INFINITE DIVISIBILITY AND RANDOM SUMS OF RANDOM VECTORS

By

E. OMEY

(Received August 2, 1984)

ABSTRACT In the first part of this paper we prove a theorem relating the asymptotic behavior of a multivariate infinitely divisible d.f. to that of its Levy measure.

The second part of the paper is devoted to subordination and more generally to random sums of random vectors. Using a sequence of first passage times we then apply our results to obtain a multivariate limit theorem for the partial maxima of normed sums of random vectors.

1. Introduction.

Although there is an extensive literature on one-dimensional infinitely divisible (i. d.) probability distributions, there is much less available on the multivariate case. For an investigation of i. d. distributions in \mathbb{R}^n_+ we refer to [6].

Now suppose F is a d.f. in \mathbb{R}^n_+ such that $F(\bar{x}) > 0$ for all \bar{x} in the interior of \mathbb{R}^n_+ . Then [6, Th. 2.4] F is i.d. if and only if there is a nonnegative measure ν on \mathbb{R}^n_+ such that for $i=1, \dots, n$ and all $\bar{x} \in \mathbb{R}^n_+$,

$$\int_{\vec{y},\vec{x}-\vec{y}\in R_{+}^{n}} y_{i} F(dy) = \int_{\vec{y},\vec{x}-\vec{y}\in R_{+}^{n}} F(\vec{x}-y) y_{i} \nu(dy).$$

Moreover under these conditions we have $\nu\{y\mid y-\bar{x}\in R_+^n\}<\infty$ for all \bar{x} in the interior of R_+^n .

We will call ν the Lévy measure of F. In the first part of this paper we want to compare the asymptotic behavior of F with that of ν . A typical example of an i.d. d.f. F is the compound Poisson distribution, i.e. for a d.f. G on \mathbb{R}^n_+ and $\lambda > 0$ we have

$$(1.1) F(\cdot) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} G^{*k}(\cdot)$$

Keywords and phrases: Infinite divisibility, random sums of random vectors, maxima of normed sums, first passage times, subordination, regular variation, multivariate domains of attraction.

AMS 1980 subject classifications. Primary 60 F 05; secondary 60 E 07, 60 G 50.

where G^{**} denotes the k-th convolution of G. Then F is i.d. with Lévy measure $\nu(\cdot) = \lambda G(\cdot)$.

The second part of the paper will be devoted to generalizations of (1.1). Among others we will examine asymptotics between F and G where

$$(1.2) F(\cdot) = \sum_{k=0}^{\infty} a_k G^{*k}(\cdot)$$

for some discrete probability distribution $\{a_k\}_N$.

Basic in our study are the papers of Stam [8] and Embrechts et al. [2]. In section 4 finally we apply our results to obtain a multidimensional limit theorem for maxima of normed sums.

2. Asymptotics for I. D. Distributions.

We start from the following one-dimensional result obtained in [2].

Lemma 2.1. Suppose F is i.d. on \mathbb{R}^1_+ with Lévy measure ν , then for $\alpha > 0$ the following statements are equivalent:

- (i) $1-F(x) \in RV_{-\alpha}$
- (ii) $\nu([x, \infty)) \in RV_{-\alpha}$

Both imply

(iii)
$$1-F(x)\sim\nu([x,\infty)) (x\to\infty)$$
.

Recall that a measurable and positive function $f: R^1_+ \to R^1_+$ is regularly varying with index $\alpha \in R$ $(f \in RV_\alpha)$ if for each x > 0, $\lim_{t \to \infty} f(tx)/f(t) = x^\alpha$. A sequence of positive numbers $\{a_n\}_N$ belongs to RV_α if $f(x) := a_{[x]} \in RV_\alpha$. For i.d. distributions in R^n_+ , lemma 2.1 generalises as follows:

Thorem 2.2. Suppose F is i.d. on \mathbb{R}^n_+ with Levy measure ν . For $\alpha>0$, let $h(x) \in \mathbb{R}V_{-\alpha}$ and for $\vec{x}>0$, define $A(\vec{x}) = \{\vec{u} \in \mathbb{R}^n_+ \mid \vec{u} \leq \vec{x}\}$ and $A^c(\vec{x}) = \mathbb{R}^n_+ \setminus A(\vec{x})$. Then the following statements are equivalent: for a measure λ on \mathbb{R}^n_+ ,

(i) for all
$$\vec{x} > 0$$
, $\lim_{t \to \infty} \frac{F(tA^c(\vec{x}))}{h(t)} = \lambda(A^c(\vec{x}))$,

(ii) for all
$$\vec{x} > 0$$
, $\lim_{t \to \infty} \frac{\nu(tA^c(\vec{x}))}{h(t)} = \lambda(A^c(\vec{x}))$.

Remark. The measure λ in the theorem then satisfies

$$t^{-\alpha}\lambda(A^c(\vec{x})) = \lambda(tA^c(\vec{x}))$$

for all t>0 and $\bar{x}>0$. This follows from the regular variation of h. Before proving the theorem we first state

Corollary 2.3. Suppose (1.1) holds. If $h \in RV_{-\alpha}$, $\alpha > 0$, the followings tatements are equivalent: for a measure μ on \mathbb{R}^n_+

(i) for all
$$\vec{x} > 0$$
, $\lim_{t \to \infty} \frac{F(tA^c(\vec{x}))}{h(t)} = \mu(A^c(\vec{x}))$

(ii) for all
$$\vec{x} > 0$$
, $\lim_{t \to \infty} \frac{G(tA^c(\vec{x}))}{h(t)} = \frac{1}{\lambda} \mu(A^c(\vec{x}))$.

Proof of Theorem 2.2. For a measure M on \mathbb{R}^n_+ and for $a \in \mathbb{R}^n_+$, $x \in \mathbb{R}^1_+$ define

$$M_{\vec{a}}(x) = M(\{\vec{u} \in \mathbb{R}^n_+ \mid 0 \leq a \cdot \vec{u} \leq x\})$$

where $a \cdot \vec{u} = \sum_{i=1}^n a_i \cdot u_i$. Then it follows that if F is i.d. in R_+^n with Levy measure ν , then also $F_{\vec{a}}(x)$ is i.d. in R_+^1 with Lévy measure $\nu_{\vec{a}}(\cdot)$. To prove the theorem it is sufficient to show that (i) (or (ii)) is equivalent to regular variation of $1 - F_{\vec{a}}(x)$ (or to regular variation of $\nu_{\vec{a}}([x,\infty))$). An application of Lemma 2.1 then yields the desired result. W.l.o.g. we may and do assume h(x) decreases with x. Now define the sequence $\{c_m\}_N$ such that $mh(c_m)=1$. Then (i) is equivalent to

$$(2.1) m(1-F(c_m\vec{x})) \rightarrow \mu(\vec{x}), \text{say.}$$

Hence if $\{X_i, i \in N_0\} = \{(X_i^1, \dots, X_i^n), i \in N_0\}$ is a sequence of i.i.d. random vectors with d.f. F, with $M_m := (\operatorname{Max}(X_1^1, \dots, X_m^1), \dots, \operatorname{Max}(X_1^n, \dots, X_m^n))$ it follows from [4] that (2.1) holds if and only if M_m/c_m converges in distribution as $m \to \infty$. Using Cramer-Wold device [1] this is equivalent to convergence in distribution of $a \cdot M_m/c_m$ for all $a \in \mathbb{R}_+^n$, which in turn is equivalent to regular variation of $1 - F_{\vec{a}}(x)$.

3. Subordinated distributions and random sums

Let G be a d.f. on \mathbb{R}^n_+ and $\{a_k\}_N$ a probability measure on N with $a_0 < 1$. The d.f. F where

$$(3.1) F(\cdot) = \sum_{k=0}^{\infty} a_k G^{*k}(\cdot)$$

is called subordinate to G with respect to $\{a_k\}_N$. It admits the following probabilistic interpretation. Let $\{X_i, i \in N_0\}$ be i.i.d. random vectors with d.f. G and let N, independent of X_1 , be an integer valued r.v. with $P\{N=m\}=a_m$ $(m\in N)$. With S(0)=0 and $S(m)=X_1+\cdots+X_m$, the random vector S(N) has d.f. F. In Theorems 3.1 and 3.2 below we relate an asymptotic behavior of G to that of F.

In this section we will also consider the following generalization of the previous situation. Let $S(m)=(S^1(m), \dots, S^n(m))$ be defined as before and let

 $N=(N_1, \dots, N_n)$ be an N^n -valued random vector. In Theorems 3.3 and 3.4 we will examine the asymptotic behavior of the vector $(S^1(N_1), \dots, S^n(N_n))$. For results in dimension n=1 we refer to Kimbleton [7] and Stam [8]. See also Teicher [9] and Hagwood and Teicher [5].

We start with the following generalization of [8, Th. 1.4].

Theorem 3.1. Suppose $h \in RV_{-\alpha}$, $\alpha > 1$, $\sum_{k=m+1}^{\infty} a_k = o(h(m))$ and suppose that G, a d. f. on \mathbb{R}^n_+ , and F are related by (3.1). Then for some measure λ and all $\bar{x} > 0$, G satisfies

(3.2)
$$\lim_{t \to \infty} \frac{G(tA^c(\vec{x}))}{h(t)} = \lambda(A^c(\vec{x}))$$

if and only if F satisfies

(3.3)
$$\lim_{t\to\infty}\frac{F(tA^c(\vec{x}))}{h(t)}=\eta\lambda(A^c(\vec{x})).$$

Here $\eta = \sum_{k=0}^{\infty} k a_k$.

Proof. The d. f. G satisfies (3.2) iff $G_{\vec{a}}(x)$ satisfies, for all x>0,

(3.4)
$$\lim_{t\to\infty}\frac{1-G_{\vec{a}}(tx)}{h(t)}=\mu(x), \quad \text{say}$$

Using [8, Th. 1.4] and (3.1), (3.4) holds iff (3.4) holds with $G_{\vec{a}}$ (and $\mu(x)$) replaced by $F_{\vec{a}}$ (and $\eta\mu(x)$). This in turn is equivalent to (3.3).

If in Th. 3.1, $a_m=1$ and $a_k=0$, $k\neq m$ it follows that (3.2) is equivalent to (3.3) with $F=G^{*m}$ and $\eta=m$. The assumption that $\alpha>1$ can also be dropped in this case.

Proposition 3.2. Let $h \in RV_{-\alpha}$, $\alpha > 0$. Then G satisfies (3.2) iff for all $m \ge 2$,

(3.5)
$$\lim_{t\to\infty} \frac{G^{*m}(tA^{c}(\vec{x}))}{h(t)} = m\lambda(A^{c}(\vec{x})).$$

Proof. Since (3.2) holds iff (3.4) holds it follows that $1-G_{\vec{a}}(x)$ is regularly varying. This in turn is equivalent to regular variation of $1-G_{\vec{a}}^{*m}(x)$ for all $m \ge 2$ [2, Cor. 2]. Since in this case also $1-G_{\vec{a}}^{*m}(x) \sim m(1-G_{\vec{a}}(x))$ $(x \to \infty)$, the result follows.

Our next theorem is devoted to the case where $\sum_{k=0}^{\infty} k a_k$ is not necessarily finite, in which case Theorem 3.1 is not applicable. We shall prove the following general result.

Theorem 3.3. Suppose $N=(N_1, \dots, N_n)$ is an N^n -valued random vector, belonging to the domain of attraction of a random vector $U=(U_1, \dots, U_n)$, stable with indices $(\alpha_1, \dots, \alpha_n)$, $0 < \alpha_i \le 1$. Assume $X_1 = (X_1^1, \dots, X_1^n)$ is independent of

N and has values in \mathbb{R}^n_+ . Suppose there exist constants $\rho_i > 1$, $L_i > 0$ such that for $x_i > 0$, $i = 1, \dots, n$,

$$(3.6) x_i^{\rho_i} P\{X_i^i > x_i\} \leq L_i < \infty.$$

Then if X_1, X_2, \cdots are i.i.d. and if we set S(0)=0 and $S(m)=\sum_{i=1}^m X_i=(S^1(m), \cdots, S^n(m))$, if follows that $(S(N_1), \cdots, S(N_n))$ belongs to the domain of attraction of a stable random vector V. Moreover $V \stackrel{d}{=} (\mu_1 U_1, \cdots, \mu_n U_n)$ where $\mu_i = EX_1^i$ ($i=1, \cdots, n$).

Proof. Let $Y_i = (Y_i^1, \dots, Y_i^n)$, $i \ge 1$ be i. i. d. random vectors with $Y_1 \stackrel{d}{=} (N_1, \dots, N_n)$ and let M(0) = 0, $M(m) = Y_1 + \dots + Y_m$. From the conditions of the theorem it follows that for some sequences of numbers $A^i(m)$, $B^i(m)$ with $A^i(m) \in RV_{1/\alpha_i}$,

$$(3.7) \qquad \left(\frac{M^1(m)}{A^1(m)} - B^1(m), \cdots, \frac{M^n(m)}{A^n(m)} - B^n(m)\right) \Rightarrow U \quad (m \to \infty).$$

Now choose θ_i such that $\max(1/2, 1/\rho_i) < \theta_i < 1$, $i=1, \dots, n$. From (3.6) it follows that $EX_i^i = \mu_i$ is finite and that

$$\frac{S^{i}(m)-\mu_{i}^{m}}{m^{\theta i}} \xrightarrow{P} 0 \quad (m \to \infty).$$

Since $M^i(m) \to \infty$ and since X_1 is independent of M(1) it follows that

$$(3.8) \qquad \frac{S^{i}(M^{i}(m)) - \mu_{i}M^{i}(m)}{(M^{i}(m))^{\theta_{i}}} \xrightarrow{P} 0 \quad (m \to \infty).$$

Also

$$\frac{(M^{i}(m))^{\theta i}}{A^{i}(m)} \xrightarrow{P} 0 \quad (m \to \infty).$$

From (3.7), (3.8), (3.9) and Cramer-Wold-device it follows that for $a \in \mathbb{R}^n$,

$$\begin{split} &\sum_{i=1}^m a_i \Big(\frac{S^i(M^i(m))}{A^i(m)} - \mu_i B^i(m) \Big) \\ &= \sum_{i=1}^m a_i \Big(\frac{S^i(M^i(m)) - \mu_i M^i(m)}{(M^i(m))^{\theta_i}} \Big) \frac{(M^i(m))^{\theta_i}}{A^i(m)} + \sum_{i=1}^m a_i \mu_i \Big(\frac{M^i(m)}{A^i(m)} - B^i(m) \Big) \\ &\Rightarrow 0 + \sum_{i=1}^n a_i \mu_i U_i \quad (m \to \infty) \; . \end{split}$$

Again using Cramer-Wold device it follows that as $m \to \infty$,

$$\left(\frac{S^{1}(M^{1}(m))}{A^{1}(m)} - \mu_{1}B^{1}(m), \cdots, \frac{S^{n}(M^{n}(m))}{A^{n}(m)} - \mu_{n}B^{n}(m)\right) \Rightarrow V = (\mu_{1}U_{1}, \cdots, \mu_{n}U_{n})$$

which proves the theorem.

If in Th. 3.3, $EN_i < \infty$ $(i=1, \dots, n)$ (i. e. $M^i(m)/m \xrightarrow{P} EN_i$ $(m \to \infty)$) and if

 X_1 belongs to the domain of attraction of a stable r.v. U, we shall prove the following Theorem 3.4. To state the theorem, let us assume that X_1, X_2, \cdots are i.i.d. random vectors such that X_1 belongs to the domain of attraction of a stable law U i.e.

(3.10)
$$\left(\frac{\sum_{i=1}^{m} (X_{i}^{1} - B^{1}(m))}{A^{1}(m)}, \dots, \frac{\sum_{i=1}^{m} (X_{i}^{n} - B^{n}(m))}{A^{n}(m)} \right) \Rightarrow U$$

for some sequences $A^{i}(m)$, $B^{i}(m)$ with $A^{i}(m)>0$, $i=1, \dots, n$, where U is stable with indices $(\alpha_{1}, \dots, \alpha_{n})$, $0<\alpha_{i}\leq 2$ $(i=1, \dots, n)$.

Now let $\{R^i(m), m \ge 1, i=1, \dots, n\}$ be any n sequences of N-valued r. v. for which there exist a sequence $\{c_m\}_N$ and constants r_i , $0 < r_i < \infty$, $i=1, \dots, n$, such that as $m \to \infty$,

$$\frac{R^{i}(m)}{c(m)} \xrightarrow{P} r_{i} \quad (i=1, \dots, n).$$

Set $b^i(m)=B^i([r_ic(m)])$ and $a^i(m)=A^i([r_ic(m)])$ $(i=1,\dots,n)$. We shall prove

Theorem 3.4. Under the conditions stated above, we have

(3.11)
$$\left(\frac{\sum_{j=1}^{R^{1}(m)} (X_{j}^{1} - b^{1}(m))}{a^{1}(m)}, \dots, \frac{\sum_{j=1}^{R^{n}(m)} (X_{j}^{n} - b^{n}(m))}{a^{n}(m)} \right) \Rightarrow V$$

where V is an n-dimensional stable r.v., related to U and r_i ($i=1, \dots, n$).

To prove the theorem we first need the following result of Kimbleton [7].

Lemma 3.5. Under the conditions of the theorem, for $i=1, \dots, n$

$$(3.12) \qquad \frac{\sum_{j=1}^{R^{i}(m)} (X_{j}^{i} - b^{i}(m)) - \sum_{j=1}^{\lceil r_{i}c(m) \rceil} (X_{j}^{i} - b^{i}(m))}{a^{i}(m)} \xrightarrow{P} 0. \quad \blacksquare$$

It follows from (3.12) and Cramer-Wold device that if all $r_i=1$ ($i=1, \dots, n$), then (3.11) holds with V = U. If the r_i are different for different i, we need the following lemma. For simplicity we only state and prove a result in \mathbb{R}^2 .

Lemma 3.6. Suppose (3.10) holds for n=2 and with $U=(U_1, U_2)$ stable with indices (α_1, α_2) with $0 < \alpha_1, \alpha_2 \le 2$. If $k_i = k_i(n)$ is such that $k_i(m) \sim c_i m$ $(m \to \infty, 0 < c_1, c_2 < \infty)$, them

(3.13)
$$\left(\frac{\sum_{i=1}^{k_1(m)} (X_j^1 - B^1(m))}{A^1(m)}, \frac{\sum_{j=1}^{k_2(m)} (X_j^2 - B^2(m))}{A^2(m)} \right) \Rightarrow V = (V_1, V_2),$$

with $E(e^{i\xi V_1+i\eta V_2}) = \varphi(c^{1/\alpha_1}\xi, c^{1/\alpha_2}\eta) \varphi((c_1-c)^{1/\alpha_1}\xi, (c_2-c)^{1/\alpha_2}\eta) e^{i\xi p_1(c,c_1)+i\eta p_2(c,c_2)}$ where $c=\min(c_1, c_2), \ \varphi(\xi, \eta) = E(e^{i\xi U_1+i\xi U_2})$ and $p_1(x, y), \ p_2(x, y)$ are defined below.

Proof. From (3.10) as is well known it follow that for $i=1, 2, A^i(m) \in RV_{1/\alpha_i}$

and that

$$(3.14) \qquad \frac{B^{i}(\lceil xt \rceil) - B^{i}(\lceil x \rceil)}{A^{i}(\lceil x \rceil)/x} \rightarrow \begin{cases} K^{i}(t^{(1/\alpha_{i})-1}-1) & \text{if } \alpha_{i} \neq 1 \\ K^{i} \log t & \text{if } \alpha_{i} = 1 \end{cases}$$

for some real constants K^i .

If we set $S^{i}(m) = \sum_{j=1}^{m} X_{j}^{i}$, $b^{i}(m) = mB^{i}(m)$, $k(m) = \min(k_{1}(m), k_{2}(m))$ it follows that the l. h. s. of (3.13) equals

$$\begin{split} I = & \Big(\frac{S^{1}(k) - b^{1}(k)}{A^{1}(m)}, \frac{S^{2}(k) - b^{2}(k)}{A^{2}(m)} \Big) + \left(\frac{\sum\limits_{j=k+1}^{k_{1}} (X_{j}^{1} - B^{1}(k_{1} - k))}{A^{1}(m)}, \frac{\sum\limits_{j=k+1}^{k_{2}} (X_{j}^{2} - B^{2}(k_{2} - k))}{A^{2}(m)} \right) \\ & + \Big(\frac{b^{1}(k_{1} - k) + b^{1}(k) - b^{1}(k_{1})}{A^{1}(m)}, \frac{b^{2}(k_{2} - k) + b^{2}(k) - b^{2}(k_{2})}{A^{2}(m)} \Big) \end{split}$$

 $=:I_1+I_2+I_3$

where if e.g. $k=k_1$ the first term in I_2 and I_3 should be interpreted as zero. From (3.10) if follows that

$$I_1 \Longrightarrow (c^{1/\alpha_1}\widetilde{U}_1, c^{1/\alpha_2}\widetilde{U}_2)$$

where $c = \min(c_1, c_2)$ and $\tilde{U} = (\tilde{U}_1, \tilde{U}_2) \stackrel{g}{=} U$.

Now suppose $c_1 < c_2$ so that $k = k_1$ for large m. Then from (3.10) and independency we obtain

$$I_2 \Rightarrow (0, (c_2-c)^{1/\alpha_2}U_2')$$

where $U_2' = U_2$ and U_2' is independent of \tilde{U} . As to I_3 from (3.14) it follows that

$$I_3 \rightarrow (0, p_2(c, c_2)) = \begin{cases} (0, K^2((c_2-c)^{1/\alpha_2} - c_2^{1/\alpha_2} - c^{1/\alpha_2})) & \text{if} \quad \alpha_2 \neq 1 \\ (0, K^2((c_2-c)\log(c_2-c) - c_2\log c_2 + c\log c)) & \text{if} \quad \alpha_2 = 1. \end{cases}$$

Hence

$$I \Rightarrow V$$

and the characteristic function of V has the desired form.

In case $c_2 < c_1$ the result follows in a similar way. Next consider the case $c_1 = c_2 = c$. For those m such that $k_1 < k_2$ as before we have $I = I_1 + I_2 + I_3$ and

$$I_1 \Longrightarrow (c^{1/\alpha_1} \tilde{U}_1, c^{1/\alpha_2} \tilde{U}_2)$$
.

As to I_2+I_3 with $\psi(\eta)=\varphi(0, \eta)$ we have

From (3.10) and $k_2 - k = o(m)$ it follows that (i) $\to 1$ ($m \to \infty$). Finally from (3.14) we obtain also (ii) $\to 1$. This proves the lemma.

Remark. The functions $p_i(x, y)$ are defined as

$$p_{i}(x, y) = \begin{cases} 0 & x = y \\ K^{i}((y-x)^{1/\alpha_{i}} - y^{1/\alpha_{i}} + x^{1/\alpha_{i}}) & \text{if } \alpha_{i} \neq 1, x \neq y \\ K^{i}((y-x)\log(y-x) - y\log y + x\log x) & \text{if } \alpha_{i} = 1, x \neq y. \end{cases}$$

Proof of Theorem 3.4. It follows from (3.12) that for all $a \in \mathbb{R}^n$,

(3.15)
$$\sum_{i=1}^{n} a_{i} \frac{\sum_{j=1}^{R^{i}(m)} (X_{j}^{i} - b^{i}(m)) - \sum_{j=1}^{[r_{i} \in (m)]} (X_{j}^{i} - b^{i}(m))}{a^{i}(m)} \xrightarrow{P} 0.$$

Also, using (3.10), lemma 3.6 and Cramer-Wold device it follows that

$$(3.16) \qquad \sum_{i=1}^{n} a_i \frac{\sum_{j=1}^{\lceil r_i c(m) \rceil} (X_j^i - b^i(m))}{a^i(m)} \Rightarrow V.$$

Combining (3.15) and (3.16) proves the theorem.

4. A multivariate limit theorem for maxima of normed sums

In this section we prove a limit theorem for the maxima of normed sums of i. i. d. random vectors, with finite mean, that belong to the domain of attraction of a multivariate stable law U, hereby extending results of Teicher and Hagwood [10], [5] and Gut [3].

Theorem 4.1. Let $S_{(m)} = (S_{(m)}^1, \dots, S_{(m)}^n) = \sum_{j=1}^m X_j$ where $X_j = (X_j^1, \dots, X_j^n)$, $j \ge 1$ are i.i.d. random vectors with positive mean vector $\mu = (\mu_1, \dots, \mu_n)$ and such that X_1 belongs to the domain of attraction of a stable law $U = (U_1, \dots, U_n)$ stable with indices $\beta = (\beta_1, \dots, \beta_n)$, $1 < \beta_i \le 2$ $(i=1, \dots, n)$. Then there exist functions $A^i(x) \in RV_{1/\beta_i}$ $(i=1, \dots, n)$ such that for any constant vector $\alpha = (\alpha_1, \dots, \alpha_n)$ in $[0, 1)^n$ there holds

$$P\Big\{ \bigcap_{j=1}^n \left[\max_{1 \leq k \leq m} \frac{S_{(k)}^j}{k^{\alpha_j}} - \mu_j m^{1-\alpha_j} \leq x_j A^j(m) m^{-\alpha_j} \right] \Big\} \rightarrow P\Big\{ \bigcap_{j=1}^n \left[U_j \leq -x_j \right] \Big\} \; .$$

Proof. For each $j=1, \dots, n$ and c>0 define the stopping rules

$$T_i(c) = \inf \{m \ge 1 : S^j(m) > cm^{\alpha j} \}.$$

From [3, Th. 3.3], it then follows that with $\lambda_j = (c/\mu_j)^{1/(1-\alpha_j)}$

$$(4.1) \frac{T_j(c)}{\lambda_j} \xrightarrow{\text{a.s.}} 1 \text{as} c \to \infty, \ 1 \le j \le n$$

Also under the hypothesis of the theorem it follows that for some $A^{j}(x) \in RV_{1/\beta_{j}}$ we have

$$\left(\frac{S^1(m)-m\mu_1}{A^1(m)}, \dots, \frac{S^n(m)-m\mu_n}{A^n(m)}\right) \Rightarrow U$$

and hence, using (4.1) and Th. 3.4 we obtain

$$(4.2) \qquad \left(\frac{S^{1}(T_{1}(c_{1})) - \mu_{1}T_{1}(c_{1})}{A^{1}(\lambda_{1})}, \cdots, \frac{S^{n}(T_{n}(c_{n})) - \mu_{n}T_{n}(c_{n})}{A^{n}(\lambda_{n})}\right) \Rightarrow V$$

as $c = \min_{1 \le j \le n} c_j \to \infty$ such that $\lambda_j \sim \lambda_k$ $(1 \le j < k \le n)$. Moreover from $\lambda_1 \sim \lambda_k$ $(1 \le k \le n)$,

(4.1) and the remark following lemma 3.5 we have V = U. Now for $j=1, \dots, n$

$$0 \leq \frac{S^{j}(T_{j}(c_{j})) - c_{j}(T_{j}(c_{j}))^{\alpha_{j}}}{A^{j}(\lambda_{j})} \leq \frac{X_{T,i}^{j}(c_{j})}{A^{j}(\lambda_{j})}$$

which converges to zero in probability [3, Lemma 3.5] as $c \to \infty$. Hence (4.2) can be replaced by

$$(4.3) P\left\{ \bigcap_{j=1}^{n} \left[\frac{c_{j}(T_{j}(c_{j}))^{\alpha_{j}} - \mu_{j}T_{j}(c_{j})}{A^{j}(\lambda_{j})} \leq x_{j} \right] \right\} \rightarrow P\left\{ \bigcap_{j=1}^{n} \left[U_{j} \leq x_{j} \right] \right\}.$$

Now using (4.1) we have

(4.4)
$$c_{j}(T_{j}(c_{j}))^{\alpha_{j}} - \mu_{j}T_{j}(c_{j}) = \mu_{j}T_{j}(c_{j}) \left\{ \left(\frac{T_{j}(c_{j})}{j} \right)^{\alpha_{j}-1} - 1 \right\}$$

$$= -\mu_{j}(1 - \alpha_{j})(T_{j}(c_{j}) - \lambda_{j})(1 + o(1)).$$

Using (4.4), (4.3) and [3, Th. 3.8] it follows that

$$(4.5) P\left\{\bigcap_{j=1}^{n} \left[\frac{-\mu_{j}(1-\alpha_{j})(T_{j}(c_{j})-\lambda_{j})}{A^{j}(\lambda_{j})} \leq x_{j} \right] \right\} \rightarrow P\left\{\bigcap_{j=1}^{n} \left[U_{j} \leq x_{j} \right] \right\}.$$

To conclude the proof of the theorem, for $x_1, \dots, x_n \in \mathbb{R}$, define $c_i = c_i(m) = \mu_i m^{1-\alpha_j} + x_j A^j(m) m^{-\alpha_j}$. Then $\lambda_i \sim m \ (m \to \infty)$ and

$$\frac{\lambda_i - m}{q_i} \sim x_i \quad (m \to \infty) \quad \text{where} \quad q_i = \frac{A^i(\lambda_j)}{\mu_j(1 - \alpha_i)}.$$

But then from (4.5) it follows that

$$P\left\{\bigcap_{j=1}^{n}\left[\max_{1\leq k\leq m}\frac{S^{j}(k)}{k^{\alpha_{j}}}-\mu_{j}m^{1-\alpha_{j}}\leq x_{j}A^{j}(m)m^{-\alpha_{j}}\right]\right.$$

$$=P\left\{\bigcap_{j=1}^{n}\left[\max_{1\leq k\leq m}\frac{S^{j}(k)}{k^{\alpha_{j}}}\leq c_{j}\right]\right\}=P\left\{\bigcap_{j=1}^{n}\left[T_{j}(c_{j})>m\right]\right\}$$

$$=P\left\{\bigcap_{j=1}^{n}\left[\frac{T_{j}(c_{j})-\lambda_{j}}{q_{j}}>\frac{m-\lambda_{j}}{q_{j}}\right]\right\}\rightarrow P\left\{\bigcap_{j=1}^{n}\left[U_{j}\leq -x_{j}\right]\right\}.$$

This proves the theorem.

The following corollary is interesting in its own right. Cf. [3, Th. 3.8].

Corollary 4.2. Under the conditions of Th. 4.1., if $\min_{1 \le j \le n} (c_j) \to \infty$ and

$$\lambda_{j} := \left(\frac{j}{\mu_{j}}\right)^{1/(1-\alpha_{j})} \sim \left(\frac{c_{k}}{\mu_{k}}\right)^{1/(1-\alpha_{k})} \quad (1 \le j < k \le n)$$

then

$$P\Big\{\bigcap_{j=1}^n\Big[\frac{T_j(c_j)-\lambda_j}{A^j(\lambda_j)/\mu_j(1-\alpha_j)}\geq -x_j\Big]\Big\} \to P\Big\{\bigcap_{j=1}^n\big[U_j\leq x_j\big]\Big\}.\quad\blacksquare$$

Corollary 4.3. If in Th. 4.1., X_1 belongs to the normal domain of attraction of an n-dimensional normal random vector with mean vector zero and covariance matrix Σ , then for any $\alpha = (\alpha_1, \dots, \alpha_n)$ in $[0, 1)^n$,

$$P\Big\{\bigcap_{j=1}^{n}\left[m^{\alpha_{j}-(1/2)}\left(\max_{1\leq k\leq m}\frac{S_{k}^{j}}{k^{\alpha_{j}}}-\mu_{j}m^{1-\alpha_{j}}\right)\leq x_{j}\right]\Big\}\rightarrow P\Big\{\bigcap_{j=1}^{n}\left[U_{j}\leq x_{j}\right]\Big\}$$

where $U=(U_1, \dots, U_n)$ is an n-dimensional normal random vector with mean vector zero and covariance matrix Σ .

References

- [1] Billingsley, P.: Convergence of probability measures, Wiley, New York, 1968.
- [2] Embrechts, P., C.M. Goldie and N. Veraverbeke: Subexponentiality and infinite divisibility, Z. Wahrsch. Verw. Gev. 49, pp. 335-347, 1979.
- [3] Gut, A.: On the moments and limit distributions of some first passage times, Ann. Prob. 2, N° 2, pp. 277-306, 1974.
- [4] de Haan, L. and S. Resnick: Limit theory for multivariate sample extremes, Z. Wahrsch. Verw. Geb. 40, pp. 317-337, 1977.
- [5] Hagwood, C. and H. Teicher: A multidimensional CLT for maxima of normed sums, Ann. Prob. 11, N°4, pp. 1048-1050, 1983.
- [6] Horn, R.A. and F.W. Steutel: On multivariate infinitely divisible distributions, Stoch. Proc. Appl. 6, pp. 139-151, 1978.
- [7] Kimbleton, S.R.: A simple proof of a random stable limit theorem, J. Appl. Prob. 7, pp. 502-504, 1970.
- [8] Stam, A.J.: Regular variation of the tail of a subordinated probability distribution, Adv. Appl. Prob. 5, pp. 308-327, 1972.
- [9] Teicher, H.: On random sums of random vectors, Ann. Math. Stat. 36, pp. 1450-1458, 1965.
- [10] Teicher, H.: A classical limit theorem without invariance or reflection, Ann. Prob. 1, N°4, pp. 702-704, 1973.

Economische Hogeschool Sint-Aloysius Broekstraat 113 1000 Brussel Belgium