YOKOHAMA MATHEMATICAL
JourNnAL VoL. 33, 1985

WEAK CONVERGENCE THEOREM FOR FUNCTIONALS
OF SUMS OF REVERSED MARTINGALE ARRAYS

By
Z. RYCHLIK and I. SZYSZKOWSKI

(Received February 22, 1984)

1. Introduction.

A reversed martingale (RMG) {(S,, ,), n=1} is comprised of a sequence
of random variables {S,, n=1}, defined on a fixed probability space (2, A, P)
and a sequence of o-fields {F,, n=1} satisfying

(1) gn-i-l(:gn: n—Z-l'

(2) S, is a random variable measurable with respect to 9, and, for every
n=1, E|S,| <oo,

(3) E(Sy | Fu41)=Sas1 a.s., for every n=1,

where “a.s.” means “almost surely ”.
For any RMG {(S,, &,), n=1}, S, converges a.s. and in mean of order one

to a random variable S. which is measurable with respect t0 Fo= nf_\l G, In

fact
(4) Seo:E(Sn ] SFM)
and
Esn=E8n+1=ESeo .
Let us put

Xn=8r—Sn+1, n=1.
Then we may write

(5) s,.—s,e:él X,.

As a result of representation (5), all of the results in this paper will be formu-
lated for infinite sums of random variables.

Let {X,s, k=n, n=1} be an array of random variables and let {Fnr, b=n,
n=1} be an array of o-fields. Assume that X,, is F . measurable and F, 4,
C%,s for all 2=n=1 and write
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Sne= § an ’ Sn:Snn .
i<k

Furthermore, we also .assume that E(Xns | Fn x+1)=0 for all n and k. Thtis,
for each n=1, {(Snx» Fns), k=n} is a reversed martingale.

If the second moments of the S,, are all finite (iff ES2;<o0, n=1) we may
define for all k=n=1

Pa=EXhy | Fnan)s Vii= 30k, s=EVis, Vi.=Vi.
Further, for all k=n=1, we have
$4=EViu=E S BX3, | Fa )= ZEXS;.

Let us observe that without loss of generality we may and do assume that for
every n=1 ES%,=1.

Let F be the space of functions f(s, x) which are defined and have continuous
first partial derivatives on [0, 17X (—o0, o0). We assume that there exist posi-
tive constants 2 and a such that, for every fEF,

|Df@t, 0| =2(1+1x19), (¢ <0, 1IXR,

where D denotes either the identity operator or a first partial derivative. Thus,
if feF and f(s, x)=0 for every s€ [0, 1] and |x|>C for some C>0, then

| fs, £)—f(s1, 2| SKe(ls—sil +1x—x:),

where K, is an absolute positive constant which depends only on C.
Assume that f, f,€F, n=1, and define

(6) 3 Falshar Sai) X, xa=S(n).

The results which we shall give, correspond to ones presented in [4], [5]
and for (ordinary) martingales. That is, we are interested in the conditions
under which S(n) converges weakly to the following stochastic integral

(7) [\ra, wanawa,

where {W(), 0=t<1} is a standard Wiener process and the integral in (7) is
taken in the L? sense.

2. Limit theorems.

The following limit theorem will be proven in Section 4. We shall adopt
the notations of Section 1.

Theorem 1. Let, for each n=1, {(Szs» F,.), k=n} be a RMG with ES:, =1.
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Assume that

(8) ve: -1
and
(9) hm lim ZEXn n+2l(| Xa e | =Nga(k)=0

for some double array of nonnegative numbers {g,(k), k=0, n=1} such that
Sup g,(k)—0 as n— oo, and

k20

(10) sup 3 g3(k)<oo.

If f, fa€F, n=1, are functions such that for each s<[0, 1]

(1) Dfu(s, x) —> Df(s,x) as n—oo

uniformly in x on every finite interval, where D denotes either the identity oper-
ator or a first partial derivative, then

o, Sk SanXaas = [ 10t Wenaw).

. P . oy
Here, and in what follows, we use —— “ for converges in probability to” and
9 . . . .
— “for converges in distribution to”. Similarly “ =" means “ converges
almost surely to”.

Let {(S», F,), n=1} be a RMG with ES%<co, which converges a.s. to S..
Then we may define, for all n>1,

H=EX}| Far), Vi=3 ot
and s;=FEV? where X,=S,—S,,,. Furthermore ES,—S-)*=EV2=s2, n=1.
From Theorem 1 we immediately obtain the following.

Theorem 2. Let {(S,, &,), n=1} be a RMG with ES%< oo, which converges
a.s. to Se=0, and suppose that s;”V%i».l as n—co and

lim lim S‘ZZEX 2+il(| Xn+r| ZNspgn(k)=0

N =00 n—0co

where {g,(k), =0} is a double array of nonnegative numbers such that

sg;l) i}g?,(k)<oo, and S\:p g:(k)—0 as n— oo,
If (11) of Theorem 1 holds, then

st =§:)+1fn(s£/s%, Se/s2)X 41 _-“’.S:f(t, WaNWe)

as n— oo,
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As an application of this let Y;, j=0, be independent and identically distri-
buted random variables with mean zero and variance one. Let {(g(k), =0} be
a sequence of positive numbers such that k%g”(k)<oo and sup g(k+n)/s,—0 as
n— oo, where s%=k§ng2(k). Let X, v=gR)Y /S0y Fn.2=0{Y, Yis1, :}, B=0,
n=1. Then it is clear that, for every n=1, {(kngn,,, Fny), j=n} is a RMG

and s%,=VZ=1. Furthermore, putting g,(2)=gn-+k)/s,, k=0, n=1, we get
éoEX%.rwkI(IXn, n+i| ZNg(R)=EY}(|Y,|ZN),

so -that the conditions of hold. Thus, under the condition Theo-
rem 1 yields

o0
Elfn(S%. nt+ks Sn. n+k)Xn. n+k-1

=s3' B falshea/shs 57 2 8DV IZ+E—DY nisos

i=n+k

—?»szf(t, WENdW(E)  as n—oo.

3. Auxiliary lemmas

In this Section we state and prove some lemmas which are needed for the
proof of All lemmas are proved under the same assumptions on the
RMG {(Sars Fni), k=n}, given in [Theorem 1, therefore we do not repeat them
explicitly in the formulations of lemmas.

Let, for every t<(0, 11, m(t)=m,(t)=min{{=n: s%;=<t}, and for every func-
tion fe F

(12) [, ©)=f(s, ©K[0, 11X[—C, CI)s, %),

where C is a positive constant and I(AX B)(-, -) denotes the indicator function
of the set AXB.

Lemma 1. Let {f,, n=1} be a sequence of functions such that f,€F, n=1,
and let 0=t,<ty_.1< -+ <t; <to=1 be a partition of the interval [0, 1]. Assume
that for each n a RMG {(Spr» Frnr), k=n} satisfies the assumption of Theorem 1.
Then for every ¢>0 and each C>0
(13) lim lim Py(e, 7, n, C)=0,

7-0 7n-oo

where r=max (ti-1—t;) and
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Pl(sx 7N, C):P('i=§+1fg(s%i’ Sni)Xn.i—l

b
- i—zlfg(tt’ Sa,mp)(Sn,mc;-p=Sn, map)| >€).

Proof. For a given N>0 and every i, ;=0 we define
X n+1=Xn, 01| Xn, n+i] SNga@),
Yo nei=Xn,nei—E(X7 nai | Faynaind),
Zn,n+i=Xn, n+i— Y, n+i
=Xn,n+1— X0 nri— E([ X, n41— X7, na4] | Fn,neis1)
WP =f3(shi» Sud—f5s Sn.map) s

where {g.({), =0, n=1} is a double array of nonnegative numbers satisfying
(9) and and S, =0, n=1.
It is easy to see that

14 Py, 71, OOSPU 3 Falshir SndV,ics

m(tz—1

b
— [
j=21 fn(tj’ Sn,m(tj))(i ""'gj—l) Y.l =¢e/2)

+P(1 3 Fi(she SadZn,ims

m(tj)—1

—jéfg(tj, Sn.m(tj))(i )Zni)]gs/z)

=m(lj_1
:Il(ev 7. n, C)+IZ(5: 7 n, C) .

Furthermore, for every 7, i/ such that m(t;-,)<i<mf(2,), m(ty ) <i’ <ml(ty), j<j’,
j=1, we have

EW%;“ Yn,i-lwi("nj)’ Yn,i’-1=E(Wi(’nj)' W;?) Yn.i-lE[Yn.i’-l | gni'])—":o »

and
EWPZy i Wi Zy, v s=EWPZy i s W E[Zy, -1 | Fro1)=0.
Hence
EL 3 fa(ste SadYaioa— 2000 Samap), 2 Yai-1l?
1=+ = t=m Ty

m(tj; -1 b m(tj)—1

=% 3 BWRY.0=3 3 EWRYa.)=K

=m(tj_1 J=1 i=m(tj_y

Furthermore, by we get
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mtH—1
K=CN* 3 > gEOEWR, »*
=1 t=mTj_p
b m(tj)—l .
<CN*Y X g%(l){iS%.m—-tjl2+E(Sn,i+1—5n,mu,))2}
J=1 t=m(t;_1)
m(tj)—l

<2C,N* 3 (t;-1—t;45up EX% nes) 23()
j=1 k20 = tj-1

i=m(
<2C,N*(7+sup EX% nes) 3 250
k20 £=0

where C, is an absolute constant. Thus by (9) and
lim lim I (s, 7, n, C)=0

70 TN—oo

On the other hand
m (L -1

L, 7o m, O)=4e? S 5 EWE Zno)

=1 t=m (T -

and, by and there exists a positive constant C, such that |W{P|=C,,
so that

Ls, 1, n, C)=467°CE 33 EX3,1(1 X4 | ZNgalk—n).

Consequently, in view of (9), we get

lim lim (e, 7, n, C)=0

N=co n-oo

what ends the proof of Lemma 1.

Lemma 2. Let f, fa, n=1, be functions satisfying the assumptions of Theo-
rem 1. If the assumptions of Lemma 1 are satisfied, then for every C>0

(15) lim lim Py(e, 7, n, C)=0,

70 7Moo

where
Pi(e, 7, n, ©Y=PUZfEs Sn.masp)
—ft5 Sn,map)H (S, mes-p—Sn, map)| >€).
Proof. Let us put
Unsx)=f3(t; 0)—f°15 x), 0=j=b.

Note that
mH-1
E{(Sn.m(tj—l)—sn,m(tj))z | gﬂ,m(zj)}:‘i_m%. I)E(ngi | gn,m(cj))-
=m(Ty-

Thus
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b
E[ 21 {fg(tj’ Sn,m(tj))_fc(tjr Sn,m(tj))} (Sn,1n(tj_1)'_Sn,'m(l:j)):l2

mpH—1

b :
=2 E{Ufw(sn,m(zj)) 2 E(X%i ffn,m(t_,))}-
J=1 t=m(t;.y1)

Let b,,=}rsljas)§ sup U%,(x). Then by (11) b,—0 as n—oo. Consequently

b m(tj)—1
D E{UL(Snmap), X EX%il Fnomep
J=1 i=m(lj_1)
b m(tj)—1
=b, X > EX%,=b,—0 as n—oo,
J=1 i=m(t;_1)

so that the Chebyshev-type inequality ends the proof of Lemma 2.

Lemma 3. Let, for each n=1, {(Sni» Fns), k=n} be a RMG with ES3,=1.
Assume that (8) holds and for every >0

(16) 3 B3I Xns | >6) | Fnpesd =20 a5 nooo,

If fEF, then for every finite partition 0=t,<t,. < -+ <t,=1 of the internal [0, 1]
and any given C>0

' b
(17) 2/ Sn.map)(Snmity-p—Sn matp)

2 370, WaNWts— W) as noo,

where {W(t), 0=t<1} is a standard Wiener process on D[o, 1].

Proof. By the assumptions of Lemma 3 and Theorem 2 [3] W,—W in
D[0, 1] where W, is a sequence of random elements defined as follows

Wn(o):‘o ’ Wn(l):Snn ’ Wn(t)zsn. k41 S%, k+1§t<s?l, k>

k=n. But fC is a continuous and bounded function so that Lemma 3 follows.
For the sake of completeness we give the following

Lemma 4. If f€F, then for every ¢>0 and any given C>0
18) P B, WENWts) =W~ 6 WOMW@)|>e)—0

as T=E§§(ti—1—ti)*’0, where 0=t,<ty-.< -+ <t;=0 is a parition of the interval
[0, 1]

Proof. See 41
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4, Proof of Theorem 1.

Let f, fn€F, n=1, be functions satisfying Let us take an arbitrary
C>0. Then for every ¢>0

19) P folshar San)Xn,aos— | £, WONWD)] >e)

+1

=P( 5 3k San X aa— | f0E WaNAW D) >e)
+P(5up| Swa | >C)+P(sup | W(D)| >C).

Furthermore, by [Theorem 2 of and results given in (cf. Sec’s 10, 11 and
Theorem 5.1) we have
im lim P(%EplSnk|>C):0

1
C—oo RM—co

and
lim P(sup | W(t)| >C)=0.
C-co 0osts1

Consequently [Theorem 1 follows [13), (I5), [(17), (I8) and [19)
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