YokoHAMA MATHEMATICAL
JourNaL VoL. 33, 1985

INFINITE DIVISIBILITY AND RANDOM SUMS
OF RANDOM VECTORS

By
E. OMEY

(Received August 2, 1984)

ABSTRACT In the first part of this paper we prove a theorem relating the
asymptotic behavior of a .multivariate infinitely divisible d.f. to that of its
Levy measure.

The second part of the paper is devoted to subordination and more gen-
erally to random sums of random vectors. Using a sequence of first passage
times we then apply our results to obtain a multivariate limit theorem for
the partial maxima of normed sums of random vectors.

1. Introduction.

Although there is an extensive literature on one-dimensional infinitely divis-
ible (i. d.) probability distributions, there is much less available on the multivariate
case. For an investigation of i.d. distributions in R} we refer to [6].

Now suppose F is a d.f. in R? such that F (%2)>0 for all # in the interior
of R:. Then [6, Th. 2.4] F is i.d. if and only if there is a nonnegative measure
v on R} such that for 7=1, ---, n and all e R?,

S;’,, i—ZekiyiF(d”:S" _,_;ERQF(x—y)yiv(dy) .

v"z‘

Moreover under these conditions we have v{ y | y—Z€R?} <o for all # in the
interior of R?.

We will call v the Lévy measure of F. In the first part of this paper we
want to compare the asymptotic behavior of F with that of y. A typical example
of an i.d. d.f. F is the compound Poisson distribution, i.e. for a d.f. G on R®
and A>0 we have

(L.1) F(y=e+ 3 2 gy
k=0 k!
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where G** denotes the k-th convolution of G. Then Fisi.d. with Lévy measure

v(+)=24G(-). :
The second part of the paper will be devoted to generahzatlons of (.1}
Among others we will examine asymptotlcs between F and G where

(1.2) F()= 3 a,G*(:)

for some discrete probability distribution {a.} ~.

Basic in our study are the papers of Stam and Embrechts et al. [2].
In section 4 finally we apply our results to obtain a multidimensional limit theo-
rem for maxima of normed sums.

2. Asymptotics for 1. D. Distributions.
We start from the following one-dimensional result obtained in [2].
Lemma 2.1. Suppose F is i.d. on RY with Lévy measure v, then for a>0
the following statements are equivalent:

(i) 1—F(x)ERV_.
(ii) »([x, ©)ERV_,

Both imply

(iii) 1—F(x)~u([x, ) (x—>). W
Recall that a measurable and positive function f:Ri—R% is regularly varying
with index a€R (f€RV,) if for each x>0, lzim f(tx)/f(®)=x* A sequence of

positive numbers {a.}~ belongs to RV, if f(x):=ai;nERV, For i.d. distri-
butions in R?, lemma 2.1 generalises as follows:

Thorem 2.2. Suppose F is i.d. on R} with Levy measure v. For a>0, let
h(x)ERV_., and for %>0, define A@)={acR? | a<i} and AY(Z)=R3}\NA(Z).
Then the following statements are egnivalent: for a measure A on R%,

. . _FGAYR) . s
(i) for all >0, lzl_tllo—————h(t) =A(A(%)),
Qi) for all #>0, 13ﬂﬁ“—;4gfﬂ=z(Av(x)).

Remark. The measure 2 in the theorem then satisfies
t-2(AY(Z)=AtAY(Z))

for all >0 and #>0. This follows from the regular variation of A.
Before proving the theorem we first state
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Corollary 2.3. Suppose (1.1) holds. If h€RV_,, a>0, the followings tate-
ments are equivalent: for a measure p on R}

(i) for all >0, ltigﬂ%?—)lzp(A”(ﬁ))
.. . . G@AY(z) 1 o s
(ii) for all >0, ltl—I-EW_Tp(A (). m

Proof of For a measure M on R? and for acR?, xR}
define
Mz(x)=M({a€R% | 0=a-a=x})

M=

where a-i#= > a;-u;. Then it follows that if F is i.d. in R} with Levy

4
measure v, then also Fz(x) is i.d. in R} with Lévy measure v3(:). To prove
the theorem it is sufficient to show that (i) (or (ii)) is equivalent to regular
variation of 1—F3(x) (or to regular variation of vz([x, =0))). An application of
Lemma 2.1 then yields the desired result. W.l.o.g. we may and do assume
h(x) decreases with x. Now define the sequence {c.}~x such that mh(cn)=1.
Then (i) is equivalent to

1

(2.1) m(l—F(cnZ))— p(%), say.

Hence if {X, iSN;}={(X}, -, X?), i€N,} is a sequence of i.i.d. random
vectors with d.f. F, with M, :=Max(X}, ---, X%), -+, Max(X¢, -, X3)) it
follows from [4] that holds if and only if Mn/ca converges in distribution
as m—oo, Using Cramer-Wold device this is equivalent to convergence in
distribution of a-Mp,/cm for all ac R?, which in turn is equivalent to regular
variation of 1—Fz(x). ®

3. Subordinated distributions and random sums

Let G be a d.f. on R? and {a,}~ a probability measure on N with a,<l.
The d.f. F where

3.1 F()= 3 a,G*(")

is called subordinate to G with respect to {a,}~. It admits the following prob-
abilistic interpretation. Let {X;, {€N,} be i.i.d. random vectors with d.f. G
and let N, independent of X,, be an integer valued r.v. with P{N=m}=an
(meN). With S(0)=0 and S(m)=X,+ --- +Xn, the random vector S(N) has
d.f. F. In Theorems and 3.2 below we relate an asymptotic behavior of G
to that of F.

In this section we will also consider the following generalization of the
previous situation. Let S(m)=(S'(m), -+, S®(m)) be defined as before and let
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N=(N,, -+, N,) be an N"-valued random vector. In Theorems and we
will examine the asymptotic behavior of the vector (S'(V,), -+, SMN,)). For
results in dimension n=1 we refer to Kimbleton and Stam [8] See also
Teicher and Hagwood and Teicher [5].

We start with the following generalization of [8, Th. 1.4].

Theorem 3.1. Suppose h€RV_,, a>1, k_g_“ﬂa,,:o(h(m)) and suppose that

G, ad.f. on R, and F are related by (3.1). Then for some measure A and all
>0, G satisfies

GUAYR) ...
if and only if F satisfies
 FQAR) -

Here 77=§)0ka,,.

Proof. The d.f. G satisfies (3.2) iff Gz(x) satisfies, for all x>0,
. 1—Gztx)
3.4) 1,1519 ) =p(x), say

Using [8, Th. 1.4] and (3.1), (3.4) holds iff (3.4) holds with Gz (and pu(x))
replaced by F; (and ng(x)). This in turn is equivalent to (3.3). m

If in Th. 3.1, an=1 and a,=0, k+m it follows that is equivalent to
3.3) with F=G*™ and p=m. The assumption that a>1 can also be dropped
in this case.

Proposition 3.2. Let h€& RV _,, a>0. Then G satisfies (3.2) iff for all m=2,

GMMANR)

Proof. Since (3.2) holds iff (3.4) holds it follows that 1—Ggz(x) is regularly
varying. This in turn is equivalent to regular variation of 1—-G%™(x) for all
m=2 [2, Cor. 2]. Since in this case also 1—G¥™(x)~m(1—G3(x)) (x—o0), the
result follows. W

Our next theorem is devoted to the case where 1.2 ka, is not necessarily
=0

finite, in which case Theorem 3.1 is not applicable. We shall prove the follow-
ing general result.

Theorem 3.3. Suppose N=(Ny, -+, N,) is an N"valued random vector, be-
longing to the domain of attraction of a random vector U=(U,, ---, U,), stable
with indices (a3, -, @), 0<a;=1. Assume X,=(X1, ---, X?) is independent of
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N and has values in R} Suppose there exist constants p;>1, L;>0 such that
for x;>0, i1=1, -+, n,

(3.6) x{iP{Xi>x} S Li<oo.

Then if Xy, X, - are i.i.d. and if we set S(0)=0 and S(m)=‘_£1} X, =(S(m), ---,
S™(m)), if follows that (S(N,), ---, S(IN,)) belongs to the domain of attracti on of

a stable random vector V. Moreover Vé(plUI, ooy uaUy) where py=EX} (i=
1’ oo, n).

Proof. Let Y,=(Y}, ---,Y?), =1 be i.i.d. random vectors with Y1=d=(N1,
-, N,) and let M(0)=0, M(m)=Y,+ - +Y,. From the conditions of the
theorem it follows that for some sequences of numbers Ai(m), Bf(m) with
Ai(m)E RVl/ap
M?i(m) M™(m)
AY(m) * A™Mm)
Now choose @, such that max(1/2, 1/p,)<0:<1, i=1, ---, n. From it fol-
lows that EX}{=p, is finite and that
Sim)—pt P
mdi

3.7) — BY(m), - —B"m)=U  (m—co).

0 (m—oo).

Since Mi*(m)— oo and since X, is independent of M(1) it follows that

SM*(m))—p:M*(m) P .
3.8) M im)’s 0 (m—o0).

Also
(M*(m))%
A¥(m)
From [3.7), [(3.8), [(3.9) and Cramer-Wold-device it follows that for a€ R",
m SYM?*(m)) :
§ a; W—ﬂzB (m))

i=1

50 (m—00).

(3.9

i i - i i 04 m
SY{M*(m))—pM*(m)\ (M*(m)) + 3o

& M*(m)
=& ai( (MY(m)) At(m) &1 (

Ai(m) - Bi(m))

= 0+¢=§1 apU; (m—o0),

Again using Cramer-Wold device it follows that as m— oo,
S M (m)) S"Mm™m))
AY(m) A™(m)
which proves the theorem. m

1B (m), -+, pnB"(m))=> V=(uU,, -+, paUn)

If in Th. 3.3, EN,<oo (i=1, -, n) (i.e. Mi(m)/m —> EN; (m—c0)) and if
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X, belongs to the domain of attraction of a stable r.v. U, we shall prove the

following To state the theorem, let us assume that X;, X,, --- are
i.i.d. random vectors such that X, belongs to the domain of attraction of a

stable law U i.e.

(3.10)

( SXi—Bm) B X1—Bm)

Ay T A )=’U

for some sequences A‘(m), Bi(m) with A*m)>0, i=1, .-, n, where U is stable
with indices (ay, -, @,), 0<a;=2 (=1, :--, n).

Now let {R*(m), m=1, =1, -+, n} be any n sequences of N-valued r.v. for
which there exist a sequence {c,}ny and constants r;, 0<r;<co, i=1, -+, n,
such that as m— oo, | '

Ritm) p

) —r; (=1, -, n).

Set bi(m)=B[ric(m)]) and a‘(m)=A[r,c(m)]) (G=1, -, n). | We shall prove

Theorem 3.4. Under the conditions stated above, we have

Rl(m) R™ (m)
2 (Xj—b'(m)) 2 (X7—b™m))
(3.11) = g, I— =2V
a‘(m) a™(m)

where V is an n-dimensional stable r.v., related to U and r; (=1, -+, n).
To prove the theorem we first need the following result of Kimbleton [7].

Lemma 3.5. Under the conditions of the theorem, for i=1, .-, n

R¥(m) [ric(m)]
(X i—bm)— % (X§—bim)
(3.12) = = >0. ®
a‘(m)

It follows from (3.12) and Cramer-Wold device that if all »;=1 (¢=1, ---, n),

then (3.11) holds with VZU. If the r; are different for different i, we need
the following lemma. For simplicity we only state and prove a result in R2

Lemma 3.6. Suppose (3.10) holds for n=2 and with U=(U,, U,) stable with
indices (@, a,) with 0<a,, a,<2. If k;=Fkin) is such that k (m)~c;m (m— oo,
0<e¢y, €< ), them
kp(m) ko (m)

( = Xj—Bm) &5 (Xj—B¥m)
A(m) ’ A*(m)
with E(ei€V1+i7]V2)::SD(clla1$,cl/aeﬂ)¢((cl__.c)llale’(cz_c)llagﬂ)eifpl(C,01)+i7]12g(c,62) where

c=min(c¢y, ¢,), @&, N)=E(e®V1*%U2) and p\(x, 3), psx, ¥) are defined below.

(3-13) ) = V':(Vv Vs) ’

Proof. From (3.10) as is well known it follow that for i=1, 2, A*(m)e RV jaq
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and that

(3.14)

B[ xt])— B[ x]) Kig@ev-1-1) if a;#1

AY[xD)/x Kilogt if a;=1
for some real constants K*.

If we set S‘(m)= ,é X4, b (m)=mB(m), k(m)=min(ky(m), ky(m)) it follows
that the L h.s. of equals

ky ko
[ (SU=bk)  S*k)—b¥(R) (1§+1(X ;= Bki—h) jﬁl(xﬁ“wk*_k”)
_—( Alm) Ax(m) ) AX(m) ’ A¥(m)
+( b'(ki—k)+b'(R)—b'(ky)  b*(ks—k)+b*(k)—b(k,) )
A(m) ’ A*(m)
= :I+I+1,

where if e.g. £=k, the first term in I, and I; should be interpreted as zero.
From if follows that

I,= (c”"‘lﬁ'l, c”"zﬁz)

9
where ¢=min(c,, ¢,) and O'=(0,, 0',)=U.
Now suppose ¢;<c, so that k=k,; for large m. Then from and inde-
pendency we obtain

I,= (0, (c;—c)*2Us)
9
where U,=U, and U, is independent of {f. As to I, from it follows that

0, K3((cy—c)Y 22—}/ a2 —c/22)) if a,#1
I3—=(0, palc, c2))=

Hence

(0, K%((c,—c)log(ce—c)—cslog cot+cloge)) if a,=1.

ISV

and the characteristic function of V has the desired form.
In case c,<c, the result follows in a similar way. Next consider the case
ci=cy,=c. For those m such that k,<k, as before we have I=I,+1I,+I; and

| L= (vl cvaly).
As to I,+1, with ¢(7)=¢(0, 7) we have
kg
> (Xﬁ—B”(kz‘k))) b¥(ky— k)-+b2 k) —b(ky) }})
.| i=E+1 2 2
E(exp{m[ A + AXm)
kz‘—k
b¥(m)———b%(k)—b*(k,)
o (b20m) /A2 (kg—-k)/m .
=(¢m<A:Zm)>e-u](o (m) 1 4%( )) -exp{m m e }

=(i)-(ii) .
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From and k,—k=o(m) it follows that (i)—1 (m— o). Finally from [3.14)
we obtain also (ii)—1. This proves the lemma. ®
Remark. The functions p;(x, y) are defined as
0 x=y
pilx, y)=1 Ki((y—x)"/*i—ylaif xl/ai) if a;#1, x#y
Ki((y—x)log(y—x)—ylog y+xlogx) if a;=1, x#y.
Proof of It follows from that for all a= R",

Rt(m) [rge(m)]
n ]§=31 (X §—b*(m))— jf‘:l (Xj—=b'm))
(3.15) pof:? L > 0.

Also, using lemma 3.6 and Cramer-Wold device it follows that

[rgc (M)](X}— b‘(m))

7 =1
(3.16) 3 a o SV.

Combining [3.15) and [(3.16) proves the theorem. =

4. A multivariate limit theorem for maxima of normed sums

In this section we prove a limit theorem for the maxima of normed sums
of i.i.d. random vectors, with finite mean, that belong to the domain of attrac-
tion of a multivariate stable law U, hereby extending results of Teicher and

Hagwood [10], and Gut [3]
Theorem 4.1. Lot Smy=(Stmy, -+ :szz,,,):jg"f.1 X, where X;=(X}, -, XD),

j=1 are i.i.d. random vectors with positive mean vector p=(g, -+, ptn) and such
that X, belongs to the domain of attraction of a stable law U=(U,, ---, Uy,) stable
with indices B=(B1, -+, Ba)y 1<Bi=2 (i=1, -+, n). Then there exist functions
AYx)E RV, (=1, ---, n) such that for any constant vector a=(ay; **+, a,) in
[0, 1)™ there holds :

P\ [ max S — pm-es < x admm=os]} P{ A\ 10,5 - 2,1}

j=1lisksm R%J

Proof. For each j=1, ---, n and ¢>0 define the stopping rules
T j(c)=inf {m=1:S/(m)>cm*i}.
From [3, Th. 3.3], it then follows that with 4;,=(c/p,)" 279

Tyc) ==

1 as c¢—oo, 1=7=n
Y

4.1)




INFINITE DIVISIBILITY AND RANDOM SUMS OF RANDOM VECTORS 47

Also under the hypothesis of the theorem it follows that for some Ai(x)e RV,
we have

Stm)—mpy, S*m)—mpy,
( Am) T Anm) )=U
and hence, using (4.1) and Th. 3.4 we obtain
Sl(Tl(Cl))“lllTl(Cl) Sn(Tn(Cn))“‘ﬂnTn(Cn)
“.2) =@ ART) )=V
as ¢= min ¢;— oo such that ;~2, (1=7<k=n). Moreover from A,~A1; 1<k=<n),

1sjsn 9
(4.1) and the remark following lemma 3.5 we have V=U. Now for j=1, ---, n
0< ST fey))—c (T c,)%i < Xt.cy)
= AX2y) = A4y
which converges to zero in probability [3, Lemma 3.5] as ¢—oo. Hence
can be replaced by

4.3) P{A] C’(T’(C’Zj&"j)“"T"(cﬁ <)} P{A\[U,5x,3}.

Now using (4.1) we have
@4 AT e =T feiy=pTsep{(TAL) " 1)

=—pi(l—a)(T(c)—2)(1+0(1)).
Using and [3, Th. 3.8] it follows that

S

To conclude the proof of the theorem, for xj, -, x,€R, define ¢;=c;(m)=
pim'~%4x;A¥m)m-%. Then A;~m (m— o) and

Ai— AYA
‘qimth (m— o) where qi=}‘ﬁ.

But then from it follows that
P n
{0

1

Sk - i -
[ S~ amym ]

) S e =l rrsers )

j=1l1sksm k%

=P{jf:\1 [ T’(c;i_xf > m;'z’]} —»P{j_ff\l (U,=—x}.

This proves the theorem. ®m

The following corollary is interesting in its own right. Cf. [3, Th. 3.8].
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Corollary 4.2. Under the conditions of Th. 4.1., if 1rgjisn (c;)— o0 and

]' 1/(1-ajy) Cp \VQ-ap) .
A 0=(— ~({— 1=s/<ks
y (m) (m 1=y n)
then

P{Q[AI(ZJ)(/C:&(:E%) 2—x1]}.—+P{jfZ\1[U1§xﬂ}. [ |

Corollary 4.3. If in Th. 4.1., X, belongs to the normal domain of attraction
of an n-dimensional normal random vector with mean vector zero and covariance
matrix 3, then for any a=(ay, -+, a,) in [0, 1)",

P{fn\ [ma,—um(max L —pjml'“-‘)éxj]}_*P{jél[U,ng]}

=1 1sksm R%J

where U=(U,, -+, U,) is an n-dimensional normal random vector with mean vector
zero and covariance matrix 2. M
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