ON THE TOTAL CURVATURE OF NON-COMPACT RIEMANNIAN MANIFOLDS II

By
Masao Maeda
(Received January 21, 1985)

1. Let M be a 2-dimensional connected complete Riemannian manifold with non-negative Guassian curvature K. Then by Cohn-Vossen, it was proved that M is isometric to a flat open Möbius band or a flat cylinder or a manifold which is diffeomorphic to an Euclidean plane and its total curvature $\iint_{M} K d v$ satisfies an inequality

$$
\begin{equation*}
0 \leqq \iint_{M} K d v \leqq 2 \pi \tag{1}
\end{equation*}
$$

where $d v$ is the volume element of M induced from the Riemannian metric of M. And in [5], we gave a simple proof of the inequality (1) by showing that there exists a family of geodesic quadraterals $\left\{Q_{i}\right\}_{i=1,2, \ldots}$. each of which has interior angles whose sum does not exeed 4π and satisfies (using the same notation Q_{i} to denote the domain bounded by Q_{i})

$$
Q_{i} \subset Q_{i+1, i=1,2, \ldots} \text { and } \bigcup_{i=1}^{\infty} Q_{i}=M
$$

Then by applying the Gauss-Bonnet's Theorem to Q_{i}, we have

$$
\iint_{M} K d v=\lim _{i \rightarrow \infty} \iint_{Q_{i}} K d v \leqq 2 \pi
$$

And successively in [6], we gave another proof of the inequality (1) by giving a geometrical significance of the total curvature. It is stated as follows.

For a point $p \in M$, let $T_{p}^{1}(M)$ be the subset of the tangent space $T_{p}(M)$ at p of M consisting of all unit tangent vectors in $T_{p}(M)$. Then with the Riemannian metric induced from the inner product of $T_{p}(M), T_{p}^{1}(M)$ is a 1-dimensional Riemannian manifold isometric to a unit circle in a 2-dimensional Euclidean plane $R^{2}\left(\cong T_{p}(M)\right.$). Thus we can consider the Riemannian measure on $T_{p}^{1}(M)$ and measure $T_{p}^{1}(M)=2 \pi$. Let $A(p)$ be the subset of $T_{p}^{1}(M)$ given by

$$
A(p):=\left\{v \in T_{p}^{1}(M): \text { geodesic } \gamma:[0, \infty) \rightarrow M, \gamma(t)=\exp _{p} t v \text { is a ray }\right\}
$$

where $\exp _{p}: T_{p}(M) \rightarrow M$ is the exponential mapping of M and geodesic $\gamma:[0, \infty)$
$\rightarrow M$ is called a ray when any subarc of γ is a shortest connection between its ends points. As is easily seen, $A(p)$ is a closed subset of $T_{p}^{1}(M)$ and hence we can consider the measure of $A(p)$. In this situation, we have proved in [4], [6] that for any point $p \in M$,

$$
\begin{equation*}
\iint_{M} K d v \geqq 2 \pi \text {-measure } A(p) \tag{2}
\end{equation*}
$$

and for any $\varepsilon>0$, there exists a compact domain D such that for all point $q \in M-D$,

$$
\begin{equation*}
\iint_{M} K d v \leqq 2 \pi \text {-measure } A(q)+\varepsilon \tag{3}
\end{equation*}
$$

Thus combining (2) and (3), we have

$$
\begin{equation*}
\iint_{M} K d v=2 \pi-\inf _{p \in M} \text { measure } A(p) \tag{4}
\end{equation*}
$$

From (2), (3) and (4), we can get a geometrical significance of the total curvature. And in particular, we have the inequality

$$
\begin{equation*}
0 \leqq \iint_{M} K d v \leqq 2 \pi, \tag{1}
\end{equation*}
$$

because measure $A(p) \geqq 0$.
Now the purpose of this note is to give another simple proof of the inequality (1). And from its proof, we will give a slight generalization for the result mentioned above.
2. Let M be a 2 -dimensional complete Riemannian manifold diffeomorphic to an Euclidean plane. In the following, we use the same notations mentioned in the above introduction. For a point $p \in M$, we assume that there exists a point $v_{0} \in T_{p}^{1}(M)$ which is an interior point of $A(p)$. Let $U\left(v_{0}\right)$ be an open connected neighbourhood of v_{0} with boundary $\partial U\left(v_{0}\right)=\left\{v_{1}, v_{2}\right\}$ satisfying $U\left(v_{0}\right) \subset A(p)$ and $D \subset M$ where D is the domain defined by

$$
D=\left\{q \in M: q=\exp _{p} t v \text { for } v \in U\left(v_{0}\right), t>0\right\} .
$$

Let $\tilde{U}\left(v_{0}\right)$ be the domain in $T_{p}(M)$ defined by

$$
\tilde{U}\left(v_{0}\right)=\left\{v \in T_{p}(M): v=t w \text { for } w \in U\left(v_{0}\right) \text { and } t>0\right\} .
$$

Then by definition of $U\left(v_{0}\right) \subset A(p)$,

$$
\exp _{p} \mid \tilde{U}\left(v_{0}\right): \tilde{U}\left(v_{0}\right) \rightarrow D
$$

is a diffeomorphism. So we can consider a polar coordinate system (r, θ) on D around p such that $0<r<\infty$ and $\theta_{1}<\theta<\theta_{2}$ where $\theta_{1}=\lim _{\substack{v \rightarrow 0_{1} \\ v \in U\left(v_{0}\right)}} \theta(v)$ and $\theta_{2}=\lim _{\substack{v \rightarrow 0_{0} \\ v \in U\left(v_{0}\right)}} \theta(v)$.

Using this polar coordinates, the volume element of M is expressed as

$$
d v=\varphi(r, \theta) d r d \theta
$$

Since $g(\partial / \partial r, \partial / \partial \theta)=0$ because of Gauss-Lemma and $g(\partial / \partial r, \partial / \partial r)=1$,

$$
\varphi(r, \theta)=\sqrt{g(\partial / \partial \theta, \partial / \partial \theta)}
$$

where g is the Riemannian metric of M. By definition, $\partial / \partial \theta$ is a Jacobi field Y along a geodesic $c:[0, \infty) \rightarrow M$ given by $\theta(c(t))=$ constant θ_{0} for all $t>0$ which satisfy $Y(0)=0, Y^{\prime}(0) \perp c(0)$ and $\left\|Y^{\prime}(0)\right\|=1$ where "'" denotes the covariant derivative along a curve and $\|\cdot\|$ the norm of the vectors. Thus $\varphi\left(r, \theta_{0}\right)$ is a solution of the Jacobi equation

$$
f^{\prime \prime}+K\left(r, \theta_{0}\right) f=0
$$

with the initial values $f(0)=0$ and $f^{\prime}(0)=1$ where $K\left(r, \theta_{0}\right)$ is the Gaussian curvature of M at point $\left(r, \theta_{0}\right)$. If we put $\varphi(0, \theta)=0$ for all $\theta \in\left[\theta_{1}, \theta_{2}\right]$, then φ is extended continuously for all point $(r, \theta), 0 \leqq r, \theta_{1} \leqq \theta \leqq \theta_{2}$. For each $s>0$, let D_{s} be the domain defined by

$$
D_{s}=\left\{q \in \bar{D}: 0 \leqq r(q) \leqq s \text { and } \theta_{1} \leqq \theta(q) \leqq \theta_{2}\right\} .
$$

By definition, $D_{s} \subset D_{s^{\prime}}$ if $s \leqq s^{\prime}$ and $\bigcup_{s \geq 0} D_{s}=\bar{D}$.
Here we put further assumption that the Gaussian curvature of M is nonnegative. Then

$$
\iint_{D_{s}} K d v=\int_{0}^{s} \int_{\theta_{1}}^{\theta_{2}} K(r, \theta) \varphi(r, \theta) d r d \theta
$$

is a monotone non-decreasing function of s and hence

$$
\int_{\bar{D}} K d v=\lim _{s \rightarrow \infty} \iint_{D_{s}} K d v .
$$

Now for each $s \geqq 0$, let $\Phi_{s}:\left[\theta_{1}, \theta_{2}\right] \rightarrow R$ be the function defined by

$$
\Phi_{s}(\theta)=\int_{0}^{s} K(r, \theta) \varphi(r, \theta) d r, \quad \theta \in\left[\theta_{1}, \theta_{2}\right] .
$$

Clearly each Φ_{s} is a continuous function. Let $\Phi:\left[\theta_{1}, \theta_{2}\right] \rightarrow R$ be the function defined by

$$
\Phi(\theta)=\lim _{s \rightarrow \infty} \Phi_{s}(\theta) \quad\left(=\int_{0}^{\infty} K(r, \theta) \varphi(r, \theta) d r\right)
$$

for $\theta \in\left[\theta_{1}, \theta_{2}\right]$.
Lemma 1. Φ is well defined for all $\theta \in\left[\theta_{1}, \theta_{2}\right]$ and $0 \leqq \Phi(\theta) \leqq 1$ for all $\theta \in\left[\theta_{1}, \theta_{2}\right]$.

Proof. Since $\varphi^{\prime \prime}(r, \theta)+K(r, \theta) \varphi(r, \theta)=0$ and $\varphi^{\prime}(0, \theta)=1$ for all $\theta \in\left[\theta_{1}, \theta_{2}\right]$, it holds

$$
\begin{aligned}
\int_{0}^{s} K(r, \theta) \varphi(r, \theta) d r & =-\int_{0}^{s} \varphi^{\prime \prime}(r, \theta) d r \\
& =\varphi^{\prime}(0, \boldsymbol{\theta})-\varphi^{\prime}(s, \theta) \\
& =1-\varphi^{\prime}(s, \boldsymbol{\theta})
\end{aligned}
$$

And also $\varphi^{\prime \prime}(r, \theta)=-K(r, \theta) \varphi(r, \theta) \leqq 0$ for all $r \geqq 0$. Because $\varphi(r, \theta)>0$ for all $r>0$. For, if $\varphi\left(r_{0}, \boldsymbol{\theta}\right)=0$ for some $r_{0}>0$, then the point $\left(r_{0}, \boldsymbol{\theta}\right)$ is a conjugate point of p along the geodesic $c: \theta=$ constant. This is a contradiction. Thus $\varphi^{\prime}(r, \theta)$ is monotone non-decreasing with respect to r. Hence if there exists $r^{\prime}>0$ such that $\varphi^{\prime}\left(r^{\prime}, \theta\right)<0$, then $\varphi^{\prime}(r, \theta) \leqq \varphi^{\prime}\left(r^{\prime}, \theta\right)<0$ for all $r \geqq r^{\prime}$. So we can find $r>0$ such that $\varphi(r, \theta)=0$. This is a contradiction. Thus $0 \leqq \varphi^{\prime}(r, \theta) \leqq 1$ for all $r \geqq 0$ and hence $\lim _{r \rightarrow \infty}\left(1-\varphi^{\prime}(r, \theta)\right)$ exists for each $\theta \in\left[\theta_{1}, \theta_{2}\right]$.
q. e. d.

From above lemma, for any $s>0$, it holds

$$
\begin{aligned}
\iint_{D_{s}} K d v & =\int_{\theta_{1}}^{\theta_{2}} \int_{0}^{s} K(r, \theta) \varphi(r, \theta) d r d \theta \\
& =\int_{\theta_{1}}^{\theta_{2}} \Phi_{s}(\theta) d \theta \\
& \leqq \int_{\theta_{1}}^{\theta_{2}} \Phi(\theta) d \theta \leqq \theta_{2}-\theta_{1}
\end{aligned}
$$

So, since $\int_{D_{s}} K d v$ is monotone non-decreasing function of s, there exists the limit and

$$
0 \leqq \lim _{s \rightarrow \infty} \iint_{D_{s}} K d v=\iint_{\bar{D}} K d v \leqq \theta_{2}-\theta_{1}
$$

Summarizing the above, we have
Proposition 1. Let M be a 2-dimensional complete connected Riemannian manifold with non-negative Gaussian curvature K. For a point $p \in M$, let U be a connected domain in $A(p)$ and D the domain in M defined by

$$
D=\left\{q \in M: q=\exp _{p} t v \text { for } v \in U \text { and } t>0\right\} .
$$

Then it holds

$$
0 \leqq \iint_{\bar{D}} K d v \leqq \text { measure } U=\Varangle_{D}(v, w),
$$

where $\{v, w\}=\partial U$ and $\Varangle_{D}(v, w)$ denotes the interior angle between the vectors v and w measured on D.

Now let $W \subset M_{p}-A(p)$ be a connected component and $v, w \in T_{p}^{1}(M)$ the boundary of W. Since $A(p)$ is closed, W is open and hence $v, w \in A(p)$. Let γ_{1} and γ_{2} are two rays defined by $\gamma_{1}(t)=\exp _{p} t v$ and $\gamma_{2}(t)=\exp _{p} t w$. Then, by geodesic $\gamma_{1} \circ \gamma_{2}:(-\infty, \infty) \rightarrow M$ defined by

$$
\gamma_{1} \circ \gamma_{2}(t)= \begin{cases}\gamma_{1}(-t), & t \leqq 0 \\ \gamma_{2}(t), & t>0\end{cases}
$$

M is devided into two mutually disjoint domaines D_{1} and D_{2} i. e. $\bar{D}_{1} \cup \bar{D}_{2}=M$, $D_{1} \cap D_{2}=\varnothing$ and $\partial D_{1}=\partial D_{2}=\gamma_{1} \circ \gamma_{2}((-\infty, \infty))$. Without loss of generality, we can assume that D_{1} is the domain satisfying

$$
\left\{q \in M: q=\exp _{p} t v^{\prime}, v^{\prime} \in W, \quad 0<t \leqq r(p)\right\} \subset D_{1}
$$

where $r(p)$ is the convexity radius of p. Then in [6], we proved the following
Proposition 2. In the above situation, it holds

$$
\iint_{\bar{D}_{1}} K d v=\text { measure } w=\Varangle_{D_{1}}(v, w) .
$$

Let $D \subset M$ be a domain whose boundary ∂D is an union of the images of two rays σ_{1} and σ_{2} starting from p i. e. $\partial D=\sigma_{1}([0, \infty)) \cup \sigma_{2}([0, \infty))$ and $D_{p} \subset T_{p}^{1}(M)$ the set defined by

$$
D_{p}=\left\{v^{\prime} \in T_{p}^{1}(M): \exp _{p} t v^{\prime} \in \bar{D} \text { for } 0 \leqq t \leqq r(p)\right\}
$$

Then measure $D_{p}=\Varangle_{D}\left(\dot{\sigma}_{1}(0), \dot{\sigma}_{2}(0)\right)$ and D_{p} is the union of closed connected domaines $\left\{\bar{U}_{\alpha}\right\}_{\alpha \in A}$ and $\left\{\bar{W}_{\beta}\right\}_{\beta \in B}$ which satisfy the following conditions;
(i) $U_{\alpha} \subset A(p) \cap D_{p}$ is open and \bar{U}_{α} is a connected component of $A(p) \cap D_{p}$ for each $\alpha \in A$
(ii) $W_{\beta} \subset(M-A(p)) \cap D_{p}$ is open and W_{β} is a connected component of $(M-A(p)) \cap D_{p}$ for each $\beta \in B$
(iii) $\left\{U_{\alpha}\right\}_{\alpha \in A}$ and $\left\{W_{\beta}\right\}_{\beta \in B}$ are mutually disjoint, because $A(p) \subset T_{p}^{1}(M)$ is closed.
For each $U_{\alpha}, \alpha \in A$, let D_{α} be the domain in M defined by

$$
D_{\alpha}=\left\{q \in M: q=\exp _{p} t v \text { for } v \in U_{\alpha} \text { and } t>0\right\} .
$$

Then from Proposition 1, it holds

$$
\begin{equation*}
0 \leqq \iint_{\bar{D}_{\alpha}} K d v \leqq \text { measure } U_{\alpha}=\Varangle_{D_{\alpha}}\left(v_{\alpha}, w_{\alpha}\right) \tag{5}
\end{equation*}
$$

Here $\left\{v_{\alpha}, w_{\alpha}\right\}=\partial U_{\alpha}$. And for each $W_{\beta}, \beta \in B$, let D_{β}^{\prime} be the domain bounded by two rays γ_{1} and γ_{2} defined by $\gamma_{1}(t)=\exp _{p} t v^{\prime}$ and $\gamma_{2}(t)=\exp _{p} t w^{\prime}$ where ∂W_{β} $=\left\{v_{\beta}^{\prime}, w_{\beta}^{\prime}\right\}$ and satisfy

$$
\left\{q \in M: q=\exp _{p} t v \text { for } v \in W_{\beta} \text { and } 0<t<r(p)\right\} \subset D_{\beta}^{\prime}
$$

Then from Proposition 2, it holds

$$
\begin{equation*}
0 \leqq \iint_{\bar{D}_{\beta}^{\prime}} K d v=\text { measure } \bar{D}_{\beta}^{\prime}=\Varangle_{D_{\beta}^{\prime}}\left(v_{\beta}^{\prime}, w_{\beta}^{\prime}\right) . \tag{6}
\end{equation*}
$$

By definition, $\left\{D_{\alpha}\right\}_{\alpha \in A}$ and $\left\{D_{\beta}^{\prime}\right\}_{\beta \in B}$ are mutually disjoint and $\left(\bigcup_{\alpha \in A} \bar{D}_{\alpha}\right) \cup\left(\bigcup_{\beta \in B} \bar{D}_{\beta}^{\prime}\right)$ $=\bar{D}$. So if we put $D_{1}:=\bigcup_{\alpha \in A} D_{\alpha}$ and $D_{2}:=\bigcup_{\beta \in B} D_{\beta}^{\prime}$, then we have

$$
\begin{align*}
& \iint_{\bar{D}_{1}} K d v=\sum_{\alpha \in A} \text { measure }\left(U_{\alpha}\right), \tag{7}\\
& \iint_{\bar{D}_{2}} K d v \leqq \sum_{\beta \in B} \text { measure }\left(W_{\beta}\right) \tag{8}
\end{align*}
$$

and $\sum_{\alpha \in A}$ measure $\left(U_{\alpha}\right)+\sum_{\beta \in B}$ measure $\left(W_{\beta}\right)=$ measure $\left(D_{p}\right)=\Varangle_{D}\left(\dot{\sigma}_{1}(0), \dot{\sigma}_{2}(0)\right)$. Thus summarizing the above, we have

Theorem A. Let M be a 2-dimensional complete Riemannian manifold with non-negative Gaussian curvature K diffeomorphic to an Euclidean plane. Let D be a domain in M bounded by two rays σ_{1} and σ_{2}. Then it holds

$$
0 \leqq \iint_{\bar{D}} K d v \leqq \Varangle_{D}\left(\dot{\sigma}_{1}(0), \dot{\sigma}_{2}(0)\right) .
$$

This theorem is a generalization of the result obtained by Cohn-Vossen. Indeed from above theorem, we have

Corollary. Let M be a 2-dimensional complete Riemannian manifold with non-negative Gaussian curvature K diffeomorphic to an Euclidean plane. Then it holds

$$
0 \leqq \iint_{M} K d v \leqq 2 \pi
$$

Proof. From Lemma 1] in [5; p. 96], there exists a point $p \in M$ such that there exists at least two rays σ_{1} and σ_{2} starting from p. Then by the geodesic $\sigma_{1} \circ \sigma_{2}:(-\infty, \infty) \rightarrow M, M$ is devided into two mutually disjoint domains D_{1} and D_{2} whose boundary $\partial D_{1}=\partial D_{2}$ equals $\sigma_{1}{ }^{\circ} \sigma_{2}((-\infty, \infty))$. For these $D_{i, i=1,2}$, from above theorem we have

$$
\iint_{\bar{D}_{i}} K d v \leqq \Varangle_{D_{i}}\left(\dot{\sigma}_{1}(0), \dot{\sigma}_{2}(0)\right), \quad i=1,2
$$

Thus

$$
\begin{aligned}
\iint_{M} K d v & =\iint_{\bar{D}_{1}} K d v+\iint_{\bar{D}_{2}} K d v \\
& \leqq \Varangle_{D_{1}}\left(\dot{\sigma}_{1}(0), \dot{\sigma}_{2}(0)\right)+\Varangle_{D_{2}}\left(\dot{\sigma}_{1}(0), \dot{\sigma}_{2}(0)\right) \\
& =2 \pi
\end{aligned}
$$

3. In this section, we will give another generalization of the result by CohnVossen Corollary of Theorem A in §2).

Proposition 3. Let M be a 2-dimensional complete Riemannian manifold.

Then the Gaussian curvature K of M is non-negative if and only if the following condition (*) holds
(*) for any point $p \in M$ and any geodesic $\gamma:[0, \infty) \rightarrow M$ starting from p, any Jacobi field Y along γ with initial values $Y(0)=0, Y^{\prime}(0) \perp \dot{\gamma}(0)$ satisfies

$$
\left\|Y^{\prime}(s)\right\| \leqq\left\|Y^{\prime}(0)\right\|
$$

as long as γ has no conjugate point of p in $(0, s)$.
Proof. If $K \geqq 0$, then by a proof of Rauch's comparison theorem, we easily see that the condition (*) holds, see [3; pp. 178~]. Conversely under the condition (*), we assume that there exist a point $p \in M$ such that $K(p)<0$. Let $\sigma:[0, \infty) \rightarrow M$ be a geodesic starting from p and Y a Jacobi field along σ satisfying $Y(0)=0, Y^{\prime}(0) \perp \dot{\sigma}(0)$. Then Y is expressed as $Y=\varphi P$ where P is a parallel vector field along σ satisfying $P(0)=Y^{\prime}(0) /\left\|Y^{\prime}(0)\right\|$ and $\varphi:[0, \infty) \rightarrow R$ is a C^{∞} solution of the Jacobi equation $\varphi^{\prime \prime}(s)+K(\sigma(s) \varphi(s)=0$ with initial values $\varphi(0)=0, \varphi^{\prime}(0)=\left\|Y^{\prime}(0)\right\|$. By continuity, we can find a constant s_{0} such that $K \cdot \sigma \mid\left[0, s_{0}\right]<0$ and $\varphi \mid\left[0, s_{0}\right) \geqq 0$. Thus $\int_{0}^{s_{0}} K(\sigma(s)) \varphi(s) d s$ is negative. On the other hand, by definition of φ, we have

$$
\begin{aligned}
\int_{0}^{s_{0}} K(\sigma(s)) \varphi(s) d s & =-\int_{0}^{s_{0}} \varphi^{\prime \prime}(s) d s \\
& =\varphi^{\prime}(0)-\varphi^{\prime}\left(s_{0}\right) \\
& =\left\|Y^{\prime}(0)\right\|-\left\|Y^{\prime}\left(s_{0}\right)\right\| \geqq 0
\end{aligned}
$$

And this is a contradiction.
Noticing this proposition, we will extend the result by Cohn-Vossen slightly in a following manner.

Theorem B. Let M be a complete Riemannian manifold diffeomorphic to an Euclidean plane and satisfies the following two conditions;
(i) Gaussian curvature K of M is non-negative outside some compact subset C of M
(ii) there exists a point $p \in M$ such that for any geodesic $\gamma:[0, \infty) \rightarrow M$ starting from p, any Jacobi field Y along γ with initial values $Y(0)=0$, $Y^{\prime}(0) \perp \dot{\gamma}(0)$ satisfies

$$
\left\|Y^{\prime}(s)\right\| \leqq\left\|Y^{\prime}(0)\right\|
$$

as long as γ has no conjugate points of p in $(0, s)$.
Then it holds

$$
0 \leqq \iint_{M} K d v \leqq 2 \pi
$$

For a while, we assume that M satisfies the condition (i) only. For a ray $c:[0, \infty) \rightarrow M$ starting from p, put

$$
B_{c}:=\bigcup_{t \geq 0} B_{t}(c(t))
$$

where $B_{r}(q)$ denotes the open geodesic ball with radius $r \geqq 0$ centerd at $q \in M$. For a $t \geqq 0$, let $c_{t}:[0, \infty) \rightarrow M$ be a ray defined by $c_{t}(s)=c(t+s)$. Then we can easily check that the family of sets $\left\{B_{c_{t}}^{c}\right\}_{t \geq 0}, B_{c_{t}}^{c}:=M-B_{c_{t}}$ satisfy the following;
(1) $B_{c_{t}}^{c} \subset B_{c t}^{c}$, if $t \leqq t^{\prime}$ and
(2) $\bigcup_{t \geq 0} B_{c_{t}}^{c}=M$.

From property (2), we can find a constant $t_{0}>0$ such that $B_{c_{0}}^{c} \supset C$. Then just as the proof of Theorem 1.2 in [1; p. 415], we can prove that $B_{c_{t}}$ is totally convex for all $t>t_{0}$. Here a subset $A \subset M$ is called totally convex if for any two points $p, q \in A$ and for any geodesic $\beta:[0, d(p, q)] \rightarrow M$, connecting between p and $q, \beta([0, d(p, q)]) \subset A$.

Now, let D be a domain in M bounded by two rays σ and τ starting from p satisfying the following condition;
any $v \in T_{p}^{1}(M), v \neq \dot{\boldsymbol{\sigma}}(0), v \neq \dot{i}(0)$ such that $\exp _{p} t v \in D$ for $0<t<r(p), v \notin$ $A(p)$.
We do not exclude the case $\sigma=\tau$ (in this case $D=M-\sigma([0, \infty))$). For these σ and τ, we apply the above argument. Let t_{0} and t_{1} be two numbers such that $B_{\sigma_{t_{0}}}^{c} \supset C$ and $B_{\tau_{t_{1}}}^{c} \supset C$. Then for any $t>t^{\prime}:=\max \left(t_{0}, t_{1}\right), B_{\sigma_{t}}^{c}$ and $B_{\tau_{t}}^{c}$ are totally convex. Put $D_{t}:=\bar{D} \cap B_{\sigma_{t}}^{c} \cap B_{\tau_{t}}^{c}$ for each $t>t^{\prime}$. Then D_{t} is compact for each $t>t^{\prime}$. For, if D_{t} is not compact, then there exists a divergent sequence $\left\{q_{i}\right\}_{i=1,2, \ldots}$ contained in D_{t}. Let $c_{i}:\left[0, d\left(p, q_{i}\right)\right] \rightarrow M$ be a shortest geodesic from p to $q_{i}, i=1,2, \cdots$. Then $c_{i}\left(\left[0, d\left(p, q_{i}\right)\right]\right) \subset B_{\sigma_{t}}^{c} \cap B_{\tau_{t}}^{c}$ for all $i=1,2, \cdots$, because $B_{\sigma_{t}}^{c}$ and $B_{\tau_{t}}^{c}$ are totally convex. Also for $i=1,2, \cdots, c_{i}\left(\left[0, d\left(p, q_{i}\right)\right]\right) \subset \bar{D}$ because its boundary σ and τ are rays. Thus $c_{i}\left(\left[0, d\left(p, q_{i}\right)\right]\right) \subset D_{t}$ for all $i=1,2, \cdots$. Choose a convergent subsequence $\left\{\dot{c}_{i_{j}}(0)\right\}_{j=1,2, \ldots} \subset\left\{\dot{c}_{i}(0)\right\}_{i=1,2, \ldots}$ and let $v \in T_{p}^{1}(M)$ be its limit vector. Then the geodesic $c:[0, \infty) \rightarrow M$ defined by $c(t)=\exp _{p} t v$ is a ray which is different from σ and τ. This contradicts the definition of D. So $\left\{D_{t}\right\}_{t>t^{\prime}}$ is a family of compact connected convex subsets of M and satisfies the following properties;
(1) $D_{t_{1}} \subset D_{t_{2}}$ if $t^{\prime}<t_{1}<t_{2}$
(2) $\bigcup_{t>t^{\prime}} D_{t}=D$.

For the definition of convex set and its following properties, see [1; pp. 417420]. From Theorem 1.6 [1; p. 418], $\partial D_{t}:=D_{t}-$ Int. D_{t} is a connected 1-dimensional manifold (possibly non-smooth) for $t>t^{\prime}$. We can easily see that $\sigma([0, t])$ $\subset B_{\sigma_{t}}^{c} \cap B_{\tau_{t}}^{c}$ and $\tau([0, t]) \subset B_{\sigma_{t}}^{c} \cap B_{\tau_{t}}^{c}$ for $t>t^{\prime}$. So $\partial D_{t}-(\sigma([0, t]) \cup \tau([0, t]))=$
$D \cap \partial\left(B_{\sigma_{t}}^{c} \cap B_{\tau_{t}}^{c}\right)$ and from above construction, $D \cap \partial\left(B_{\sigma_{t}}^{c} \cap B_{\tau_{t}}^{c}\right)$ is a 1-dimensional connected manifold with boundary $\{\sigma(t), \tau(t)\}$ for $t>t^{\prime}$. Then putting $E_{t}:=$ $D \cap \partial\left(B_{\sigma_{t}}^{c} \cap B_{\tau_{t}}^{c}\right)$, just as the proof of the Lemma in $[4 ;$ p. 2], we have

Lemma 2. $\iint_{D} K d v \geqq \Varangle_{D}(\dot{\boldsymbol{\sigma}}(0), \dot{\tau}(0)) \geqq 0$.
In the proof of the Lemma in [4], assumption that M is non-negatively curved is only used to show the existance of $\left\{E_{t}\right\}_{t>t_{0}}$ having certain properties which is satisfied for the familly of $\left\{E_{t}\right\}_{t>t^{\prime}}$ obtained as above.

Proof of Theorem B. As is easily checked, Lemma 1 in § 2 remains valid under the assumption of Theorem B. Thus Proposition 1 in § 2 holds good under the assumption of Theorem B. Then combining this with Lemma 2, just as the proof of Theorem A, we can prove that

$$
0 \leqq \iint_{M} K d v
$$

And in any cases, it holds

$$
\iint_{M} K d v \leqq 2 \pi \chi(M)=2 \pi
$$

by Cohn-Vossen.
q. e. d.

References

[1] J Cheeger and D. Gromoll: On the Structure of Complete Manifolds of Nonnegative Curvature, Ann. of Math. 96 (1972), 413-443.
[2] S. Cohn-Vossen: Kürzeste Wege und Total krïmmung auf Flächen, Compositio Math. 2 (1935), 63-133.
[3] D. Gromoll, W. Klingenberg and W. Meyer: Riemannsche Geometrie im Grossen, Springer-Verlag, 1968.
[4] M. Maeda: On the Existance of Rays, Sci. Rep. Yokohama National University, Sec. I, 26 (1979), 1-4.
[5] M. Maeda: On the Total Curvature of Non-compact Riemannian Manifolds, Kodai Math. Sem. Rep. 29 (1974), 95-99.
[6] M. Maeda: A Geometric Significance of Total Curvature on Complete Open Surfaces, Geometry of Geodesics and Related Topics, Advanced Studies in Pure Mathematics 3, Kinokuniya, Tokyo and North-Holland Publ.
[7] K. Shiga: On a Relation Between the Total Curvature and the Measure of Rays, Tsukuba J. Math. 6 (1982), 41-50.

Department of Mathematics
Faculty of Education Yokohama National University

