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ABSTRACT. A graph $G$ is said to be uniquely embeddable in a surface $F^{2}$ if
$for$ any two embeddings $f_{1},f_{2}$ : $G\rightarrow F^{2}$, there is an automorphism $\sigma$ : $G\rightarrow G$ and
a homeomorphism $h;F^{2}\rightarrow F^{2}$ such that $ h_{\circ}f_{1}=f_{2}\circ\sigma$ . A graph $G$ is said to be
faithfully embeddable in a surface $F^{2}$ if $G$ admits an embedding $f:G\rightarrow F^{2}$

such that for any automorphism $\sigma:G\rightarrow G$ , there is a homeomorphism $h$ ;
$F^{2}\rightarrow F^{2}$ with $ h_{0}f=f\circ\sigma$ . Given a hyperbolic closed surface $F^{2}$, an infinite
number of 6-connected graphs which are not uniquely or not faithfully em-
beddable in $F^{2}$ will be constructed systematically.

1. Introduction

A graph $G$ is said to be uniquely embeddable in a surface $F^{2}$ if there is only
one way to embed it into $F^{2}$ up to equivalence and to be faithfully embeddable
in a surface $F^{2}$ if it can be embedded so that all of its automorphisms extend to
self-homeomorphisms of $F^{2}$ . For example, Fig. l(a) and (b) show two inequiva-
Ient embeddings of a graph in the $pIane$, where the reversion of their right
diamonds causes their difference, so this graph is not uniquely embeddable. On
the other hand, Fig. 2 shows a graph which is not faithfully embedded in the
plane. Also the turning of its right diamond cannot extend to a self-homeo-
morphism of the plane with the left diamond fixed. The detailed deflnitions of
these concepts will be given in the next section.

The author has already discussed when a graph is uniquely or faithfully
embeddable in a surface and found many classes of such graphs in a torus [2],
a Klein bottle [5] and a projective plane [3], [4], [6]. Conversely, we shall
develop a method to construct systematically those graphs whose embeddings
do not possess uniqueness or faithfulness and show the complete answer for the
problem which is set up as follows.

Given a closed surface $F^{2}$ , consider the following two statements with param-
eters $n$ and $m$ :
$U(F^{2} ; n)$ ; Every n-connected graph embeddable in a closed surface $F^{2}$ is uniquely
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embeddable in $F^{2}$ , with finitely many exceptions.

$F(F^{2} ; m)$ : Every m-connected graph embeddable in a closed surface $F^{2}$ is faith-
fully embeddable in $F^{2}$, with finitely many exceptions.

Then our problem is to determine the minimum values $n$ and $m$ , for each closed

surface $F^{2}$ , which make $U$( $F^{2}$ ; n) and $F(F^{2} ; m)$ true, respectively.

Fig. l(a). Fig. l(b). Fig. 2.

As the previous examples in Fig. 1 and 2 suggest, if a graph $G$ had a
vertex-cut $U$ with few vertices, then $G$ might have either two inequivalent

embeddings or a non-faithful embedding in $F^{2}$ because of the turning over of
one of the parts into which $U$ splits $G$ . To exclude such a phenomenon, we
assume that the connectivity of $G$ is sufficiently large. Are the uniqueness and
faithfulness of embedding of $G$ guaranteed in this case? This question is our
motivation.

It is however very doubtful that there would be sufficiently large numbers
$n$ and $m$ such that every n- or m-connected graph is uniquely or faithfully

embeddable in $F^{2}$, respectively. In fact, the complete graph $K_{p}$ with $p\geqq 5$ can
be embedded faithfully in no surface. Thus, if we did not allow a finite number
of exceptions for $U$( $F^{2}$ ; n) and $F(F^{2} ; m)$ , then our problem would be nonsense.
So it may be said that our problem simply asks a rough correlation between the
uniqueness and faithfulness and the connectivity of graphs.

Our goal in this paper is to complete the following table which presents the
answers for $n$ and $m$ . For example, the first line reads that every 3-connected

Table 1.
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planar graph is uniquely and faithfully embeddable in a sphere, with at most a
finite number of exceptions. In fact, there is no such exception by the unique-
ness of duals of 3-connected planar graphs [7].

The results in [3], [4] and [6] complete the second line for a projective
plane. It has been already shown in [2] that every 6-connected toroidal graph
is uniquely embeddable in a torus and that it is also faithfully embeddable unless
it is isomorphic to $K_{7},\overline{4K_{2}}$ or $\overline{3K_{3}}$. Hence, we have to construct infinitely many
5-connected toroidal graphs whose uniqueness and faithfulness break down in
order to show that $n=m=6$ for a torus. It is the same in case of a Klein
bottle; The classification of 6-regular Klein-bottlal graphs in [5] implies that
every 6-connected Klein-bottlal graph is uniquely embeddable in a Klein bottle
and that $\overline{K_{3}\cup C_{6}}$ is the unique exception for the faithfulness. A infinite number
of 5-connected examples for the toroidal and Klein-bottlal case will be obtained
in Section 3.

Therefore, the remaining case is when a given closed surface has negative
Euler characteristic, so in other words when a surface is hyperbolic. In this
case, we need not prove theorems which give sufficient conditions for uniqueness
and faithfulness in terms of connectivity, because of the scarcity of 7-connected
graphs. Just by the calculation of the Euler characteristic $\chi(F^{2})$ alone, it can be
shown that if a graph $G$ has minimum degree at $lea5t7$ and is embeddable in a
closed surface $F^{2}$, then the number of vertices of $G$ does not exceed $6|\chi(F^{2})|$

and hence there are only finitely many 7-connected graphs which are embeddable
in $F^{2}$ . Even if there are exceptions for $U$( $F^{2}$ ; n) or $F(F^{2} ; m)$ with $n,$ $m\geqq 7$, the
number of them is finite. So it suffices to construct infinitely many 6-connected
examples for non-uniqueness and non-faithfulness in order to complete the fifth
line of Table 1; “ 7“ and “ 7‘’.

After arguments on splitting and sewing of embeddings of graphs in Section
4, we shall Propose two transformations of graphs, called insertion of a skew,
handle of $K_{6}$ and of a skew cross-cap of $K_{6}$ in Section 5. The former plays a
role in destroying uniqueness and faithfulness and in decreasing $\chi(F^{2})$ by two,
while the latter preserves uniqueness and faithfulness and decrease $\chi(F^{2})$ by one.
Using them, we shall derive many non-uniquely and non-faithfully embeddable
graphs from 6-connected toroidal graphs and Klein-bottlal graphs in Section 6.
To estimate the connectivity of those graphs, we shall discuss in Section 5 an
operation, called n-Path-splitting, which transforms a graph without changing its
connectivity. Unfortunately, our method does not work for one case, namely
when $F^{2}$ is a non-orientable closed surface with $\chi(F^{2})=-1$ , so we shall deal
with this exceptional case individually.

In all hyperbolic cases but this, the graphs constructed in Section 6 triangu-
late $F^{g}$, so if we restrict our objects to only triangulations of $F^{2}$, then the
answer to our problem will be obtained as Table 2: By the result on projective-
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planar triangulations in [4], the second line changes to “ 5“ and “ 5“. The
answer for uniqueness in the exceptional case is still unknown.

Answer for Triangulations

$\overline{\frac{K1einbott1e|6|6}{Non- orientablegenus3|?|7}}$

The others 1 7 $|$ 7

Table 2.

Our graph is finite, undirected and simple and has the canonical topology as
a l-complex. Our terminology for graph theory can be found in [1] and that
for topology is quite standard.

2. Uniqueness and faithfulness of embedding

In this section, we shall formulate our subjects, the uniqueness and faithful-
ness of embedding of graphs into surfaces. We shall consider graphs with
additional structure, called peripheral cycles, to make “ cut and paste “ on embed-
dings of graphs easily done. If we neglect each occurrence of $\partial G$ , then the
definitions below can be read as for the ordinary case.

Let $G$ be a graph and $\partial G$ a union of pairwise disjoint cycles in $G$ . We call
the pair $(G, \partial G)$ a graph with peripheral cycles and call each component of $\partial G$ a
periPheral cycle of $G$ (or $(G,$ $\partial G)$). A vertex or an edge is said to be peripheral
if it lies on $\partial G$ . An isomorphism between two graphs $(G_{\ell}, \partial G_{\ell})(i=1,2)$ is a
homeomorphism $\sigma$ : $G_{1}\rightarrow G_{g}$ which sends each vertex of $G_{1}$ to a vertex of $G_{8}$

and $\partial G_{1}$ onto $\partial G_{2}$ , and is denoted by $\sigma:(G_{1}, \partial G_{1})\rightarrow(G_{2}, \partial G_{2})$ . When two graphs
are identical, an isomorphism is called an automorphism of $(G_{1}, \partial G_{1})(=(G_{2}, \partial G_{8}))$ .

Clearly, the collection of all automorphisms of $(G, \partial G)$ is a group and
consists of uncountably many elements. Then we classify them up to isotopy
relative to the vertex set $V(G)$ and denote the set of such isotopy classes of
automorphisms of $(G, \partial G)$ by $Aut(G, \partial G)$ . Also $Aut(G, \partial G)$ is a group and is
finite in turn. Precisely speaking, an automorphism of $(G, \partial G)$ does not belong
to $Aut(G, \partial G)$ but its isotopy class does. We shall however deal with an auto-
morphism as if it would be a member of $Aut(G, \partial G)$ .

An embedding of a graph $(G, \partial G)$ with peripheral cycles in or into a surface
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$F^{2}$ with boundary $\partial F^{2}$ is a continuous map $f:G\rightarrow F^{2}$ such that $G$ and its image
$f(G)$ are homeomorphic via $f$ and $f(\partial G)=\partial F^{2}$ . We denote such an embedding
by $f:(G, \partial G)\rightarrow(F^{2}, \partial F^{2})$ . An embedding $f:(G, \partial G)\rightarrow(F^{2}, \partial F^{2})$ is called a 2-cell
embedding if each component of $F^{2}-f(G)$ , called a face, is homeomorphic to an
open 2-cell $\{x\in R^{2} : |x|<1\}$ .

Let $(G_{1}, \partial G_{1}),$ $(G_{2}, \partial G_{2})$ be two graphs with Peripheral cycles and let $F_{1}^{2},$ $F_{2}^{2}$

be two surfaces. Two embeddings $f_{i}$ : $(G_{i}, \partial G_{i})\rightarrow(F_{\ell}^{2}, \partial F_{i}^{2})$ are equivalent if there
exist a homeomorphism $h:F_{1}^{2}\rightarrow F_{2}^{2}$ and an isomorphism $\sigma:(G_{1}, \partial G_{1})\rightarrow(G_{2}, \partial G_{2})$

such that $ h\circ f_{1}=f_{2}\circ\sigma$ .
When we work in the category of labeled graphs, this isomorphism

$\sigma:(G_{1}, \partial G_{1})\rightarrow(G_{2}, \partial G_{2})$ should be taken so as to preserve the labels. If both
$(G_{1}, \partial G_{1})$ and $(G_{2}, \partial G_{2})$ are the same graph $(G, \partial G)$ , then such a label-preserving
isomorphism is nothing but the identity map of $(G, \partial G)$ .

In the labeled sense, the two embeddings shown in Fig. 3(a) and (b) are not
equivalent even if they have the same appearance, which is contrary to our
expectation. If we modify the labeling of vertices in the graph itself, then the
image of one embedding will be carried onto the other by a homeomorphism
between the surfaces so that their labelings coincide. Clearly, neither Fig. 3(a)
nor (b) is equivalent to (c), which meets our expectation. That is why we do
not define the equivalence of embeddings by the formula $h\circ f_{1}=f_{2}$ and why we
prepare such an isomorphism between graphs which plays the role in permuting
the labels of vertices.

Fig. 3(a). Fig. 3(b). Fig. 3(c).

Proposition 2.1. Let $(G_{1}, \partial G_{1})$ and $(G_{2}, \partial G_{2})$ be two graphs with peripheral
cycles which contain no vertex of degree 2. Then two embeddings $f_{\ell}$ : $(G_{i}, \partial G_{i})$

$\rightarrow(F_{i}^{2}, \partial F_{\ell}^{2})$ in surfaces $F_{i}^{2}(i=1,2)$ are equivalent if and only if there is a
homeomorphism $h:F_{1}^{2}\rightarrow F_{2}^{2}$ such that $h(f_{1}(G_{1}))=f_{2}(G_{2})$ . $\square $

This proposition is clearly true, but is false in general if there are some vertices
of degree 2, as Fig. 4 suggests.

By the compactness of a surface, a graph admits at most a finite number
of embeddings into the surface, up to equivalence. If there are $n$ equivalence
classes of embeddings of a graph $(G, \partial G)$ with peripheral cycles into a surface
$F^{2}$, then $(G, \partial G)$ is said to be n-way embeddable in $F^{2}$ . When $n>0,$ $(G, \partial G)$ is
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$\alpha|\ddot{q}_{\gamma}$

Fig. 4(a). Fig. 4(b).

said to be embeddable in $F^{2}$ . In particular, if $(G, \partial G)$ is only one-way embed-
dable in $F^{2}$, then $(G, \partial G)$ is said to be uniquely embeddable in $F^{2}$.

Now we shall define the faithfulness of embedding. Let $(G, \partial G)$ be a graph

with peripheral cycles and $F^{2}$ a surface. An embedding $f:(G, \partial G)\rightarrow(F^{2}, \partial F^{2})$

is faithful if for each automorphism $\sigma:(G, \partial G)\rightarrow(G, \partial G)$ , there is a homeomor-
phism $h:F^{2}\rightarrow F^{2}$ such that $ hof=f\circ\sigma$ . For such a homeomorphism $h:F^{2}\rightarrow F^{2}$,

we say that $h$ realizes $\sigma$ under $f$ or that $\sigma$ extends to $h$ via $f$. A graph $(G, \partial G)$

is said to be faithfully embeddable in a surface $F^{2}$ if $(G, \partial G)$ has a faithful
embedding into $F^{2}$ .

Consider the following embedding of $C_{n}$ , a cycle of length $n$ , in a disk. Let
$D^{2}$ be the unit disk in the complex plane $C$ and embed $C_{n}$ in $D^{2}$ as the unit
circle with vertices placed at nth roots of 1. Let $h:D^{2}\rightarrow D^{2}$ be the self-homeo-
morphism of $D^{2}$ defined by

$h(re^{\ell\theta})=r^{2}e^{\ell(\theta+(2\pi/n))}$ .

Then $h|c_{n}$ is an automorphism of $C_{n}$ of period $n$ , but $h$ itself has infinite period.

Although each element of a cyclic subgroup of $Aut(C_{n})$ extends to a power of
$h$ , this extension does not preserve the group structure of $Aut(C_{n})$ . Hewever,

we can extend each automorphism of $C_{n}$ cone-like so that $Aut(C_{n})$ is realized by

a group of self-homeomorphisms of $D^{2}$ .
In general, after modifying extension, any faithful embedding $f:(G, \partial G)$

$\rightarrow(F^{2}, \partial F^{2})$ induces an injective homomorphism from $Aut(G, \partial G)$ . It may be
said that a faithful embedding embeds a graph $(G, \partial G)$ into a surface $F^{2}$ so that
the symmetry of $(G, \partial G)$ , with respect to its automorphisms, can be presented

by the symmetry on $F^{2}$. In other words, the automorphism group of $(G, \partial G)$

has a faithful representation in the group of self-homeomorphisms of $F^{2}$ when
$(G, \partial G)$ is faithful embeddable in $F^{2}$ .

An automorphism $\sigma:(G, \partial G)\rightarrow(G, \partial G)$ of $G$ is called a symmetry of $f$ if it
can be realized by a homeomorphism $h:F^{2}\rightarrow F^{2}$ under an embedding $f:(G, \partial G)$

$\rightarrow(F^{2}, \partial F^{2})$, that is, if $ h\circ f=f\circ\sigma$ . Let $Sym(f)$ denote the set of all symmetries
of $f$ . (Strictly, $Sym(f)$ should be defined as the collection of all isotopy classes

of symmetries of $f.$ ) Clearly, $Sym(f)$ is a subgroup of the automorphism group
$Aut(G, \partial G)$ . We call $Sym(f)$ the symmetry group of $f$. When $(G, \partial G)$ is already
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embedded in $F^{2}$, the symmetry group of its inclusion map may be denoted by
$Sym(G, \partial G)$ and is called the symmetry group of $(G, \partial G)$ . An embedding
$f:(G, \partial G)\rightarrow(F^{2}, \partial F^{2})$ is faithful if and only if $Sym(f)=Aut(G, \partial G)$ .

Notice that a faithful embedding is not a symmetrical embedding. If a
graph has a higher symmetry then its image under a faithful embedding also
has a higher symmetry as well as the graph itself, while if the automorphism
group of $(G, \partial G)$ is trivial then every embedding of $(G, \partial G)$ into $F^{2}$ is faithful
necessarily, with no symmetry, since $Sym(f)=Aut(G, \partial G)=$ {$identity$ map}.

Proposition 2.2. The following three statements are equivalent to one another:

(i) A graph $(G, \partial G)$ is uniquely and faithfully embeddable in a surface $F^{2}$.
(ii) For any two embeddings $f_{1},$ $f_{2}$ : $(G, \partial G)\rightarrow(F^{2}, \partial F^{2})$ and any automorphism

$\sigma:(G, \partial G)\rightarrow(G, \partial G)$ , there is a homeomorphism $h:F^{2}\rightarrow F^{2}$ such that
$ h\circ f_{1}=f_{2^{\circ}}\sigma$ .

(iii) For any two embeddings $f_{1},$ $f_{2}$ : $(G, \partial G)\rightarrow(F^{2}, \partial F^{2})$ , there is a homeo-
morphism $h:F^{2}\rightarrow F^{2}$ such that $h\circ f_{1}=f_{2}$ .

When a graph $(G, \partial G)$ is already embedded in a surface $F^{2}$ , the next is also
equivalent to the above:

(iv) For any embedding $f$ : $(G, \partial G)\rightarrow(F^{2}, \partial F^{2})$ , there is a homeomorphism
$h:F^{2}\rightarrow F^{2}$ such that $h|_{G}=f$.

Proof. (i) implies (ii): Since $(G, \partial G)$ is uniquely embeddable in $F^{2}$, there
is an automorphism $\sigma_{0}$ : $(G, \partial G)\rightarrow(G, \partial G)$ and a homeomorphism $h_{0}$ : $F^{2}\rightarrow F^{2}$ such
that $h_{0}\circ f_{1}=f_{2^{o}}\sigma_{0}$ . Let $\sigma:(G, \partial G)\rightarrow(G, \partial G)$ be any automorphism of $(G, \partial G)$ .
Since the unique embedding $f_{1}=h_{0}^{-1}\circ f_{2^{o}}\sigma_{0}$ is faithful, there is a homeomorphism
$h^{\prime}$ : $F^{2}\rightarrow F^{2}$ such that $ h^{J_{Q}}f_{1}=f_{1^{\circ}}(\sigma_{0}^{-1}\circ\sigma)=h_{0}^{-1}\circ f_{2}\circ\sigma$ . Take $h_{0}\circ h^{\prime}$ as $h$ , then $h\circ f_{1}$

$=f_{2^{\circ}}\sigma$ .
(ii) implies (iii): Assign the identity map of $(G, \partial G)$ to $\sigma$ .
(iii) implies (i): The condition of (iii) assures that $(G, \partial G)$ is uniquely

embeddable in $F^{2}$ in the labeled version, and hence also in the unlabeled version.
Let $f_{1}$ : $(G, \partial G)\rightarrow(F^{2}, \partial F^{2})$ be a unique embedding of $(G, \partial G)$ . For any auto-
morphism $\sigma:(G, \partial G)\rightarrow(G, \partial G)$ , set $ f_{2}=f_{1^{\circ}}\sigma$ , then there is a homeomorphism
$h:F^{2}\rightarrow F^{2}$ such that $ h\circ f_{1}=f_{1}\circ\sigma$ . Thus, $f_{1}$ is faithful and $(G, \partial G)$ is faithfully

embeddable in $F^{2}$ .
Assume that $(G, \partial G)$ is already embedded in $F^{2}$. Deflne two embeddings

$f_{1},$ $f_{2}$ : $(G, \partial G)\rightarrow(F^{2}, \partial F^{2})$ to be related if there is a $hommorphismh:F^{2}\rightarrow F^{2}$

with $h\circ f_{1}=f_{2}$, then this is an equivalence relation over all embeddings of $(G, \partial G)$

in $F^{2}$. In this term, (iii) states that any two embeddings are related to each
other and hence equivalently that any embedding is related to the inclusion map
$(G, \partial G)\subset(F^{2}, \partial F^{2})$ . This is nothing but the statement of (iv), so (iv) is equiva-
lent to (iii) and also to (i) and (ii). $\square $
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3. Skew vertices in triangulations

An embedding $f:(G, \partial G)\rightarrow(F^{2}, \partial F^{2})$ is said to be triangular if each face of
$f(G)$ is bounded by precisely three edges, that is, if $f(G)$ yields a triangulation
of $F^{2}$ . By only calculation of the Euler characteristic, it is easy to show that
if a graph $(G, \partial G)$ has a triangular embedding in $F^{2}$ , then any other embedding
of $(G, \partial G)$ in $F^{2}$ is triangular. For this reason, we call such a graph $(G, \partial G)$

itself a triangulation of a surface $F^{2}$, not referring to its embedding.
In [2] and [4]. The author has proposed a concept, called skew vertices, to

discuss the uniqueness and faithfulness of triangular embeddings. Here we shall
generalize and purify it, and construct an infinite number of 5-connected toroidal
and Klein-bottlal triangulations which are not uniquely or not faithfully embed-
dable in a torus or a Klein bottle.

Let $(G, \partial G)$ be a graph with peripheral cycles embedded in a surface $F^{2}$,
and $f:(G, \partial G)\rightarrow(F^{2}, \partial F^{2})$ another embedding of $(G, \partial G)$ into $F^{2}$ . A face $A$ of
$(G, \partial G)$ is said to be extendable for $f$ if there is an embedding $h:G\cup A\rightarrow F^{2}$

such that $h|_{G}=f$ .
Proposition 3.1. If all faces of $G$ are extendable for $f$, then there is a

homeomorphism $h:F^{2}\rightarrow F^{2}$ such that $h|_{G}=f$. $\square $

Let $(G, \partial G)$ be a triangulation embedded in a surface $F^{2}$ . Define the star
neighborhood $st(v)$ of a vertex $v$ as the closure of the union of triangular faces
meeting at $v$, which is homeomorphic to a 2-cell, and the link $lk(v)$ of $v$ as the
induced subgraph in $(G, \partial G)$ by all edges in $st(v)$ but not incident to $v$ . Then
$lk(v)$ is a hamiltonian cycle in the subgraph $\langle N(v)\rangle$ induced by the neighbors of
$v$ in $G$ unless $v$ lies on $\partial G$ . If $v$ belongs to $\partial G$ , then $lk(v)$ is a hamiltonian path
of $\langle N(v)\rangle$ .

A vertex $v$ of $(G, \partial G)$ not lying on $\partial G$ is skew if there is another hamiltonian
cycle in $\langle N(v)\rangle$ , that is, if $\langle N(v)\rangle$ contains at least two hamiltonian cycles. A
peripheral vertex $v$ is skew if there is a hamiltonian path of $\langle N(v)\rangle$ , different
from $lk(v)$ , whose ends lie on the peripheral cycle containing $v$ . A triangle $uvw$ ,

a cycle of length 3, in $G$ is skew if all three vertices $u,$ $v,$ $w$ are skew. A
triangular face $A$ of $(G, \partial G)$ is skew if all three corners are skew vertices.
Notice that the skewness of a vertex can be recognized only from the structure
of a graph without its embedding.

Let $G$ be a triangulation embedded in a closed surface $F^{2}$ and let $v$ be a
skew vertex of $G$ . Then there exist two triangles $\Delta_{1},$ $\Delta_{2}$ in $G$ which cross each
other at $v$ , and $lk(v)\cup\Delta_{1}\cup\Delta_{2}$ is a subdivision of the complete graph $K_{5}$ . Since
such a subgraph is not planar, one of $\Delta_{1}$ and $\Delta_{2}$ cuts a handle or a cross-cap of
$F^{2}$ . This implies the following:
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Proposition 3.2. Let $G$ be a triangulation of a closed surface $F^{2}$ . The
maximum number of skew vertices of $G$ any pair of which has distance at least
3 in $G$ does not exceed the genus of $F^{2}$ . $\square $

It has been already proved in [4] that if a face $A$ of $G$ in $F^{2}$ is not skew,
then $A$ is extendable for any embedding of $G$ in $F^{2}$ and that if $G$ has at most
four skew vertices, then $G$ is uniquely and faithfully embeddable in $F^{2}$ . As all
skew vertices do not cause the uniqueness and faithfulness to break, we would
like to pick up only essential ones among them.

Let $S$ be the set of skew vertices of a triangulation $G$ . If for a skew vertex
$v$ in $S$ , the induced subgraph $\langle S\rangle$ contains no two skew triangles which inter-
sect in only $v$, then remove $v$ out of $S$ and rest $S$ to be $S-\{v\}$ . Repeat this
reduction of $S$ as long as possible. Then we call a skew vertex remaining in
the final $S$ a core skew vertex of $G$ . The set of core skew vertices is determined
uniquely, not depending on the choice of a skew vertex $v$ in each stage; for if
there are no two skew triangles which contact at $v$ , then there are no such
triangles in later stages.

Theorem 3.3. If a triangulation of a closed surface contains no core skew
vertex, then it is uniquely and faithfully embeddable in the surface.

Proof. Let $G$ be a triangulation embedded in a closed surface $F^{2}$ and let
$S$ be a set of skew vertices obtained in a stage of the above process. Assume
that if one of three vertices on the boundary triangle of a face $A$ does not
belong to $S$ , then $A$ is extendable for any embedding $f:G\rightarrow F^{8}$ . Let $v$ be a

Therefore, the number of faces whose extendability have been known
increases stage by stage, and if $S$ becomes empty finally then all faces of $G$

will be extendable for $f$. By Proposition 2.2 (iv) and 3.1, $G$ is uniquely and
faithfully embeddable in $F^{2}$ . $\square $
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Note that the converse of this theorem does not hold. In fact, there is a
triangulation all of whose vertices are core skew but which is uniquely and
faithfully embeddable. One of such examples can be found in [2] as the
6-regular toroidal graph denoted by $T(9,2,1)$ .

Since two triangles which contact at only one vertex consist of five vertices,
if there are at most four skew vertices then there is no core skew vertex. Thus
we have:

Corollary 3.4. (S. Negami [4]) If a triangulation of a closed surface con-
tains at most four skew vertex, then it is uniquely and faithfully embeddable in
the surface. $\square $

If a triangulation $G$ embedded in $F^{2}$ contains a skew vertex, then there is
a triangle which bounds no 2-cell in $F^{2}$ . Subdivide the triangulation as a 2-com-
plex to eliminate such a triangle, then the resulting rePnement contains no skew
vertex, so it is uniquely and faithfully embeddable in $F^{2}$ . In this way, we can

. find a lot of triangulations which are uniquely and faithfully embeddable in a
given surface.

Here we shall construct infinitely many 5-connected triangulations which are
not uniquely or not faithfully embeddable in a torus or a Klein bottle, in order
to complete the third and fourth lines in Table 1 and 2.

Fig. 6(a) and (b) illustrate 5-connected isomorphic graphs $G_{1}$ and $G_{2}$, respec-
tively, triangularly embedded in a torus. Turning over the hexagon 254163
around two vertices 1 and 2 causes the difference between their appearances.
Let $H_{i}$ be the hexagonal cycle 254163 in $G_{\ell}(i=1,2)$ and let $(D_{\ell}, \partial D_{\ell})$ and
$(E_{i}, \partial E_{i})$ be the graphs, with peripheral cycles $\partial D=\partial E=H_{i}$ , outside and inside
$H_{i}$ , respectively.

Fig. 6(a). Fig. 6(b).

In each graph, there is no skew vertex inside $H_{i}$ and all vertices $0,1,2,3$,
4, 5, 6 are skew. Thus, any isomorphism $f:G_{1}\rightarrow G_{2}$ sends the unique vertex $0$

to $0$ which is adjacent to no skew vertex, $H_{1}$ onto $H_{2}$, and $D_{1}$ onto $D_{g}$ . By the
arguments of skew vertices, each face of $(D_{1}, \partial D_{1})$ is extendable for $f|_{D_{1}}$ , and
hence $f$ preserves the cyclic order of vertices on $H_{1}$ . This implies that $f$ sends
the seven vertices $0,1,2,3,4,5,6$ to the vertices with the same labels, respec-
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tively. However, the triangle 025 bounds a face in $G_{1}$ but does not in $G_{2}$ , and
so $f$ cannot extend to a homeomorphism of the torus. Therefore, the two
embeddings in Fig. 6(a) and (b) are not equivalent and $G_{1}$ or $G_{2}$ is not uniquely
embeddable in a torus.

Now, consider the graph $G_{3}$ triangularly embedded in a torus, shown in
Fig. 7(a) and (b) with only difference of labeling. The inside $(D, \partial D)$ of the
hexagon 254163 of $G_{3}$ contains no skew vertex, and the outside $(E, \partial E)$ is the
same as that of $G_{1}$ . The two labelings of vertices given in Fig. 7(a) and (b)

induce a unique non-trivial automorphism $\sigma$ of $G_{8}$ , but $\sigma$ cannot extend to a
$self- hommorphism$ of the torus, for the same reason on the triangle 025.
Thus, this embedding of $G_{3}$ is not faithful. To see that $G_{3}$ is not faithfully
embeddable in a torus, it sufflces to observe that there is no other embedding
of $G_{3}$ in a torus.

Fig. 7(a) Fig. 7(b).

Any embedding of $G_{3}$ in a torus always embeds $(D, \partial D)$ uniquely within a
hexagonal 2-cell, for the lack of skew vertices. So if $(E, \partial E)$ is uniquely
embeddable in a punctured torus, then $G_{8}$ itself is uniquely embeddable in a
torus.

The uniqueness for $(E, \partial E)$ can be checked as follows. The graph $E$ is
isomorphic to the complete graph with seven vertices $0,1,2,3,4,5,6$ minus
three edges 13, 35 and 51. So an embedding of the complete graph $K_{7}$ can be
obtained from the embedding of $G_{\$}$ by replacing the part of $D$ with three edges
13, 35 and 51. Embed $(E, \partial E)$ into a punctured torus in another way, and
attach to $\partial E$ a hexagonal 2-cell with three edges 13, 35 and 51 included, then
another embedding of $K_{7}$ in a torus can be constructed. By Uniqueness Theo-
rem for toroidal graphs [2], these two embeddings of $K_{7}$ are equivalent to the
unique triangular embedding $T(7,2,1)$ .

Since any two faces of $T(7,2,1)$ are transferable by a symmetry on the
torus, there is an isomorphism between the two embeddings of $K_{7}$ which sends
the face 135 onto 135, and hence which sends the hexagon 254163 onto 254163.
Since the permutation (246) (135) induces a symmetry of the original embedding
of $(E, \partial E)$ , that is, of the embedding of $G_{3}$ with the inside of the hexagon $\partial E$

deleted, any two embedding of $(E, \partial E)$ in a punctured torus are equivalent in
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the labeled sense.
Therefore, $G_{3}$ is uniquely embeddable in a torus and has only the embedding,

shown in Fig. 7, which is not faithful in a torus.
Starting from the above graphs, we shall construct infinitely many examples:

Theorem 3.5. There exist an infinite number of 5-connected toroidal triangu-
lations which are not uniquely embeddable in a torus, and ones which are not
faithfully embeddable in a torus.

Proof. In Fig. 6 and 7, fill each face inside the hexagon 254163 with the
configuration of Fig. 8(a) or (b), according to whether or not the face meets the
hexagon in an edge. (The bottom bold edge in Fig. 8(a) has to coincide with an
edge on the hexagon.) Repeating this process, we shall create two inflnite series

Fig. 8(a). Fig. 8(b).

beginning from $G_{1}$ and from $G_{3}$ . By the same logic as above, we can conclude
that each graph belonging to the former and latter series is not uniquely and is
not faithfully embeddable in a torus, respectively. All of those graphs have no
cycle of length 4 which bounds a 2-cell containing at least one vertex in the
torus. This implies that they are 5-connected. $\square $

The two embeddings in Klein bottles as given in Fig. 9(a) and (b) are ones
of two isomorphic 5-connected graphs $G_{4}$ and $G_{5}$ , respectively. In either graph,
the labeled vertices $0,1,2,3,4,5$ , but 6, are skew and all vertices inside the
hexagon 125634 are not skew. Thus, there is a unique isomorphism between $G_{4}$

and $G_{5}$ which sends necessarily $0,1,2,3,4,5,6$ to the vertices with the same
labels. Since 023 bounds a face in $G_{4}$ but does not in $G_{5}$ , the isomorphism
cannot extend to a homeomorphism between Klein bottles. Therefore, these
embeddings are not equivalent and $G_{4}$ or $G_{5}$ is not uniquely embeddable in a
Klein bottle.

Fig. 9(a). Fig. 9(b).
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The graph $G_{6}$ in Fig. 10 is 5-connected and has

$0$ and 5 fixing the other. Since the vertex 2 has
degree 7, this interchanging cannot be realized by a

an automorphism which interchanges
$onlytwot$

vertices

$oo2\iota\ovalbox{\tt\small REJECT}_{4}^{7}0_{6}^{34}os_{3}2t$

dihedral action of order 14 on seven neighbors of 2.
Thus, such an automorphism is not a symmetry of
any embedding of $G_{6}$ in a Klein bottle and hence $G$

Fig. 10
is not faithfully embeddable in a Klein bottle.

To create an infinite number of examples, fill each face of $G_{4}$ inside the
hexagon 125634 and of $G_{6}$ inside 124367 with the configulations in Fig. 8(a) and
(6) under the same rule as in the proof of Theorem 3.5.

Theorem 3.6. There exist an infinite number of 5-connected Klein-bottlal
triangulations which are not uniquely embeddable in a Klein bottle and ones which
are not faithfully embeddable in a Klein bottle. $\square $

4. Splitting and sewing of embeddings

Here we shall develop a method to produce those graphs which are are not
uniquely or not faithfully embeddable in a closed surface. Roughly speaking,
we shall construct such graphs from graphs with peripheral cycles whose unique-
ness and faithfulness are recognized, sewing them together along their peripheral
cycles.

Let $(C_{1}, \partial G_{1})$ and $(G_{2}, \partial G_{2})$ be two graphs with isomorphic peripheral cycles,
and let $\phi:\partial G_{2}\rightarrow\partial G_{1}$ be an isomorphism. Then we denote by $G_{1}U_{\phi}G_{2}$ the graph
obtained from $(G_{1}, \partial G_{1})$ and $(G_{2}, \partial G_{2})$ by sewing them together along their
peripheral cycles via $\phi$ . That is, each point $x$ on $\partial G_{g}$ is identified with the
point $\phi(x)$ on $\partial G_{1}$ in $G_{1}\bigcup_{\phi}G_{2}$ . We call such $\phi$ a sewing map.

If we choose various sewing maps, then a lot of graphs can be constructed
from two graphs with peripheral cycles. Of course, isomorphic graphs will be
often produced:

Proposition 4.1. Let $(G_{1}, \partial G_{1})$ and $(G_{2}, \partial G_{2})$ be two graphs with peripheral
cycles, and let $\phi,$ $\phi:\partial G_{2}\rightarrow\partial G_{1}$ be two sewing maps. If there exist automorphisms
$\sigma\in Aut(G_{1}, \partial G_{1})$ and $\tau\in Aut(G_{2}, \partial G_{2})$ such that $\sigma\circ\phi=\phi\circ\tau|_{\partial G_{2}}$, then $G_{1}\bigcup_{\phi}G_{2}$ and
$G_{1}\bigcup_{\psi}G_{2}$ are isomorphic. If there is an isomorphism between $G_{1}U_{\phi}G_{2}$ and $G_{1}\bigcup_{\psi}G_{2}$

which sends $\partial G_{2}$ onto $\partial G_{2}$ , then the converse is also true. $\square $

Now we shall sew up two embeddings of graphs with peripheral cycles.
Let $f_{1}$ : $(G_{1}, \partial G_{1})\rightarrow(F_{1}^{2}, \partial F_{1}^{2})$ and $f_{2}$ : $(G_{2}, \partial G_{2})\rightarrow(F_{2}^{2}, \partial F_{2}^{2})$ be two embeddings, and
let $\phi:\partial G_{2}\rightarrow\partial G_{1}$ be a sewing map. Identify each point $x$ on $\partial F_{I}^{2}$ with $f_{1}\cdot\phi\cdot f_{2}^{-1}(x)$

and denote the resulting closed surface by $F^{2}$ . Then we obtain a well-defined
embedding $f_{1}\bigcup_{\phi}f_{2}$ : $G_{1}\bigcup_{\phi}G_{2}\rightarrow F^{2}$ so that $f_{1}\bigcup_{\phi}f_{2}(x)=f_{i}(x)$ if $x\in F_{\ell}^{2}$ . Note that
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the homeomorphism type of $F^{2}$ does not depend on the choice of sewing maps.

Proposition 4.2. Let $f_{1}$ : $(G_{1}, \partial G_{1})\rightarrow(F_{1}^{2}, \partial F_{1}^{2})$ and $f_{2}$ : $(G_{2}, \partial G_{2})\rightarrow(F_{2}^{2}, \partial F_{2}^{2})$ be
two embeddings from graphs with Pertpheral cycles into surfaces, and let $\phi$ ,
$\psi:\partial G_{2}\rightarrow\partial G_{1}$ be two sewing maps. If there exist automorPhisms $\sigma\in Sym(f_{1})$

and $\tau\in Sym(f_{2})$ such that $\sigma 0\phi=\phi\circ\tau|_{\partial G_{2}}$ , then $f_{1}\bigcup_{\phi}f_{2}$ and $f_{1}\bigcup_{\psi}f_{2}$ are equiv-
alent. If there is a homeomorPhism $h:F^{2}\rightarrow F^{2}$ which maps $f_{1}\bigcup_{\phi}f_{2}(\partial G_{g})$ onto
$f_{1}\bigcup_{\psi}f_{2}(\partial G_{2})$ and induces an isomorphjsm between the image of $f_{1}U_{\phi}f_{2}$ and $f_{1}\bigcup_{\psi}f_{2}$ ,

then the converse is also true. $\square $

Let $G$ be a graph and let $G_{1},$ $G_{2}$ be two subgraphs of $G$ such that $G_{1}\cap G_{2}$

consists of a disjoont union of cycles, denoted by $\partial G_{1}$ and also by $\partial G_{2}$ . An
automorphism $\sigma:G\rightarrow G$ is said to split (with respect to $\{G_{1},$ $G_{2}\}$ ) if $\sigma(G_{1})=G_{1}$

and $\sigma(G_{2})=G_{2}$ . An embedding $f:G\rightarrow F^{2}$ of $G$ into a closed surface $F^{2}$ is said
to split (with respect to $\{G_{1},$ $G_{2}\}$ ) if $F^{2}$ decomposes into two subsurfaces $F_{1}^{2}$ and
$F_{2}^{2}$ so that $F_{1}^{2}\cap F_{2}^{2}=\partial F_{i}^{2}$ and $f|_{G\ell}$ induces an embedding $f_{i}$ : $(G_{i}, \partial G_{\ell})\rightarrow(F_{1}^{2}, \partial F_{\ell}^{2})$

$(i=1,2)$ . Then we say that $f$ split into $f_{1}$ and $f_{2}$ and write it by $f=f_{1}Uf_{2}$ .
Lemma 4.3. Let $G=G_{1}\cup G_{2}$ be a connected graph with $G_{1}\cap G_{2}=\partial G_{t}(i=1,2)$

disjoint cycles. SuPpose that all automorphisms of $G$ and all embeddings of $G$

into a closed surface $F^{2}=F_{1}^{2}\cup F_{l}^{2}$ split and suPpose that $(G_{1}, \partial G_{1})$ is uniquely and
faithfully embeddable in $F_{1}^{2}$ and $(G_{2}, \partial G_{2})$ is uniquely embeddable in $F_{2}^{2}$ . SuPpose
that an embedding $f$ : $G\rightarrow F^{2}$ splits into $f_{1}$ : $(G_{1}, \partial G_{1})\rightarrow(F_{1}^{2}, \partial F_{1}^{2})$ and $f_{2}$ : $(G_{2}, \partial G_{2})$

$\rightarrow(F_{2}^{2}, \partial F_{2}^{2})$ . Then:

(i) $G$ is uniquely embeddable in $F^{2}$ if and only if for any automorphism
$\phi\in Aut(G_{2}, \partial G_{2})-Sym(f_{2})$ , there exist automorphisms $\sigma\in Aut(G_{1}, \partial G)$ and
$\tau\in Sym(f_{2})$ such that a $|_{\partial G_{1}}=\psi 0\tau|_{\partial G_{2}}$ .

(ii) $f$ is faithful if and only if for any automorphism $\tau\in Aut(G_{2}, \partial G_{2})$

$-Sym(f_{g})$ , there is no automorphism $\sigma\in Aut(G_{1}, \partial G_{1})$ such that $\sigma|_{\partial G_{1}}$

$=\tau|_{\partial G_{2}}$ .
Proof. (i) From all of hypotheses, we conclude that any embedding of $G$

in $F^{2}$ can be obtained as $f_{1}\bigcup_{\psi}f_{2}$ with sewing map $\psi:\partial G_{2}\rightarrow\partial G_{1}$ . We have to
choose a sewing map $\phi$ so that $G_{1}\bigcup_{\psi}G_{2}$ is isomorphic to $G=G_{1}\bigcup_{ia}G_{2}$ with
sewing map the identity map. Thus, it follows from Proposition 4.1 that for
some $\sigma\in Aut(G_{1}, \partial G_{1})$ and $\tau\in Aut(G_{2}, \partial G_{2})$ ,

$\sigma|_{\partial G_{1}}=\psi\circ\tau|_{\partial G_{1}}$ ,
and hence

$\sigma\circ\tau^{-1}|_{\partial G_{1}}=\psi\circ id_{G_{2}}|_{\partial G_{2}}$ .
This implies that $G_{1}\bigcup_{\psi}G_{2}$ and $G_{1}\bigcup_{\tau^{-1}}G_{2}$ are isomorphic via an isomorphism
which splits. Thus, a sewing map $\psi$ may be assumed to extend to an autc-
morphism of $(G_{2}, \partial G_{2})$ . We use the same symbol $\psi$ for the extension of $\psi$
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$(\psi\in Aut(G_{2}, \partial G_{2}))$ .
By Proposition 4.2, all embeddings of $G$ in $F^{2}$ are equivalent to $f_{1}\cup f_{2}$ with

sewing map the identity map, that is, $G$ is uniquely embeddable in $F^{2}$ if and
only if for any automorphism $\psi\in Aut(G_{2}, \partial G_{2})$ , there exist automorphisms
$\sigma\in Sym(f_{1})=Aut(G_{1}, \partial G_{1})$ and $\tau\in Sym(f_{2})$ such that $\sigma|_{\partial G_{1}}=\phi\circ\tau|_{\partial G_{2}}$ . When $\psi$

belongs to $Sym(f_{s})$ , then we can take the identity map of $\partial G_{1}$ as $\sigma$ and $\psi^{-1}$ as
$\tau$, and so the above criterion is automatically true for $\psi$ . Thus, the range of $\psi$

may be restricted to $Aut(G_{g}, \partial G_{2})-Sym(f_{2})$ .
(ii) Since all automorphisms of $G$ split, each $\rho\in Aut(G)$ can be regarded as

a pair of $\sigma\in Aut(G_{1}, \partial G_{1})$ and $\tau\in Aut(G_{2}, \partial G_{2})$ for which $\sigma|_{\partial G_{1}}=\tau|_{\partial G_{2}}$ ;

$Aut(G)=\{(\sigma, \tau):\sigma\in Aut(f_{1}), \tau\in Aut(f_{2}), \sigma|_{\partial G_{1}}=\tau|_{\partial G_{2}}\}$ .
If $\rho$ belongs to $Sym(f)$ , then $\sigma$ and $\tau$ belong to $Sym(f_{1})$ and $Sym(f_{2})$ , respec-
tively. Thus,

$Sym(f)=\{(a, \tau):\sigma\in Sym(f_{1}), \tau\in Sym(f_{2}), \sigma|_{\partial G_{1}}=\tau|_{\partial G_{2}}\}$ .
Since $f_{1}$ is a faithful embedding by the hypothesis for $(G_{1}, \partial G_{1})$ , $Sym(f_{1})=$

$Aut(G_{1}, \partial G_{1})$ and hence $Aut(G)$ coincides with $Sym(f)$ if and only if no member
of $Aut(G_{2}, \partial G_{\epsilon})-Sym(f_{2})$ is compatible with an automorphism of $(G_{1}, \partial G_{1})$ . That
is the conclusion of (ii). $\square $

Here we should reduce the above abstract statement into an applicable type
of a theorem, adding a condition which ensures the splittability of automorphisms
and embeddings of a graph:

Theorem 4.4. Let $G$ be a triangulation embedded in a closed surface $F^{2}$ and
let $G_{2}$ be the subgraph induced by all skew vertices in G. Supp0se that:

(i) $G_{2}$ is isomorphic to the complete graph $K_{6}$ with six vertices.
(ii) A hamiltonian cycle $\partial G_{2}$ of $G_{2}$ separates $F^{2}$ into $F_{1}^{2}$ and $F_{2}^{2}$ .
(iii) $F_{2}^{2}$ is a punctured torus and $F_{2}^{2}\cap G=G_{2}$ .

Let $G_{1}$ denote $F_{1}^{2}\cap G$ . Then if $G_{1}$ has an automorphism of period 2 which reflects
$\partial G_{1}$ , then $G$ is not faithfully embeddable in $F^{2}$ . Otherwise, $G$ is not uniquely
embeddable in $F^{2}$ .

Proof. Check the conditions of Lemma 4.3 for this $G$ . By the skewness
of vertices, each automorphism of $G$ splits into an automorphism of $(G_{1}, \partial G_{1})$

and of $(G_{2}, \partial G_{2})$ , and the restriction $f|_{G_{1}}$ of each embedding $f:G\rightarrow F^{2}$ extends
to an embedding $h:F_{1}^{2}\rightarrow F^{2}$ . When $F_{1}^{2}$ is non-orientable, then there might be
the possibility for $F^{2}-F_{1}^{2}$ and $F^{2}-h(F_{1}^{2})$ not to be homeomorphic.

If they were not, then the closure of $F^{2}-h(F_{1}^{2})$ would be a punctured Klein
bottle which admits an embedding of $(K_{6}, \partial K_{6})$ with peripheral hamiltonian cycle
$\partial K_{6}$ . Cap off its boundary with a 2-cell including the seventh vertex, and join
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the vertex to all six vertices on $\partial K_{6}$ . Then an embedding of the complete graph
$K_{?}$ in a Klein bottle could be obtained. It is however contrary to the fact that
$K_{7}$ is not embeddable in a Klein bottle. (By the results in [5], every 6-regular
Klein-bottlal graph has at least 9 vertices.) Therefore, both $F^{2}-F_{1}^{2}$ and $F^{2}-h(F_{1}^{2})$

are homeomorphic to a punctured torus, and $f$ splits.
Since $(G_{1}, \partial G_{1})$ has no skew face, it is uniquely and faithfully embeddable

in $F_{1}^{2}$ . The uniqueness of embedding of $(G_{2}, \partial G_{2})$ can be concluded from that
of $K_{7}$ . First construct embeddings of $K_{7}$ in tori from two embeddings of $(G_{2}, \partial G_{2})$

in punctured tori by capping off the boundaries with 2-cells and adding new
vertices adjacent to all vertices on each $\partial G_{2}$ . Since $K_{7}$ is uniquely embeddable
in a torus, there is a homeomorphism $h$ between the two tori which carries one
embedding of $(G_{2}, \partial G_{2})$ onto the other. Moreover, $h$ can be assumed to send one
of the additional vertices to the other since $K_{7}$ is symmetrically embeddable in
a torus. Then the restriction of $h$ to the punctured tori makes the given two
embeddings of $(G_{2}, \partial G_{2})$ equivalent.

Now we have found all of the hypotheses of Lemma 4.3. What to do next
is to determine $Aut(G_{2}, \partial G_{2})-Sym(f_{2})$ . Label the six vertices of $(G_{2}, \partial G_{2})$ with
1, 2, 3, 4, 5, 6 according to their cyclic order on $\partial G_{2}$ . Then
$Aut(G_{2}, \partial G_{2})$ is the dihedral group of order 12 generated by

of index 2 generated by (123456). (See Fig. 11, where$(26)(35)\partial G_{2}isand(l2)(36)(45),andindicatedbyboldedges.)Sym(f_{2})Thusistheallmemberofcyclicsubgroup$
$51\ovalbox{\tt\small REJECT}_{5}^{\tau}2l32$

$Aut(G_{2}, \partial G_{2})-Sym(f_{2})$ are listed up as the six reflections of
$\partial G_{2}$ ; namely (26)(35), (12)(36)(45), (13)(46), (23)(14)(56), (24)(15)

Fig. 11and (34)(25)(16).
Suppose that there is an automorphism $\sigma$ of $(G_{1}, \partial G_{1})$ which reflects $\partial G_{1}$ .

Then $\sigma|_{\partial G_{1}}$ coincides with one of the above six reflections none of which
extends to a symmetry of $f_{2}$ . By (ii) in Lemma 4.3, $G$ is not faithfully embedded
in $F^{2}$. Since our argument has proceeded for an arbitrary embedding of $G,$ $G$

is not faithfully embeddable in $F^{2}$ .
Now suppose that there is no automorphism of $(G_{1}, \partial G_{1})$ which reflects $\partial G_{1}$ .

Then none of the six reflections listed above extends to an automorphism of
$(G_{1}, \partial G_{1})$ and hence none of them satisfies the criterion of (i) in Lemma 4.3.
Thus, $G$ is not uniquely embeddable in $F^{2}$ . $\square $

We shall call the unique embedding of $(K_{6}, \partial K_{6})$ in a punctured torus or
the graph itself the skew handle of $K_{6}$ . As all orientable closed surfaces are
constructed from a sphere by attaching handles, the skew handle of $K_{6}$ will play
a role in creating a lot of graphs which are not uniquely embeddable and ones
which are not faithfully embeddable in a given orientable surface.

On the other hand, all non-orientable closed surfaces are obtained as a
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sphere with several cross-caps added. Then consider the
unique embedding of $(K_{5}, \partial K_{5})$ with hamitonian peripheral
cycle $\partial K_{5}$ in a M\"obius band or a cross-cap and call it
the skew cross-cap of $K_{6}$ . Notice that the skew cross-cap
of $K_{6}$ is faithfully embedded in a M\"obius band, illustrated
in Fig. 12, in contrast with the skew handle of $K_{6}$ not
being faithfully embedded. Fig. 12.

Proposition 4.5. Let $G$ be a triangulation embedded in a non-orientable
closed surface $F^{2}$ with splitting $G=G_{1}\cup G_{2}$ such that $G_{1}\cap G_{2}$ is a cycle, denoted
by $\partial G_{1}$ and also by $\partial G_{2}$ , and that $(G_{2}, \partial G_{2})$ is isomorphic to $(K_{5}, \partial K_{5})$ and is
induced by all skew vertices of G. Then $G$ is uniquely and faithfully embedded
in $F^{2}$.

Proof. Let $F_{1}^{2}$ and $F_{2}^{2}$ be the subsurface of $F^{2}$ where $(G_{1}, \partial G)$ and $(G_{2}, \partial G_{2})$

are embedded respectively and let $f:G\rightarrow F^{2}$ be another embedding of $G$ into $F^{s}$.
Then $f$ is also triangular. Since $(G_{1}, \partial G)$ has no skew vertex, $f|_{G_{1}}$ extends to
an embedding $h:F_{1}^{2}\rightarrow F^{2}$ . (Each vertex on $\partial G_{1}$ is skew in $G$ but is not in
$(G_{1}, \partial G_{1}).)$ In this case, the M\"obius band $F_{2}^{2}$ is homeomorphic to $h(F_{2}^{2})$ and $h$

extends to a homeomorphism of the whole of $F^{2}$ which realizes $f$ since the
skew cross-cap of $K_{5}$ is uniquely and faithfully embeddable in a M\"obius band.
Thus, $G$ is uniquely and faithfully embeddable in $F^{2}$ . $\square $

It is easy to generalize our arguments above for triangulations which include
more than one skew handles and skew cross-caps.

Corollary 4.6. Let $G$ be a triangulation of a closed surface $F^{2}$. Suppose
that the subgraph of $G$ induced by all skew vertices consists of a disjoin union of
several skew handles of $K_{6}$ and skew cross-caps of $K_{5}$ . If there is an automor-
phism of $G$ which reflects some peripheral cycles of the skew handles, then $G$ is
not faithfully embeddable in $F^{2}$ . Otherwise, $G$ is not uniquely embeddable in
$F^{2}$ . $\square $

The skew cross-cap cannot be used alone to produce graphs not uniquely or
not faithfully embeddable in a surface, but it is available to increase the non-
orientable genus of graphs by one. What we should do next is to discuss the
connectivity of graphs including several skew handles of $K_{6}$ or skew cross-caps
of $K_{5}$ and to find out infinitely many candidates for $G_{1}$ in Theorem 4.4.

5. n-Path-splitting of n-connected graphs

Here we shall.define a new operation to transform a graph without changing
its connectivity, in order to create a lot of n-connected graphs from one. The
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n-vertex-splitting is known as one of such operations and is useful to make
many graphs embedded in a common surface. However, we want now one
which increases the genus of a graph aggressively.

Let $G$ be a graph and $Q$ a path, given as a sequence $\{a, x_{1}, \cdots , x_{k}, b\}$ of
vertices in $G$ , which joins two vertices $a$ and $b$ at distance $k+1$ . First, remove
all of inner vertices $x_{1},$

$\cdots$ , $x_{k}$ of $Q$ from $G$ and join $a$ to $b$ by two new paths
$Q_{1}$ and $Q_{2}$ , respectively given as $\{a, x_{11}, \cdots x_{1k}, b\}$ and $\{a, x_{21}, \cdots , x_{2k}, b\}$ . Next,
add new edges $x_{1i}x_{2j}(|i-j|\leqq 1)$ and join
each neighbor $w\in N(x_{i})$ of $x_{i}$ to precisely
one of $x_{1\ell}$ and $x_{2i}(i=1, \cdots k)$ so that
both $x_{1i}$ and $x_{2i}$ have degree at least $n$ in
the resulting graph $G^{\prime}$. This procedure
to transform $G$ into $G^{\prime}$ is called n-path-
splitting along Q. (See Fig. 13.) The
choice of $x_{1i}$ or $x_{2i}$ to be jointed to $w$

gives rise to the ambiguity of n-path-
splitting along $Q$ . Note that we require
$Q$ to be one of the shortest paths between n-path-splitting
$a$ and $b$ . Fig. 13.

Proposition 5.1. Every graph obtained from an n-connected graph by n-path-
spljtting along a path is also n-connected.

Proof. Let $G$ be an n-connected graph and $G^{\prime}$ a graph obtained from $G$

by n-path-splitting along a path $Q$ in G. (We use the same notation as above.)
Let $p:G^{\prime}\rightarrow G$ be the canonical projection for which $p(x_{1i})=p(x_{2i})=x_{i}(i=1$ ,
.., , $k$). Suppose that the removal of less than $n$ vertices, say $U=\{u_{1}, \cdots , u_{k}\}$

$(k<n)$ , separates $G^{\prime}$ into two disjoint non-empty subgraphs $H_{1}$ and $H_{2}$ , that is,
$G^{\prime}$ is not n-connected and $G^{\prime}-U=H_{1}\cup H_{2}$ . Set respectively;

$X=\{x_{1}, \cdots x_{k}\}$ ,

$X_{1}=\{x_{11}, \cdots x_{1k}\}$ ,

$X_{2}=\{x_{21}, \cdots x_{2k}\}$ .
Then we have

$G-p(U)=(p(H_{1})-p(U)\cap X)\cup(p(H_{2})-p(U)\cap X)$ .
Since $x_{1i}$ and $x_{2i}$ are adjacent, they do not belong to $H_{1}$ and $H_{2}$ separately

if both of them remain in $G^{\prime}-U$ . This implies that $(p(H_{1})-p(U)\cap X)$ and
$(p(H_{2})-p(U)\cap X)$ are disjoint from each other. Since $G$ is n-connected, $G-p(U)$

is connected and hence one of $p(H_{1})-p(U)\cap X$ and $p(H_{2})-p(U)\cap X$ must be
empty, say $p(H_{1})-p(U)\cap X$. In other words, $H_{1}$ is contained in the subgraph
$\langle X_{1}\cup X_{2}\rangle$ induced by $X_{1}$ and $X_{2}$ in $G^{\prime}$ .
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If both $x_{1i}$ and $x_{2i}$ belonged to $H_{1}$ , then $p(H_{1})-p(U)\cap X$ would contain $x_{t}$

and would be non-empty. Thus, at most one of $x_{1\ell}$ and $x_{2i}$ belongs to $H_{1}$ and
so we may assume that $ H_{1}\subset\langle X_{1}\rangle$ after renumbering and renaming. Notice that
$\langle X_{1}\rangle$ coincides with $Q_{1}-\{a, b\}$ and does not contain an edge of the form $x_{1i}x_{1j}$

$(|i-j|\geqq 2)$ since $Q$ is chosen to be shortest.
To cut off a path $x_{1i}\cdots x_{1f}(i\leqq j)$ from $G^{\prime}$, one has to remove at least $n-1$

vertices in $N(x_{1i})-\{x_{1i+1}\}$ and one more $x_{1j}$ or $b$ . Thus, $U$ would have to
contains at least $n$ vertices but it is contrary to the hypothesis of $U$. Therefore,
$G^{\prime}$ is n-connected. $\square $

A triangulation including a skew handle of $K_{6}$ or a skew cross-cap of $K_{f}$

can be obtained from a triangulation by adding edges after n-path-splitting along
a path of length 3. However, an arbitrary way of n-path-splitting does not
yield a triangulation in general. We should apply n-path-splitting to a triangu-
lation compatibly with its embedding.

Let $G$ be a triangulation embedded in a closed surface $F^{2}$ and $Q$ a path of
length 3, given as $\{a, x, y, b\}$ which joins two vertices $a$ and $b$ at distance 3.
Assume that the rotations around $x$ and $y$ are presented as

$x$ . a $u\cdots u_{k}yv_{\epsilon}\cdots v_{1}$

$y$. $xu\cdots u_{h}bv_{t}\cdots v_{\iota}$ $(1<k<h, 1<s<t)$ .
First apply 6-path-splitting along $Q$ to $G$ so that $u_{1},$ $\cdots$ , $u_{h}$ are joined to $Q_{1}$

and $v_{1},$
$\cdots$ , $v_{t}$ to $Q_{2}$ after $Q$ splits into two paths $Q_{1}$ and $Q_{2}$ with common ends

and add two new edges $ay_{1}$ and $ay_{2}$ . Then the resulting graph has a skew
cross-cap of $K_{5}$, induced by $\{a, x_{1}, x_{2}, y_{1}, y_{2}\}$ , and can be triangularly embedded
in a non-orientable closed surface with Euler characteristic $\chi(F^{2})-1$ . This pro-
cess is called insertion of a skew cross-cap of $K_{5}$ along a Path $Q$ .

Fig. 14.
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Furthermore, add three edges ab, $bx_{1}$ and $bx_{2}$ so that $\{a, x_{1}, x_{2}, y_{1}, y_{2}, b\}$

induces a complete subgraph. Then the resulting graph has a skew handle of
$K_{6}$ in turn and can be triangularly embedded in a closed surface with Euler

characteristic $\chi(F^{2})-2$ and with the same orientability as $F^{2}$ . This process is

called insertion of a skew hondle of $K_{\epsilon}$ along a path $Q$ .

$\circ$

Insertion of a skew handle of $K_{6}$

Fig. 15.

Corollary 5.2. A graph obtained from a 6-connected triangulation of a closed

surface by insertion of a skew handle of $K_{6}$ or of a skew cross-cap of $K_{5}$ is also

a 6-connected triangulation of a closed surface. $\square $

6. Examples.

Combining our previous arguments with the results in [2] and [5], we shall

construct an infinite number of examples to complete the answer to our problem

in the hyperbolic case. Section 4 gives us a logic to deny the uniqueness or
faithfulness of embedding and Section 5 assures the connectivity of graphs con-
structed below.

First, we shall use the 6-regular toroidal graphs $T(P, q, r)$ , as material for

examples, constructed as follows. First prepare $r+1$ cycles $C_{0},$ $\cdots$ , $C_{r}$ of the

same length $P$ an$d$

, let $u_{ij}$
$(j=,0, \cdots , p-1(mod p))$ be $P$ vertices lying on $C_{\ell}$ in

order. Join each. vert $e\acute{x}u_{ij}(1\leqq i\leqq r-1)$ to $u_{\ell-1j},$ $u_{i-1j-1},$ $u_{t+1j}$ and $u_{i+1j+1}$ , then

the vertices on $C_{0}a_{\wedge}nd\dot{C}_{r}$ have degree 4 and the other 6 in the resulting graph

$H_{r}^{p}$ . We shall caIl $H_{r}^{p}$ the $(p, r)$-drum. Next paste the two end cycles $C_{0}$ and
$C_{r}$ so that $u_{0q}$ is identffied with $u_{r0}$ , then a 6-reguIar graph will be obtained.

This graph is $T(p, q, r)$ and can be triangularly embedded in a torus so that
$C_{0},$ $\cdots$ , $C_{r}$ are placed on the torus in parallel. These parallel cycles $C_{0},$ $\cdots$ , $C_{r}$

are called geodesic cycles of $T(P, q, r)$ .
In [2], the author classified $T(p, q, r)s$, up to isomorphism, with the trans-

lation rule of parameters and showed that if $pr\geqq 10$ , then $T(p, q, r)$ contains no
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skew vertex and hence that it is uniquely and faithfully embeddable in a torus.
Notice that a toroidal graph is 6-connected if and only if it is 6-regular.

Theorem 6.1. Let $G$ be the graph obtaind from the 6-regular toroidal graph
$T(p, q, r)(pr\geqq 10)$ by insertion of $h$ skew handles of $K_{6}(h>0)$ along $h$ paths on
a geodesic cycle of length $p$ in $T(p, q, r)$ so that any two of the skew handles
have distance at least 2. Then $G$ is 6-connected and the genus of $G$ is equal to $h+1$ .
If $2q\equiv-r(mod p)$ then $G$ is not faithfully embeddable in an orientable closed
surface of genus $h+1$ . Otherwise, $G$ is not uniquely embeddable in an orientable
closed surface of genus $h+1$ .

Theorem 6.2. Let $G$ be the graph obtained from the 6-regular toroidal graph
$T(p, q, r)(Pr\geqq 10)$ by insertion of $h$ skew handles of $K_{6}$ and $q$ skew cross-caps of
$K_{5}(h, q>0)$ along $h+q$ paths on a geodesic cycle of length $p$ in $T(p, q, r)$ so that
any two of the skew handles or skew cross-caps have distance at least 2. Then $G$

is 6-connected and the non-orientable genus of $G$ is equal to $2h+q+2$ . If $2q\equiv-r$

$(mod p)$ then $G$ is not faithfully embeddable in a non-orientable closed surface ofgenus $2h+q+2$ . Otherwise, $G$ is not uniquely embeddable in a non-orientable
closed surface of genus $2h+q+2$ .

Proof of Theorem 6.1 and 6.2. Since $T(p, q, r)$ with at least 10 vertices
has no skew vertex, the subgraph of $G$ induced by all skew vertices, in either
theorem, consists of the disjoint union of skew handles and skew cross-caps
inserted. By Corollary 5.2, $G$ is 6-connected. It is easy to evaluate the genus
or the non-orientable genus of $G$ . If we check conditions for the existence of
an automorphism which reflects some peripheral cycles of skew handles, then
we can conclude the theorems from Corollary 4.6.

Such an automorphism of $G$ induces an automorphism of $T(p, q, r)$ leaving
the geodesic cycle along which skew handles and skew cross-caps are inserted
fixed and the automorphism extends to an orientation-reversing self-homeomor-
phism of the torus. This implies that the 6-regular torus graph obtained from
$T(p, q, r)$ by the translation (III) of Theorem $3.6^{*}$ In [2] has the same parame-
ters as $T(p, q, r)$ ; namely

$p=p$

$q\equiv-(q+r)(mod p)$

$r=r$ .
Thus, there is an automorphism of $G$ in question if and only if $2q\equiv-r(mod p)$ . $\square $

Now take the 6-regular Klein-bottlal graphs $Kc(p, k)$ and $Kh(p, k)$ . When
$p$ is even, $Kc(p, k)$ can be constructed from $H_{k}^{p}$ by identify $u_{0j}$ with $u_{0-j}$ and
* Replace the second formula in (V) of Theorem 3.6 [2, p. 172] with $q^{\prime}\equiv\beta r(mod p^{\prime})$ .
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$u_{kj}$ with $u_{k-j}$ $(j\equiv 0, \cdots , p-1(mod p))$ , respectively, on $C_{0}$ and $C_{k}$ . On the
other hand, if $p$ is an odd number $2m+1$ , use the $(p, k-1)$-drum $H_{k-1}^{p}$ and join
$u_{0j}$ to $u_{0j+m}$ and $u_{k-1j}$ to $u_{k-1j+m}$ $(j\equiv 0, \cdots , p-1(mod p))$ , respectively. The
resulting graph is $Kc(p, k)$ . In either case, $Kc(p, k)$ can be triangularly embedded
in a Klein bottle so that the part of its drum lies in an annulus and the two
ends are placed on two cross-caps separately. The latter $Kh(p, k)$ is the 6-regular
graph obtained from $H_{k}^{p}$ by identifying each $u_{0j}$ with $u_{k-j}$ and also can be
embedded in a Klein bottle naturally.

In [5], it has been shown that if $p\geqq 6$ , then both $Kc(p, k)$ and $Kh(p, k)$

are 6-connected and have no skew vertex. The important fact is that the
system of specified cycles, derived from $C_{0},$ $\cdots$ , $C_{k}$ (or $C_{k-1}$), in each of $Kc(p, k)$

and $Kh(p, k)$ is invariant under any automorphism of it. Such a unique system
is called the geodesic 2-factor.

Theorem 6.3. Let $G$ be the graph obtained from the 6-regular Klein-bottlal
graph $Kc(p, k)(p\geqq 6)$ by insertion of $h$ skew handles of $K_{6}$ and $q$ skew cross-cap
of $K_{6}(h>0, q\geqq 0)$ along $h+q$ paths on a comp0nent of the unique geodesic
2-factor in $Kc(p, k)$ so that any two of the skew handles or skew cross-caps have
distance at least 2. Then $G$ is 6-connected and the non-orientable genus of $G$ is
equal to $2h+q+2$ . Furthermore, $G$ is not uniquely or not faithfully embeddable
in a non-orientable closed surface of genus $2h+q+2$, depending on the chmce of
$h+q$ paths.

Proof. There are automorphisms of $Kc(p, k)$ which reflect each cycle of
the geodesic 2-factor. If one choose $h+q$ paths so as to be invariant under such
an automorphism $\sigma$ of $Kc(p, k)$ , then $\sigma$ induces an automorphism of $G$ which
reflects the peripheral cycles of the skew handles and the faithfulness for $G$ is
denied by Corollary 4.6. Otherwise, the uniqueness for $G$ breaks. The restric-
tion of $p\geqq 6$ is one for $Kc(p, k)$ to be 6-connected. $\square $

Theorm 6.4. Let $G$ be the graph obtained from the 6-regular Klein-bottlal
graph $Kh(p, k)$ or $Kc(p, k)(p\geqq 6)$ by insertion of $h$ skew handles of $K_{6}$ and $q$

skew cross-caps of $K_{5}(h>0, q\geqq 0)$ along $h+q$ geodesic paths none of which lies
on the unique geodesic 2-factor so that any two of the skew handles or skew
cross-caps have distance at least 2. Then $G$ is 6-connected and the non-orientable
genus of $G$ is equal to $2h+q+2$ . Furthermore, $G$ is not uniquely embeddable in
a non-orientable closed surface of genus $2h+q+2$ .

Proof. If $G$ had an automorphism which reflects some peripheral cycles of
the skew handles, then it would induce an automorphism of $Kh(p, k)$ or $Kc(p, k)$

which interchanges the geodesic 2-factor and other geodesic walks. This is
contrary to the uniqueness of the geodesic 2-factor of $Kh(p, k)$ or $Kc(p, k)$ . $\square $
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The four theorems above have presented infinitely many graphs which are
not uniquely embeddable and ones which are not faithfully embeddable in each
hyperbolic closed surface $F^{2}$ , orientable or non-orientable, with $\chi(F^{2})\leqq-2$ . The
only remaining case is when the surface is non-orientable and has genus 3.
Since the insertion of the skew handle of $K_{6}$ increases the non-orientable genus
of a graph by two, if we used the same logic as above for this case, we would
have to insert one skew handle of $K_{6}$ to a 6-connected projective-planar triangu-
lation. There is however no 6-connected projective-planar graph since it has a
vertex of degree at most 5. Thus, we have to construct examples for a non-
orientable closed surface of genus 3 in a way different from the other cases.

Let $H_{k}^{6}$ be the (6, k)-drum $(k\geqq 1)$ with $k+1$ cycles $C_{0},$ $\cdots$ , $C_{k}$ of length 6
and identify each $u_{0j}$ with $u_{0-j}$ on $C_{0}$ . Let $(R_{k}, \partial R_{k})$ denote the resulting graph
with peripheral cycle $\partial R_{k}=C_{k}$ . Then $(R_{k}, \partial R_{k})$ can be triangularly embedded
in a M\"obius band and is uniquely and faithfully embeddable there since $(R_{k}, \partial R_{k})$

has no skew vertex.
Sew $(R_{k}, \partial R_{k})$ and $(K_{6}, \partial K_{6})$ together along their peripheral cycles. Not

depending on the choice of a sewing map, a unique graph $G_{k}$ will be obtained
up to isomorphism.

Theorem 6.5. The graph $G_{k}(k\geqq 1)$ is a 6-connected triangulation of a non-
orientable closed surface of genus 3 and is not faithfully embeddable there.

Proof. Since any automorphism of $H_{k}^{6}$ which reflects each $C_{\ell}$ induces an
automorphism of $(R_{k}, \partial R_{k})$ which reflects $\partial R_{k}$ . Thus, $G_{k}$ satisfies the conditions
of Corollary 4.6 and hence $G_{k}$ is not faithfully embeddable. To see that $G_{k}$ is
6-connected, check that there is no cycle of length 5 which bounds a 2-cell
including at least one vertex. $\square $

Let $x_{i}(i=0,1,2,3,4,5)$ be the six vertices lying on $\partial R_{k}$ in this order and
let $N_{k}$ denote the graph obtained from $R$ , by identify $x_{0}$ with $x_{s}$ and adding
four edges $x_{1}x_{4},$ $x_{1}x_{5},$ $x_{2}x_{4},$ $x_{2}x_{5}$ . Then:

Theorrem 6.6. The graph $N_{k}(k\geqq 2)$ is 6-connedted with non-orientable genus
3, and is not uniquely embeddable in a non-orientable closed surface of genus 3.

Proof. To check the connectivity of $N_{k}$ is a routine work. Since $N_{k}$ has
$6k+2$ vertices and $18k+7$ edges, if it is embedded in a non-orientable closed
surface of genus $q$ with $F$ faces, then

$6k+2-(18k+7)+F=2-q$

$2(18k+7)\geqq 3F$ .
From these, it follows that $q\geqq\frac{7}{3}$ and hence the non-orientable genus of $N_{k}$ is
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equal to or more than 3. In fact, $N_{k}$ can be embedded into a non-orientable
closed surface of genus 3 in two ways below.

In the obvious way, $R_{k}$ with $x_{0}$ and $x_{\epsilon}$ identified can be embedded in a
projective plane triangularly so that two triangles $x_{0}x_{1}x_{2}$ and $x_{0}x_{4}x_{S}$ bound faces.
To obtain a non-orientable closed surface of genus 3, join those faces by a tube.
Fig. 16(a) and (b) show instruction for such tubing in two different ways; attach
a tube to two circles in triangles so that the numbering along the circles is
coherent.

Fig. 16(a). Fig. 16(b).

Suppose that the two embeddings (a) and (b) by tubing above were equiva-
lent. Then there would be a homeomorphism between two non-orientable closed
surfaces of genus 3 which carries $N_{k}$ onto $N_{k}$ . Necessarily, this homeomorphism
would send the triangular part of one to that of the other and the cycle $C_{\ell}$ onto
$C_{i}$ $(i=0, \cdots , k)$ . However, $C_{k-1}$ separates the surface into a M\"obius band and
a punctured torus in (a) while into a M\"obius band and a punctured Klein bottle
in (b). Thus, it is impossible for such a homeomorphism to exist and $N_{k}$ has
at least two inequivalent embeddings in a non-orientable closed surface of genus
3. $\square $

Let $G$ be a 6-connected graph embedded in a non-orientable closed surface
$F^{2}$ of genus 3, and suppose that $G$ splits into $H_{1}$ and $H_{2}$ along a cycles $C$ so
that each vertex $v$ on $C$ has degree at least 4 in both $H_{1}$ and $H_{2}$. One of $H_{1}$

and $H_{2}$, say $H_{1}$ , is embedded in a subsurface of $F^{2}$ which is homeomorphic to a
M\"obius band. Sew up two copies of the embedding of $H_{1}$ in the M6bius band by
the identity map of $C$, then there will be obtained an embedding of $H_{1}\cup H_{1}$ in
a Klein bottle. By the choice of $C$, the minimum degree of $H_{1}UH_{1}$ is equal to
or more than 6. Since the mean value of degrees of vertices in a Klein-bottlal
graph does not exceed 6, $H_{1}\cup H_{1}$ is 6-regular Klein-bottle graph and $C$ lies there
as a $gdesic$ cycle. We conclude, from the classification of 6-regular Klein-bottle
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graphs, that $H_{1}UH_{1}$ is equivalent to $Kc(p, k)$ for some $p$ and $k$ and hence that
$H_{1}$ is isomorphic to $R_{k}$ , defined above.

This phenomena causes the difficulty in construction of non-uniquely embed-

dable 6-connected triangulations of a non-orientable closed surface of genus 3.

Since $(R_{k}, \partial R_{k})$ has automorphisms which reflect $\partial R_{k}$ , our criterions for the

non-uniqueness of embedding in Section 4 cannot be used.
To construct 5-connected triangulations of non-orientable genus 3 whose

embeddings are not unique or not faithful, insert one skew cross-cap of $K_{5}$

inside the hexagons of the toroidal or Klein-bottlal graphs, $G_{1}$ to $G_{6}$ , presented

in Section 3.

Proposition 6.7. There are an infinite number of 5-connected triangulations

which are not uniquely embeddable and ones which are not faithfully embeddable

in a non-orientable closed surface of genus 3. $\square $

By this proposition, the unknown answer “ ? ‘’ in the fifth line of Table 2

is “ 7” or “ 6”. Are there infinitely many 6-connected triangulations not uniquely

embeddable in a non-orientable closed surface of genus 3 ?
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