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$ABSTRAc\tau$–We prove some graph-theoretical Propositions and aPply them to
a characterization of punctured n-spheres with $h$ boundary components, as
the manifolds with vanishing regular genus and hole number equal to $h$ .

1. Introduction.

The notions of regular genus $\mathcal{G}(\overline{M})$ and hole number $\mathcal{L}(\overline{M})$ for a $PL$ , con-
nected, compact n-manifold $\overline{M}$ with boundary were defined and studied in $[G_{4}]$ .
They extend the classical concepts of genus and hole number of a surface to
dimension $n$ . A puncfured $n$-sphere $\check{S}_{h}^{n}$ ( $h$ a nonnegative integer) is the manifold
with boundary obtained by taking the interiors of $h$ disjoint n-balls out of the
n-sphere $S^{n}$. The main result of this paper is the following characterization,
which extends the ones given in $[FG_{3}]$ for $S^{n}$ and in $[G_{4}]$ for $D^{n}$ .

Theorem 1. Let $\overline{M}$ be a $PL$ , connected, compact n-manifold with (possibly
empfy) boundary. Then

M $PL\cong\check{S}_{h}^{n}\Leftrightarrow \mathcal{G}(\overline{M})=0$ and $\mathcal{L}(\overline{M})=h$ .
Most of the constructions introduced in the present work (in \S 3) seem to

find a proper place in an approach to the additivity problem for the regular
genus with respect to connected sums. Our interest in this problem is mainly
justifled by its connection with the generalized Poincar\’e Conjecture in dimension
4 [ $FG_{8}$ , Remark 1; $M$, \S 1.1].
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2. Definitions and notations.

Throughout, we shall work in the $PL$ category, for which we refer to [RS]

and [G1]; all manifolds will be compact and connected, unless otherwise stated.
For graph theory see [Har].

An $(n+1)$-coloured graph with boundary is defined to be a pair $(\Gamma, \gamma)$ where
$\Gamma=(V(\Gamma), E(\Gamma))$ is a multigraph (no loops, but possibly multiple edges are
allowed) and $r:E(\Gamma)\rightarrow\Delta_{n}=\{j\in Z|0\leqq i\leqq n\}$ is an edge coloration on $\Gamma^{(1)}$ . By
the definition itself, the degree $d(v)$ of every vertex $v\in V(\Gamma)$ is bounded to be
$\leqq n+1$ . If $d(v)<n+1$ , then $v$ is called a boundary-vertex. For every subset $B$

of the “ colour set” $\Delta_{n},$ $\Gamma_{B}$ will denote the graph $(V(\Gamma), \gamma^{-1}(B))$ ; for any $c\in\Delta_{n}$ .
$\hat{c}$ will stand for $\Delta_{n}-\{c\}$ . $(\Gamma, \gamma)$ is said to be regular with respect to colour $c$

if the subgraph $\Gamma_{\hat{c}}$ is regular of degree $n$ .
We now restrict our attention to the classes $G_{n+1}$ of all $(n+1)$-coloured

graphs with boundary, regular with respect to the last colour $n$ . There exists
a boundary operator $\partial:G_{n+1}\rightarrow G_{n}$ , which assigns to a $(\Gamma, \gamma)\in G_{n+1}$ the graph
$(\partial\Gamma, \partial\gamma)\in G_{n}$ deflned as follows: (a) the vertices of $\partial\Gamma$ are the boundary-vertices
of $\Gamma;(b)$ an edge $e$ , such that $\partial\gamma(e)=i\in\Delta_{n-1}$ , joins two vertices $v,$ $w$ of $\partial\Gamma$ iff
the same vertices are joined by an elementary walk in $\Gamma_{t\ell.nI}$ .

$(\Gamma, \gamma)$ is simply called an $(n+1)$-coloured graph if $\partial\Gamma$ is empty. It is easy
to see that, for all $(\Gamma, \gamma)\in G_{n+1},$

$\partial\partial\Gamma$ is empty $i.e$ . $(\partial\Gamma, \partial\gamma)$ is a (possibly dis-
connected) n-coloured graph.

An n-dimensional pseudocompIex [HW, p. 49] $K(\Gamma)^{(2)}$ can be uniquely asso-
ciated with each $(\Gamma, \gamma)\in G_{n+1}$ by the followin $g$ construction: (i) consider an
n-simplex $\sigma(v)$ for each vertex $v$ of $\Gamma$ and label arbitrarily (but injectively) its
O-faces by $\Delta_{n}$ ; (ii) if $v$ and $w$ are joined in $\Gamma$ by an edge $e\in\gamma^{-1}(c)$ , then identify
the $(n-1)$-faces of $\sigma(v)$ and $\sigma(w)$, which do not contain the O-face labelled by
$c$, so that equally labelled O-faces coincide. Note that the result of the con-
struction is not just the pseudocomplex $K(\Gamma)$ , but also the labelling of its
O-simplexes.

Observe that $|K(\Gamma)$ [ is a pseudomanifold with (possibly empty) boundary,
and that $\partial K(\Gamma)$ is a quotient of $K(\partial\Gamma)$ ; actually $\partial K(\Gamma)=K(\partial\Gamma)$ if the space
$|K(\Gamma)|$ is a manifold. $(\Gamma, \gamma)$ will be said to represent $|K(\Gamma)|$ and every $hom-$

morphic polyhedron. Observe also that $|K(\Gamma)|$ is a manifold iff, for each $c\in\Delta_{n}$ ,

each component of $\Gamma_{\hat{c}}$ represents an $(n-1)$-sphere or $(n-1)$-ball (following $[F$,

Propositions 10, 16]).

A graph $(\Gamma, \gamma)\in G_{n+1}$ is called a crystallization of an n-dimensional manifold
$\overline{M}$ with boundary if (A) $(\Gamma, \gamma)$ is $\partial$-contracted, $i.e$. $g(\Gamma_{n})=1$ and $\mathfrak{g}(\Gamma_{\hat{c}})=\mathfrak{g}(\partial\Gamma)$ ,

(i) This means that $\gamma(e)\neq\gamma(f)$ for any two adjacent edges $e,f$.
(2) The pseudocomplex actually depends also on the coloration $\gamma$ .
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for every $c\in\Delta_{n-1}$ (where $\mathfrak{g}(\Theta)$ denotes the number of connected components of
the graph $\Theta$ ), and (B) $(\Gamma, \gamma)$ represents $\overline{M}$. In this case, $K(\Gamma)$ has exactly
$1+n\cdot \mathfrak{g}(\partial\Gamma)$ vertices (O-simplexes). If we set, by convention, $\mathfrak{g}(\emptyset)=1$ , then the
above definition reduces to the usual one when $\partial\overline{M}$ is empty or connected.

There always exist such representations for closed manifolds $[P_{1} ; P_{2}]$ .
Moreover, for every crystallization $(\tilde{\Gamma},\tilde{\gamma})$ of $\partial\overline{M}$, there exists a crystallization
$(\Gamma, \gamma)$ of $\overline{M}$, such that $(\partial\Gamma, \partial\gamma)=(\tilde{\Gamma},\tilde{\gamma})$ [CG; $G_{3}$].

The notion of regular genus of a closed n-manifold was introduced in $[G_{2}]$

by means of a particular type of 2-cell imbedding of a graph into a closed
surface [Wh; $G_{1}$]. In order to define, following [G], a genus for manifolds
with boundary we first build, for each $(\Gamma, \gamma)\in G_{n+1}$ , a graph $(\Gamma^{*}, \gamma^{*})$ by adding
one vertex $v^{*}$ for each boundary-vertex $v$ of $\Gamma$, and an edge coloured by $n$

between $v$ and $v^{*}$. Let us call $V*the$ set of added vertices.
An imbedding $\ell;|\Gamma^{*}|\rightarrow\overline{F}$, where $\overline{F}$ is a surface with boundary, is called a

2-cell imbedding if
a) $\partial\overline{F}\cap\ell(|\Gamma*|)=\ell(V^{*})$ ;
b) (int $\overline{F}$) $-c(|\Gamma^{*}|)$ has open 2-cells as connected components (called the regions

of $\ell$);
c) if $R$ is any such region, then either $(c^{\prime})\partial R$ is the image of a cycle of $\Gamma*$

(gl internal region) or $(c^{\prime\prime})\partial R=\alpha^{\prime}(R)U\alpha^{\prime}(R)$ , where $\alpha^{\prime}(R)$ is the image of
a walk of $\tau*,$ $\alpha^{\prime}(R)$ is an arc of $\partial\overline{F}$, and $\alpha^{\prime}(R)\cap\alpha^{\prime}(R)$ consists of two
(possibly coincident) vertices of $V*$ ( $R$ boundary-region).

Further, $\ell$ is said to be regular if there exists a cyclic permutation $\epsilon=(\epsilon_{0}, \cdots , \epsilon_{n})$

of $\Delta_{n}$ , such that for each internal (resp. boundary-) region $R$ , the edges of $\partial R$

(resp. of $\alpha^{\prime}(R)$) are alternatively coloured by $\epsilon_{i},$ $\epsilon_{i+1},$
$i$ being an integer $mod$.

$n+1$ .
For each colour pair $i,$ $j\in\Delta_{n}$ , call $\dot{\mathfrak{g}}_{\ell j}$ the number of cycles of $\Gamma_{I\ell.jI}$ ; for

$i,$ $j\neq n$ , call $\partial \mathfrak{g}_{\ell j}$ the number of components of $(\partial\Gamma)_{t\ell.f\}}$ ; finally call $P$ the order
of $\Gamma,\overline{p}$ the order of $\partial\Gamma$, and set $l=p-p$. We report [ $G_{4}$ , Proposition 4,
Corollary 5]:

If $\Gamma$ is biPartite ($resP$ . non-biPartite), for each cyclic permutation $\epsilon=(\epsilon_{0},$ $\cdots$

$\epsilon_{n-1},$ $\epsilon_{n}=n$ ) of $\Delta_{n}$ , there exists exactly one regular imbedding $c:|\Gamma*|\rightarrow F.$ , where
$\overline{F}_{l}$ is the orientable (resp. non-orientable) surface with $\lambda.=^{\partial}\mathfrak{g}_{0^{\epsilon}n-1}$ holes and Euler
characteristic

$\chi_{\epsilon}=\sum_{\ell\in z_{n+1}}\dot{\mathfrak{g}}_{\epsilon_{i^{*}\ell+1}}+(1-n)\phi/2+(2-n)5/2$ .
Moreover, $(\Gamma*, \gamma^{*})$ cannot be regularly imbedded into any non-orientable (resp.
orientable) surface.

The above formula reduces to the ones of [ $G_{1}$ , Propositions 19, 23] when
$\partial\Gamma=\emptyset$ , since $\Gamma*=\Gamma$.
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Now, if we denote the genus of $\overline{F}$. by $\rho_{\epsilon}$ (which equals $1-\chi./2-\lambda_{\epsilon}/2$ if $\overline{F}_{\epsilon}$

is orientable, and $2-\chi_{\epsilon}-\lambda_{\epsilon}$ if $\overline{F}$ is non-orientable), then we can set $\rho(\Gamma)=\rho(\Gamma^{*})$

$=\min\{\rho_{\epsilon}\},$ $\lambda(\Gamma)=\lambda(\Gamma^{*})=\min\{\lambda_{*}\}$ . The regular genus $\mathcal{G}(\overline{M})$ and the hole-number
$X(\overline{M})$ of a manifold with boundary $\overline{M}$ are deflned as follows:

$\mathcal{G}(\overline{M})=\min$ { $\rho(\Gamma)|(\Gamma,$ $\gamma)$ is a crystallization of $\overline{M}$ },
$\mathcal{L}(ffi)=\min$ { $\lambda(\Gamma)|(\Gamma,$ $\gamma)$ is a crystallization of $\overline{M}$ }.

A survey on the theory of n-manifold representation by $(n+1)$-coloured
graphs is given in [FGG].

3. Constructions.

This section mainly deals with the construction of some graphs with empty
boundary out of graphs with boundary. Their properties and their $gmetrical$

meaning are studied for application in the proof of Theorem 1.

Identification graphs.–Let $(\Gamma^{\prime}, \gamma^{\prime}),$ $(\Gamma^{\prime\prime}, \gamma^{\prime})\in G_{n+1}$ be two graphs with dis-
joint vertex sets and suppose that there exists an isomorphism $\phi:\partial\Gamma^{\prime}\rightarrow\partial\Gamma$

“

which preserves colorations $(i.e. \partial\gamma^{\prime}\phi=^{\partial}\gamma^{\prime})$ . We now build a new $(n+1)$-coloured
graph (with empty boundary) $(\Gamma^{\prime}\bigcup_{\phi}\Gamma^{\prime\prime}, \gamma^{\prime}\bigcup_{\phi}\gamma^{\prime})$ called the identification graph
of $(\Gamma^{\prime}, \gamma^{\prime})$ and $(\Gamma‘‘, \gamma^{\prime\prime})$ (with respect to $\phi$), as follows:
a) $V(\Gamma^{\prime}\bigcup_{\phi}\Gamma^{\prime\prime})=V(\Gamma^{\prime})\cup V(\Gamma^{\prime\prime})$ ;
b) $E(\Gamma^{\prime}\bigcup_{\phi}\Gamma^{\prime\prime})=E(\Gamma^{\prime})\cup E(\Gamma^{\prime\prime})\cup\tilde{E}$ , where $\tilde{E}=$ { $\tilde{e}_{v}|v$ is a boundary-vertex of $\Gamma^{\prime}$ },

and $\tilde{e}_{v}$ joins $v$ with $\phi(\nu)$ ;

c) $\gamma^{\prime}U_{\phi}\gamma^{\prime\prime}(e)=\left\{\begin{array}{ll}\gamma^{\prime}(e) & if e\in E(\Gamma^{\prime})\\\gamma^{t}(e) & if e\in E(\Gamma^{\prime\prime})\\n & if e\in\tilde{E}\end{array}\right.$

Note that if $\partial K(\Gamma^{\prime})=K(\partial\Gamma^{\prime})$ and $\partial K(\Gamma^{\prime\prime})=K(\partial\Gamma^{\prime\prime})$ , then $|K(\Gamma^{\prime}\bigcup_{\phi}\Gamma^{\prime\prime})|$ is the
identification space of $|K(\Gamma^{\prime})|$ and $|K(\Gamma^{\prime})|$ via the homeomorphism induced by
$\phi$ on the boundaries.

In Figures la and lb both $(\Gamma^{\prime}, \gamma^{\prime})$ and $(\Gamma^{\prime\prime}, \gamma^{\prime\prime})$ are crystallizations of $S^{1}\times D^{2}$,
and the (colour-preserving) isomorphism $\phi:\partial\Gamma^{\prime}\rightarrow\partial\Gamma^{\prime\prime}$ are induced by the bijec-
tions, between their vertex sets, hinted in the drawings. The resulting identifi-
cation graphs represent $S^{\epsilon}$ (in Figure la) and $S^{1}\times S^{2}$ (in Figure lb). This can
be checked either by dipole eliminations $[FG_{1}]$ , or by realizing the Heegaard
splittings related with the $\phi’ s$ .

Lemma A. With the prevjOus notations, and setting for each cyclic permuta-
tion $\epsilon$

$\ddot{\rho}_{\epsilon}(\Gamma)=\left\{\begin{array}{ll}\rho_{\text{\’{e}}}(\Gamma) & if \Gamma is bipartite\\\rho_{*}(\Gamma)/2 & if \Gamma is non- bPartite,\end{array}\right.$
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we have
$\ddot{\rho}(\Gamma^{\prime}\bigcup_{\phi}\Gamma^{\prime\prime})=\rho_{\epsilon}(\Gamma^{\prime})+\ddot{\rho}(\Gamma^{\prime\prime})+\lambda_{\epsilon}(\Gamma^{\prime})-1$ .

Proof. $\Gamma^{\prime}*(resp. \Gamma^{\prime\prime}*)$ admits a regular imbedding, associated with $\epsilon$ , into
a surface $\overline{F}_{t}^{\prime}$ (resp. $\overline{F}_{*}^{\prime\prime}$ ), orientable iff $\Gamma^{\prime}$ (resp. $\Gamma^{\prime\prime}$ ) is bipartite, of genus $\rho_{\epsilon}(\Gamma^{\prime}\rangle$

(resp. $\rho(\Gamma^{\prime\prime})$ ) and with $\lambda_{\epsilon}=\lambda_{\epsilon}(\Gamma^{\prime})=\lambda.(\Gamma^{\prime\prime})$ holes.
Therefore $\Gamma^{\prime}\bigcup_{\phi}\Gamma^{\prime\prime}$ admits a regular imbedding, associated with the same $\epsilon$ ,

into the closed surface $F_{*}$ obtained by glueing together the corresponding boundary
components of $\overline{F}_{l}^{\prime}$ and $\overline{F}_{\epsilon}^{\prime\prime}$ . $F_{*}$ is orientable iff both $\overline{F}_{e}^{\prime}$ and $\overline{F}_{e}^{\prime\prime}$ are, hence
$\Gamma^{\prime}\bigcup_{\phi}\Gamma^{\prime\prime}$ is bipartite iff both $\Gamma^{\prime}$ and $\Gamma^{\prime\prime}$ are (which could have been proved by
strictly combinatorial arguments).

The formula is now proved by observing that the first identification of
boundary component pairs yields a surface of genus $\ddot{\rho}_{g}(\Gamma^{\prime})+\ddot{\rho}_{\epsilon}(\Gamma^{\prime\prime})$ , with $2(\lambda_{e}-1)$

holes, and that each further identification raises $\ddot{\rho}_{\epsilon}$ by one and lowers $\lambda_{\epsilon}$ by
two. $\square $

Note that in both Figures la and lb, for any $\epsilon,$
$\rho_{\epsilon}(\Gamma^{\prime})=\rho_{\text{\’{e}}}(\Gamma^{\prime\prime})=1,$ $\lambda_{\epsilon}(\Gamma^{\prime})=$

$\lambda_{\epsilon}(\Gamma^{\prime\prime})=1$ , and $\rho(\Gamma^{\prime}\bigcup_{\phi}\Gamma^{\prime})=2$ , according to the formula.

Capped graphs. Given any (possibly disconnected) h-coloured graph with
empty boundary $(\Theta, \theta)$ , the cone over $(\Theta, \theta)$ is the $(h+1)$-coloured graph with
boundary ( $c\Theta,$ $c_{\theta)\in G_{h+1}}$ where $ c\Theta=\Theta$ , and $c_{\theta}$ : $E(C\Theta)\rightarrow\Delta_{h}$ operates as $\theta$ : $ E(\Theta\rangle$

$\rightarrow\Delta_{h-1}$ . It is easy to see that $K(C\Theta)=CK(\Theta)$ , the cone over $K(\Theta)$ , if $\Theta$ is
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connected; if $\Theta$ is disconnected, $K(C\Theta)$ is the disjoint union of the cones over
the components of $K(\Theta)$ . Note that $(\Theta, \theta)$ and ( $C\Theta,$ $c_{\theta)}$ are ” visually ” the
same graph.

Given any $(\Gamma, \gamma)\in G_{n+1}$ , representing a manifold with boundary $\overline{M}$, we define
the caPped graph $(\hat{\Gamma},\wedge\gamma)$ to be the identification graph of $(\Gamma, \gamma)$ and $(C(\partial\Gamma),(\gamma))$

\langle the cone over its boundary-graph) with respect to the natural isomorphism
between their boundaries. It is immediate to see that $(\hat{\Gamma},\wedge\gamma)$ represents the
identification space $M=\overline{M}\cup(\forall^{c(\partial_{i}\overline{M}))},$ $i.e$. the space obtained from $\overline{M}$ by
“ capping off “ each component $\partial_{\ell}\overline{M}$ of its boundary with a cone over it.

If $(\Gamma^{\prime}, \gamma^{\prime})$ is the graph of Figure la (or lb), then $(\hat{\Gamma}^{\prime}, \gamma^{\prime}\wedge)$ is obtained by
joining together the vertices of $\Gamma^{\prime}$ and $\partial\Gamma^{\prime}$ with the same labels, by edges
coloured 3.

$\eta$ -Sewings. For $(\Gamma, \gamma)\in G_{n+1}$ , let $W$ be a subset of the set of its boundary-
vertices, and $\eta$ a fixed-point-free involution on $W$. Then a new graph $(\eta\Gamma, \eta\gamma)$

$\in G_{n+1}$ , the $\eta$-sewing of $(\Gamma, \gamma)$ , can be obtained from $(\Gamma, \gamma)$ by adding an edge
coloured $n$ between $w$ and $\eta(w)$ for each vertex $w\in W$.

An important particular case of $\eta$ -sewing is the following. Let $c$ be any
colour in $\Delta_{n-1}$ , and consider the involution on $W=V(\partial\Gamma)$ (which will also be
denoted by $c$), generated by the edge set $\partial\gamma^{-1}(c)$ . $({}^{t}\Gamma, c\gamma)$ will then denote the
$(n+1)$-coloured graph obtained from $(\Gamma, \gamma)$ by joining two boundary-vertices with
an edge coloured $n$ iff the corresponding vertices in $(\partial\Gamma, \partial\gamma)$ are joined by an
edge coloured $c$ .

For $(\Gamma^{\prime}, \gamma^{\prime})$ as in Figure la (or lb), $(^{0}\Gamma^{\prime 0}\gamma^{\prime})$ is depicted in Figure 2.

0–
1–
2–

$(\Gamma^{\prime}, \gamma^{\prime})$

$ 3---\rightarrow$.

Figure 2.

Lemma B. For every cyclic permutation $\epsilon$ of $\Delta_{n}$ , in which $c$ and $n$ are
consecutive, $\rho_{\epsilon}(\Gamma)=\rho_{\epsilon}(c\Gamma)$ .

Proof. Without loss of generality, assume $\epsilon=(0,1, \cdots , n),$ $c=0$. Now let
$p,\overline{p},$ $P^{\prime}$ be the orders of $\Gamma,$ $\partial\Gamma,$ $ 0\Gamma$ respectively, and $p^{o}=p-F$ ; with the numbers
$\mathfrak{g}_{i.j},$ $\partial \mathfrak{g}_{i.j}$ , relative to $(\Gamma, \gamma)$ , defined as in \S 2, and with $\mathfrak{g}_{\ell.j}^{\prime}$ as the number of
cycles of $(^{0}\Gamma)_{\{\ell.j\}}$ , we have: $p^{\prime}=p$ ; for $k\in\Delta_{n-2},$ $\mathfrak{g}_{k.k+1}^{\prime}=\mathfrak{g}_{\hslash.k+1}$ ; $\mathfrak{g}_{n.0}^{\prime}=\mathfrak{g}_{n.0}+\beta/2$ ;
$\mathfrak{g}_{n- 1.n}^{\prime}=\dot{\mathfrak{g}}_{n- 1,n}+\partial \mathfrak{g}_{n-1.0}$ . Thus, by [ $G_{1}$ , Propositions 19, 23],
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$\chi_{\epsilon}(^{0}\Gamma)=\sum_{i\in z_{n+1}}\mathfrak{g}_{i.i+1}^{\prime}+(1-n)p^{\prime}/2$

$=_{k\in}F_{n-2}^{b_{k.k+1}+\dot{\mathfrak{g}}_{n-1.n}+\mathfrak{g}_{n-1,0}+\mathfrak{g}_{n.0}+\overline{p}/2+(1-n)(p+p)/2}\partial$

$=\sum_{i\in Z_{n+1}}\dot{\mathfrak{g}}_{i.i+1}+(1-n)\mathring{p}/2+(2-n)\overline{p}/2+\partial \mathfrak{g}_{n-1.0}$

$=\chi_{\epsilon}(\Gamma)+\lambda_{\epsilon}(\Gamma)$ .
Finally, the statement follows from the equalities $\ddot{\rho}_{\text{\’{e}}}(\Gamma)=1-(\chi_{\epsilon}(\Gamma)+\lambda_{\epsilon}(\Gamma))/2$

and $\ddot{\rho}_{\epsilon}(^{0}\Gamma)=1-\chi_{\epsilon}(0\Gamma)/2$, and from $ 0\Gamma$ being bipartite iff $\Gamma$ is. $\square $

Lemma C. Let $\check{M}$ be an n-manifold with boundary $\partial\check{M}$ and let $M$ be the
closed pseudomanifold obtained by capping off each comp0nent of $\partial\check{M}$ with a cone
over it. If $(\Gamma, \gamma)\in G_{n+1}$ represents $\check{M}$, then $(^{c}\Gamma, c\gamma)$ represents $M$ for every $c\in\Delta_{n- 1}$ .

Proof. One effect of the c-sewing is to identify all O-faces coloured by $c$

on each component $S_{i}$ of $|\partial K(\Gamma)|$ to a single point $a_{i}$ in $K(c\Gamma)$ . Subdivide each
n-simplex corresponding to a boundary-vertex $v$ of $\Gamma$ into two n-simplexes $\sigma_{1}(v)$

and $\sigma_{2}(v)$ so that they contain O-faces coloured by $n$ and $c$ respectively. The
complex $K^{\prime}$ obtained from $K(c\Gamma)$ by deleting all $\sigma_{2}(v)$ is isomorphic to $K(\Gamma)$ via
a simplicial map which sends each extra O-face to the corresponding O-face of
colour $c$ on $\partial K(\Gamma)$ . The cone structure of $\bigcup_{v}\sigma_{2}(v)$ over an $(n-1)$-face of $\partial K^{\prime}$

induces that of each component of $\sigma_{2}(v)$ with cone points $a_{i}$ in $K(c\Gamma)$ , iso-
morphic to the cone $CS_{i}$ . Thus, $|K(c\Gamma)|$ splits into $|K(\Gamma)|$ and $CS_{i}$ , and is
homeomorphic to $M$ $\square $

As a particular case of Lemma $C$ we have the following:

Corollary $C^{\prime}$ . Let $M$ be a closed n-manifold, and let $\check{M}$ be $M$ with the in-
teriors of a finite set of disjoint n-balls deleted. If $(\Gamma, \gamma)\in G_{n+1}$ represents $\check{M}$,
then $(^{c}\Gamma, c\gamma)$ represents $M$ for every $c\in\Delta_{n-1}$ . $\square $

Dipole nests. The next graph is a particular representation of $S^{n}$ . It will
be used to produce a crystallization of $S^{n-1}\times D^{1}$ .

Let $(\Omega^{0}, \omega^{0})$ be the standard crystallization of $S^{n}$ , consisting of two vertices
$X_{0},$ $Y_{0}$ joined by $n+1$ edges of different colours; build a new graph $(\Omega^{1}, \omega^{1})$

representing $S^{n}$ , by adding an n-dipole $\theta^{1}$ of vertices $X_{1},$ $Y_{1}^{(\theta)}$ on the only edge
of $\Omega^{0}$ coloured $0$. Now, from $(\Omega^{\ell}, \omega^{i})(1\leqq i\leqq n-1)$ get a new graph $(\Omega^{\ell+1}, \omega^{i+1})$ ,
always representing $S^{n}$ , by adding an n-dipole $\Theta^{i+1}$ of vertices $X_{i},$ $Y_{\ell}$ on the
only edge coloured $i$ of $\Theta^{i}$ . The case $n=3$ is shown in Figure 3.

A crystallization $(\Omega, \omega)$ of $S^{n-1}\times D^{1}$ is obtained from a dipole nest $(\Omega^{n}, \omega^{n})$

$\overline{(3)}$An $n\cdot d\dot{/}pole$ isaconfiguration of two vertices $X,$ $Y$ joined together by $n$ edges (obvi.
ously of different colours), where $X$ and $Y$ are incident to two different edges of the
residual colour. See $[FG_{1}]$ for a general definition of dipole.
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Figure 3.

by deleting the two edges coloured $n$ , incident to $X_{0},$ $Y_{0}$ and to $X_{n},$ $Y_{n}$ respec-
tively.

4. Punctured manifolds.

We can now prove the following:

Proposition 1. Let $M$ be a closed n-manifold, and let $\check{M}_{\hslash}$ be $M$ with the

interiors of $h$ disjoint n-balls deleted. Then:

$\mathcal{G}(\check{M}_{h})=\mathcal{G}(M)$ ; $\mathcal{L}(\check{M}_{h})=h$ .
Proof. Let $(\Gamma, \gamma)$ be a crystallization of $\check{M}_{h}$ of genus $g$ , and $\epsilon$ a cyclic

permutation of $\Delta_{n}$ , such that $\rho_{\epsilon}(\Gamma)=g$ . By Corollary $C^{\prime},$ $(^{\epsilon_{0}}\Gamma, \epsilon_{0}\gamma)$ represents
$M$ ; moreover, Lemma $B$ states that $\rho(0\Gamma)=\rho_{\epsilon}(\Gamma)=g$ . In general $(^{\epsilon_{0}}\Gamma, *0\gamma)$ needs

not be a crystallization of $M$ (for every colour $c\neq n,$ $(^{e_{0}}\Gamma)_{\hat{c}}$ actually has $h$ com-
ponents); nevertheless, the elimination of $h-1$ dipoles of type1 $[FG_{1}]$ for each
colour $c\neq n$ yields the desired crystallization $(\Xi, \xi)$ of $M$, for which $\rho_{\epsilon}(\Xi)=$

$\rho_{\epsilon}(^{\epsilon_{0}}\Gamma)=g$ . This proves that $\mathcal{G}(M)\leqq \mathcal{G}(\check{M}_{h})$ .
In order to reverse the inequality, let $(\Xi, \xi)$ be a given crystallization of $M$

of genus $\tilde{g}$ with a cyclic permutation $\epsilon$ such that $\rho_{e}(\Xi)=\tilde{g}$ . We shall construct

a crystallization $(\Gamma, \gamma)$ of $\check{M}_{h}$ for which $\rho_{e}(\Gamma)=\rho_{\epsilon}(\Xi)=\tilde{g}$ . Moreover, $\lambda_{e}(\Gamma)$ will

be exactly $h$ (the number of boundary components of $\check{M}_{\hslash}$ ), whence also the
equality $X(\check{M}_{h})=h$ will follow ( $\mathcal{L}(\check{M}_{h})$ is bounded to be $\geqq h$ by its definition).

The construction of $(\Gamma, \gamma)$ will be performed by induction on $h$ .
(a) If $h=1$ , then $(\Gamma, \gamma)$ can be obtained from $(\Xi, \xi)$ by deleting any edge

$e\in E(\Xi)$ , with $\xi(e)=n$ , and by setting $\gamma=\xi|_{E(g)-\{e\}}$ . For such a $(\Gamma, \gamma)$ , as is
simply checked, $\rho_{\epsilon}(\Gamma)=\tilde{g},$ $\lambda_{6}(\Gamma)=1$ , and $(\partial\Gamma, \partial\gamma)$ is the standard crystallization

of $S^{n-1}$ .
(b) While following this part, the reader may find of use to look at Figure

4, which depicts $RP_{2}^{3}\vee,$ $i.e$ . the real projective space with two spherical holes,

according to our notation.
Suppose, now, that $(_{-}^{:},\tilde{\xi})$ be a crystallization of $\check{M}_{h-1},$ $\rho(\Xi)=\tilde{g},$ $\lambda_{\text{\’{e}}}(--)=h-1$ ,

and $(\partial^{\underline{\S}\partial}\xi)$ be the union of $h-1$ copies of the standard crystallization of $S^{n-1}$ .
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Recall the crystallization $(\Omega, \omega)$ of $S^{n-1}\times D^{1}$

built in \S 3 out of a dipoIe nest. Delete a boundary-
vertex of $(\Xi,\tilde{\xi})$ and one of $(\Omega, \omega)$ (both arbitrarily
chosen), and paste together the equally coloured
edges adjacent to them; call $(\Gamma, \gamma)$ the out-
coming graph. It is easy to see that $(\Gamma, \gamma)$ is a
crystallization of $\check{M}_{h}=\check{M}_{h-1}\#_{\hat{a}}(S^{n-1}\times D^{1})$ (where

$\#\partial$

denotes the “ boundary connected sum ” of the
two manifolds), and $(\partial\Gamma, \partial\gamma)$ is the union of $h$

copies of the standard crystallization of $S^{n-1}$ .
This proves that $\lambda_{\epsilon}(\Gamma)=h$ . In order to show that
$\rho_{\epsilon}(\Gamma)=\tilde{g}$, observe that for any $c\in\Delta_{n-1},$ $(^{c}\Gamma, c\gamma)$ is
obtained from $(_{-}^{c^{A}c}\tilde{\xi})$ by cancelling $n+1$ dipoles
of tyPe $n$ . Thus, by [ $FG_{2}$, Lemma 1] and by
Lemma $B,$ $\rho_{\epsilon}(\Gamma)=\rho_{\epsilon}(c\Gamma)=\rho_{\epsilon}(c\Xi)=\tilde{g}$. This con-
cludes the proof. $\square $

We have actually proved also the following
result:

Corollary 2. For any n-manifold $\overline{M}$ with
spheres as boundary compOnents, there always exist
a crystallization $(\Gamma, \gamma)$ and a cyclic permutation $\epsilon$ of $\Delta_{n}$ , such that

$\rho_{\epsilon}(\Gamma)=\mathcal{G}(\overline{M})$ , $\lambda_{\epsilon}(\Gamma)=X(\overline{M})$ , $\rho_{\epsilon^{\prime}}(\partial\Gamma)=\mathcal{G}(\partial\overline{M})$ ,

where $\epsilon^{\prime}$ is the cyclic permutation induced by $\epsilon$ on $\Delta_{n- 1}$ . $\square $

We do not know whether such a result holds for more general boundaries(in dimension $\geqq 4$ ; for dimension 3 see $[G_{4}$ , \S 4b]).
As stated in \S 1, we are now able to characterize the punctured n-spheresin terms of $\mathcal{G}$ and $\mathcal{L}$ .
Proof of $T$heorem– 1. If $\overline{M}$ is a punctured sphere $\check{S}_{h}^{n}$ , then Proposition1assures that $\mathcal{G}(M)=\mathcal{G}(S^{n})=0$ and $X(\overline{M})=h$ . This proves one half of the state-

ment.
On the other hand, suppose that an n-manifold with boundary $\overline{M}$, with

$\mathcal{G}(M)=0$, is given. Let $(\Gamma, \gamma)$ be a crystallization of $\overline{M}$ with $\rho_{\epsilon}(\Gamma)=0$ (where
$\epsilon=(0,1, \cdots n))$ . Now, by Lemma $B,$ $\rho_{\epsilon}(^{0}\Gamma)=\rho_{\epsilon}(\Gamma)=0$, and by Lemma $C(^{0}\Gamma, 0\gamma)$

$represents-$ the Pseudomanifold $\tilde{M}$ obtained by capping off each boundary compo-
$nent\sim$ of $M$ with a cone over it. But Corollary $3_{n}$ of $[FG_{s}]$ actually assures that
$M\cong S^{n}$, hence all boundary components of $\overline{M}$ must be spheres and this flnally
(4) This operation has been described with some abuse of language for sake of clearness.



38 M. FERRI AND C. GAGLIARDI

implies that $\overline{M}$ is a punctured n-sphere.

If we further assume that $X(\overline{M})=h$ , the number of the boundary components

must be $h$ by Proposition 1. This concludes the proof. $\square $
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