$ , then we have

(7) $\int\int_{\overline{D}_{1}}Kdv=\sum_{\alpha\in A}$ measure $(U_{\alpha})$ ,

(8) $\int\int_{B_{2}}Kdv\leqq\sum_{\beta\in B}$ measure $(W_{\beta})$

and $\sum_{\alpha\in A}$ measure $(U_{\alpha})+\sum_{\beta\in B}$ measure $(W_{\beta})=measure(D_{p})=<X_{D}(t_{1}(0), \delta_{2}(0))$ . Thus

summarizing the above, we have

Theorem A. Let $M$ be a 2-dimensional complete Riemannian manifold with
non-negative Gaussian curvature $K$ diffeomorphic to an Euclidean plane. Let $D$

be a domain in $M$ bounded by two rays $\sigma_{1}$ and $\sigma_{2}$ . Then it holds

$0\leqq\int\int_{\overline{D}}Kdv\leqq f_{D}(\delta_{1}(0), \delta_{2}(0))$ .

This theorem is a generalization of the result obtained by Cohn-Vossen.
Indeed from above theorem, we have

Corollary. Let $M$ be a 2-dimensional complete Riemannian manifold with
non-negative Gaussian curvature $K$ diffeomorPhic to an Euclidean plane. Then it
holds

$ 0\leqq\int\int_{H}Kdv\leqq 2\pi$ .

Proof. From Lemma 1 in [5; p. 96], there exists a point $p\in M$ such that
there exists at least two rays $\sigma_{1}$ and $\sigma_{2}$ starting from $p$ . Then by the geodesic
$\sigma_{1}\circ\sigma_{2}$ : $(-\infty, \infty)\rightarrow M,$ $M$ is devided into two mutually disjoint domains $D_{1}$ and
$D_{2}$ whose boundary $\partial D_{1}=\partial D_{2}$ equals $\sigma_{1^{Q}}\sigma_{2}((-\infty, \infty))$ . For these $D_{i.\ell=1.2}$ , from
above theorem we have

$\int\int_{\overline{D}_{t}}Kdv\leqq 4_{D_{i}}(\delta_{1}(0), \delta_{2}(0))$ , $i=1,2$ .
Thus

$\int\int_{H}Kdv=\int\int_{\overline{D}_{1}}Kdv+\int\int_{\overline{D}_{2}}Kdv$

$\leqq<X_{D_{1}}(\delta_{1}(0), \delta_{2}(0))+<X_{D_{2}}(\delta_{1}(0), \delta_{2}(0))$

$=2\pi$ . $q$ . $e$. $d$ .

3. In this section, we will give another generalization of the result by Cohn-
Vossen (Corollary of Theorem A in \S 2).

Proposition 3. Let $M$ be a 2-dimensional complete Riemannian manifold.
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Then the Gaussian curvature $K$ of $M$ is non-negative if and only if the following
condition $(^{*})$ holds

$(*)$ for any point $p\in M$ and any geodesic $\gamma:[0, \infty$ ) $\rightarrow M$ starting from $p$ , any
Jacobi field $Y$ along 7 with initial values $Y(O)=0,$ $Y^{\prime}(0)\perp\dot{\gamma}(0)$ satisfies

$\Vert Y^{\prime}(s)\Vert\leqq\Vert Y^{\prime}(0)\Vert$

as long as 7 has no conjugate point of $p$ in $(0, s)$ .
Proof. If $K\geqq 0$, then by a proof of Rauch’s comparison theorem, we easily

see that the condition $(*)$ holds, see [3; pp. $ 178\sim$]. ConverseIy under the con-
dition $(^{*})$ , we assume that there exist a point $p\in M$ such that $K(p)<0$ . Let
$\sigma:[0, \infty)\rightarrow M$ be a geodesic starting from $P$ and $Y$ a Jacobi field aIong $\sigma$ satis-
fying $Y(O)=0$, $1^{\prime\prime}(0)\perp\delta(0)$ . Then $Y$ is expressed as $Y=\varphi P$ where $P$ is a
parallel vector field along $\sigma$ satisfying $ P(O)=Y^{\prime}(O)/\Vert Y^{\prime}(0)\Vert$ and $\varphi:[0, \infty$ ) $\rightarrow R$ is
a $C^{\infty}$ solution of the Jacobi equation $\varphi^{\prime\prime}(s)+K(\sigma(s)\varphi(s)=0$ with initial values
$\varphi(0)=0,$ $\varphi^{\prime}(0)=\Vert Y^{\prime}(0)\Vert$ . By continuity, we can flnd a constant $s_{0}$ such that
$K\circ a|[0, s_{0}]<0$ and $\varphi|[0, s_{0}$) $\geqq 0$ . Thus $\int_{0}^{s_{0}}K(\sigma(s))\varphi(s)ds$ is negative. On the

other hand, by definition of $\varphi$ , we have

$\int_{0}^{\epsilon_{0}}K(\sigma(s))\varphi(s)ds=-\int_{0}^{\iota_{0}}\varphi^{\prime\prime}(s)ds$

$=\varphi^{\prime}(0)-\varphi^{\prime}(s_{0})$

$=\Vert Y^{\prime}(0)\Vert-\Vert Y^{\prime}(s_{0})\Vert\geqq 0$ .
And this is a contradiction. $q$ . $e$. $d$ .

Noticing this Proposition, we will extend the result by Cohn-Vossen slightly
in a following manner.

Theorem B. Let $M$ be a complete Riemannian manifold diffeomorphic to an
Euclidean plane and satisfies the following two conditions;

(i) Gaussian curvature $K$ of $M$ is non-negative outside some compact subset
$C$ of $M$

(ii) there exists a point $p\in M$ such that for any geodesic $\gamma:[0, \infty$ ) $\rightarrow M$

starting from $p$ , any Jacobi field $Y$ along 7 with initial values $Y(O)=0$,
$Y^{\prime}(0)\perp\dot{\gamma}(0)$ satisfies

$\Vert Y^{\prime}(s)||\leqq\Vert Y^{\prime}(0)\Vert$

as long as 7 has no conjugate points of $p$ in $(0, s)$ .
Then it holds

$ 0\leqq\int\int_{H}Kdv\leqq 2\pi$
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For a while, we assume that $M$ satisfies the condition (i) only. For a ray
$c:[0, \infty)\rightarrow M$ starting from $p$ , put

$B_{\epsilon}$

$:=\bigcup_{\geqq 0}B_{t}(c(t))$

where $B_{r}(q)$ denotes the open geodesic ball with radius $r\geqq 0$ centerd at $q\in M$.
For a $t\geqq 0$, let $c_{t}$ : $[0, \infty$ ) $\rightarrow M$ be a ray defined by $c_{t}(s)=c(t+s)$ . Then we can
easily check that the family of sets $\{B_{c_{t}}^{c}\}_{t\geqq 0},$ $B_{c_{t}}^{c}$ $:=M-B_{c_{t}}$ satisfy the following;

(1) $B_{c_{t}}^{c}\subset B_{c_{t}}^{c}$, if $t\leqq t^{\prime}$ and
(2) $\bigcup_{\iota\geqq 0}B_{c_{t}}^{c}=M$.

From property (2), we can find a constant $t_{0}>0$ such that $B_{c_{t_{0}}}^{c}\supset C$ . Then
just as the proof of Theorem 1.2 in [1; p. 415], we can prove that $B_{\epsilon_{t}}$ is totally
convex for all $t>t_{0}$ . Here a subset $A\subset M$ is called totally convex if for any
two points $p,$ $q\in A$ and for any geodesic $\beta:[0, d(p, q)]\rightarrow M$, connecting between
$p$ and $q,$ $\beta([0, d(p, q)])\subset A$ .

Now, let $D$ be a domain in $M$ bounded by two rays $\sigma$ and $\tau$ starting from
$P$ satisfying the following condition;

any $v\in T_{p}^{1}(M)$ , $v\neq\delta(O)$ , $v\neq\dot{\tau}(0)$ such that exp$ptv\in D$ for $0<t<r(P),$ $ v\not\in$

$A(p)$ .
We do not exclude the case $\sigma=\tau$ (in this case $D=M-\sigma([0,$ $\infty)$)). For these

$\sigma$ and $\tau$, we apply the above argument. Let $t_{0}$ and $t_{1}$ be two numbers such
that $B_{\sigma\ell_{0}}^{\iota}\supset C$ and $B_{\tau_{t_{1}}}^{c}\supset C$. Then for any $t>t^{\prime}$ $:=\max(t_{0}, t_{1})$ , $B_{\sigma_{t}}^{c}$ and $B_{r_{t}}^{c}$ are
totally convex. Put $D_{t}$ $:=\overline{D}\cap B_{\sigma_{t}}^{c}\cap B_{\tau_{t}}^{c}$ for each $t>t^{\prime}$ . Then $D_{t}$ is compact for
each $t>l^{\prime}$ . For, if $D_{t}$ is not compact, then there exists a divergent sequence
$\{q_{\ell}\}_{\ell=1.2}\ldots$ . contained in $D_{t}$ . Let $c_{i}$ : $[0, d(p, q_{i})]\rightarrow M$ be a shortest geodesic from
$p$ to $q_{\ell},$ $i=1,2,$ $\cdots$ Then $c_{i}([0, d(p, q_{i})])\subset B_{\sigma_{b}}^{c}\cap B_{\tau_{t}}^{c}$ for all $i=1,2,$ $\cdots$ , because
$B_{\sigma_{t}}^{c}$ and $B_{f}^{c}t$ are totally convex. Also for $i=1,2,$ $\cdots$ , $c_{\ell}([0, d(p, q_{\ell})])\subset\overline{D}$ because
its boundary $\sigma$ and $\tau$ are rays. Thus $c_{i}([0, d(p, q_{i})])\subset D_{t}$ for all $ i=1,2_{;}\ldots$

Choose a convergent subsequence $\{\delta:_{f}(0)\}_{j\Rightarrow 1.2},\cdots\subset\{\delta_{i}(0)\}_{i=1.2}\ldots$ . and let $v\in T_{p}^{1}(M)$

be its limit vector. Then the $gdesicc:[0, \infty$ ) $\rightarrow M$ defined by $c(t)=\exp_{p}fv$ is
a ray which is different from $\sigma$ and $\tau$ . This contradicts the dePnition of $D$ .
So $\{D_{\ell}\}_{\ell>\iota^{\prime}}$ is a family of compact connected convex subsets of $M$ and satisfies
the following properties;

(1) $D_{t_{1}}\subset D_{t_{2}}$ if $t^{\prime}<t_{1}<t_{2}$

(2) $\bigcup_{t>t^{\prime}}D_{t}=D$ .

For the definition of convex set and its following properties, see [1; pp. 417-
420]. From Theorem 1.6 [1; p. 418], $\partial D_{t}$ $:=D_{t}$ –Int. $D_{t}$ is a connected l-dimen-
sional manifold (possibly non-smooth) for $t>t^{\prime}$ . We can easily see that $\sigma([0, t])$

$\subset B_{\sigma_{t}}^{c}\cap B_{\tau_{t}}^{c}$ and $\tau([0, t])\subset B_{\sigma_{t}}^{c}\cap B_{\tau_{t}}^{c}$ for $t>t^{\prime}$ . So $\partial D_{t}-(\sigma([0, t])\cup\tau([0, t]))=$
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$D\cap\partial(B_{\sigma_{t}}^{c}\cap B_{\tau_{t}}^{c})$ and from above construction, $D\cap\partial(B_{\sigma_{t}}^{c}\cap B_{\tau_{t}}^{c})$ is a l-dimensional
connected manifold with boundary $\{\sigma(t), \tau(t)\}$ for $t>t^{\prime}$ . Then putting $E_{t}$ $:=$

$D\cap\partial(B_{\sigma_{t}}^{c}\cap B_{\tau_{t}}^{c})$ , just as the proof of the Lemma in [4; p. 2], we have

Lemma 2. $\int\int_{D}Kdv\geqq f_{D}(\delta(0),\dot{\tau}(0))\geqq 0$ .
In the proof of the Lemma in [4], assumption that $M$ is non-negatively

curved is only used to show the existance of $\{E_{t}\}_{t>t_{0}}$ having certain properties
which is satisfied for the familly of $\{E_{t}\}_{t>t^{\prime}}$ obtained as above.

Proof of Theorem B. As is easily checked, Lemma 1 in \S 2 remains valid
under the assumption of Theorem B. Thus Proposition 1 in \S 2 hoIds good under
the assumption of $Threm$ B. Then combining this with Lemma 2, just as the
proof of Theorem $A$ , we can prove that

$0\leqq\int\int_{H}Kdv$ .
And in any cases, it holds

$\int\int_{H}Kdv\leqq 2\pi\chi(M)=2\pi$

by Cohn-Vossen. $q$ . $e$. $d$.
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