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0. Introduction

In Part I of this paper (see [1] on the reference list) we were concerned
with the differential equation

(0.1) $(tI-\Lambda)y^{\prime}=(\rho I-A_{1})y$ ,

where $\Lambda$ is a diagonal matrix with all distinct diagonal entries $\lambda_{1},$ $\cdots$ , $\lambda_{n}(n\geqq 2)$,
$\rho$ is a complex Parameter, and $A_{1}$ is a constant $n\times n$ matrix which we like to
decompose as

$A_{1}=\Lambda^{\prime}+A$ ,

where $\Lambda^{\prime}=diag[\lambda_{1}^{\prime}, \cdots , \lambda_{n}^{\prime}]$ consists of the diagonal entries of $A_{1}$ , and consequently

$A=[a_{kj}]$ , $1\leqq k,$ $j\leqq n$ , $a_{11}=$ $=a_{nn}=0$ ,

contains the off–diagonal elements of $A_{1}$ .
In Part I we considered a solution vector $y(t)$ of (0.1), characterized in terms

of its behavior at $\lambda_{1}$ , and gave recursion formulas for the coefficients of its power
series expansion in the variables $a_{kj},$ $1\leqq k,$ $j\leqq n,$ $j\neq k$ . Based here upon, we
gave corresponding expansions for the characteristic constants which determine
the behavior of $y(t)$ at the points $\lambda_{2},$ $\cdots$ , $\lambda_{n}$ . In particular we showed that $y(t)$

(for fixed t) and the characteristic constants are entire functions in the variables
$a_{kj}$ .

In the present paper we achieve a twofold progress compared to the results
of Part I: On one hand we show that the expansion for $y(t)$ obtained in Part I
is very natural to consider, since the coefficients occuring in the expansion satisfy
differential equations very simiIar to (0.1) but with lower triangular coefficient
matrix. Therefore a closer study of these coefficients, as functions of $t$ as well
as of the parameters which they depend upon, seems a very natural task, since
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in a sense they are solutions of the simplest non-trivial examples of equations

(0.1), and solutions of general equations (0.1) may be obtained as power series

involving these functions as coefficients. Secondly, when expanding the charac-

teristic constants as power series in the variables $a_{kj}(1\leqq k, j\leqq n, k\neq])$ , we
analyse the dependence of the coefficients upon the parameters $\rho,$

$\lambda_{1},$ $\cdots$ , $\lambda_{n}$ , and
$\lambda_{1}^{\prime},$ $\cdots$ , $\lambda_{n}^{\prime}$ . For certain parameter constellations we give convergent power ser es
expansions for these coefficients.

Equation (0.1) is closely related (via Laplace’s transform) to the equation

(0.2) $zx^{\prime}=A(z)x$ , $A(z)=z\Lambda+A_{1}$

(see [2], [4]). Speaking in terms of invariants (see [3]) of equations of the

form (0.2), the coefficients in the power series expansion of the characteristic

constants (in the variables $a_{kj}$) have the following interpretation:

If we regard them as functions of the auxiliary parameter $\rho$ , then these

functions are formal Birkhoff invariants of (0.2), since they only depend upon

the formal Birkhoff invariants $\lambda_{1},$ $\cdots$ , $\lambda_{n}$ and $\lambda_{1}^{\prime},$ $\cdots$ , $\lambda_{n}^{\prime}$ . On the other hand,

they are proper meromorPhic invariants of another equation of the form (0.2),

which is of a different dimension and may have equal entries in the diagonal

matrix $\Lambda$ , but in the corresponding coefficient $A_{1}$ only a few non-zero elements

occur.

1. Improved expansion formulas

For an equation (0.1), the points $\lambda_{1},$ $\cdots$ , $\lambda_{n}$ are singularities of first kind.

In what follows, the points $\lambda_{1},$ $\lambda_{2}$ will play a special role, since we will be

concerned with the behavior at $\lambda_{2}$ of a solution vector of (0.1) locally given at

$\lambda_{1}$ by means of its convergent expansion. Since a transformation $y=P\tilde{y}$ (with

a permutation matrix $P$) transforms (0.1) into an equation of the same kind but

with the diagonal elements of $\Lambda$ appearing in a different order, it is easily seen

how all results derived for the pair $(\lambda_{1}, \lambda_{2})$ may be applied to any other pair

$(\lambda_{j},$ $\lambda_{k}\rangle$ $(.\gamma\neq k, 1\leqq j, k\leqq n)$ .
As a further normalization we will in this Section always assume

(1.1) $\lambda_{1}=\lambda_{1}^{\prime}=0$ , $\lambda_{2}=1$ .

This is no restriction, since the changes of variables $t=\lambda_{1}+f(\lambda_{2}-\lambda_{1}),$ $\rho=\tilde{\rho}+\lambda_{1}$

leave the structure of (0.1) unchanged and make the new equation satisfy (1.1).

Moreover, we will in this Section restrict the parameter $\rho$ by assuming

(1.2) ${\rm Re}\rho>-1$ , $\rho\not\equiv\lambda_{2}^{\prime}$ mod 1.

It follows from Frobenius’ method that (0.1) (with the additional assumptions

(1.1), (1.2)) has a unique solution vector of the form
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(1.3)
$y(t)=t^{\rho}\{\delta_{1}/\Gamma(1+\rho)+reg_{0}(t)\}$

(compare Part I for the notation). Since $\lambda_{1},$ $\cdots$ , $\lambda_{n}$ generally are branching points
of $y(t)$ , we choose to make parallel cuts from each point $\lambda_{k}$ to $\infty$ . Although inPrinciple the direction of cuts might be taken fairly arbitrary, we choose here tomake them along the rays

$\arg(t-\lambda_{k})=-\delta$ , $1\leqq k\leqq n$ ,

where $\delta>0$ is taken so small that, in case ${\rm Im}\lambda_{i}>0$, the corresponding cut doesnon intersect with the closed interval from $0(=\lambda_{1})$ to 1 $(=\lambda_{2})$ , and moreoverwe assume for every $j\neq k,$ $1\leqq j,$ $k\leqq n$ , that $\lambda_{j}$ does not $ly$ on the cut $\lambda_{k}$ to $\infty$ .General powers of $t-\lambda_{k}$ are then defined consistent with the selection
(1.4) $-\delta-2\pi<\arg(t-\lambda_{k})<-\delta$ , $1\leqq k\leqq n$ ,

for $t$ in the cut Plane.
Remark 1.1. When studying the singular behavior of $y(t)$ at $\lambda=1$ , theabove selection of cuts is convenient, since one can analytically $cont\dot{i}2$ue $y(t)$

from $0$ to 1 along a path which is almost a straight line. Furthermore, in viewof Proposition 4 in [2], the above selection of cuts is natural when dealing with
$\lambda_{1}=0,$ $\lambda_{g}=1$ , since then the Characteristic constant $c_{21}$ may directly be used tocalculate the corresponding constant in the Stokes’ multipliers of (0.2) which
corresponds to (0.1) by means of Laplace’s transform.

It was shown in Part I that the unique solution vector $y(t)$ of (0.1) is anentire function in the elements of $A$ regarded as variables. Hence if we replace
$A$ by $wA$ with a complex variable $w$ , then $y(t)$ , for fixed $t$ in the cut plane, isan entire function of $w$ and therefore may be expanded as
(1.6)

$y(t)=\sum_{p=0}^{\infty}w^{p}y(t;p)$

where the coefficients

$y(t;p)=[y^{(1)}(t;p), y^{(n)}(r;p)]^{T}$, $P\geqq 0$ ,

are analytic functions of $t$, for $t$ in the cut plane. As one may see from Lemma1, Part I, the components of $y(t)=[y^{(1)}(t), \cdots y^{(n)}(t)]^{T}$ satisfy the followin $g$

system of integral equations:

$y^{(1)}(t)=t^{\rho}\{1/\Gamma(1+\rho)-\sum_{j\neq 1}a_{1j}\int_{0}^{t}u^{-\rho-1}y^{(j)}(u)du\}$ ,

$y^{(i)}(t)=-(t-\lambda_{k})^{\rho-\lambda_{k}^{\prime}}\sum_{j\neq i}a_{kj}\int_{0}^{t}(u-\lambda_{k})^{\lambda^{\prime}}\iota^{-\rho-1}y^{(j)}(u)du$ , $2\leqq k\leqq n$ .
Insertion of (1.6) and termwise integration (which is justified according to Theo-rem 1, Part I), then gives the following recursion formulas:
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$y(t;0)=\delta_{1}t^{\rho}/\Gamma(1+\rho)$ ,

$y^{\langle k)}(t;p)=-(t-\lambda_{i})^{\rho-\lambda_{k\sum_{j\neq i}a_{ij}\int_{0}^{t}(u-\lambda_{k})^{\lambda_{i}^{\prime}-\rho-1}y^{(j)}(u;}^{\prime}}p-1)du$

for $t$ in the cut plane, $p\geqq 1$ and $1\leqq k\leqq n$ . We inductively define functions

(1.7) $g(t)=t^{\rho}/\Gamma(1+\rho)$ ,

(1.8) $g(t;k)=-(t-\lambda_{i})^{\rho-\lambda^{\prime}}\iota\int_{0}^{t}(u-\lambda_{i})^{\lambda_{i}^{\prime}-\rho-1}g(u)du$

for $k=2,$ $\cdots$ , $n$ (note that the integral would not exist for $k=1$), and for $p\geqq 2$

(1.9) $g(t;k_{1}, \cdots k_{p})=-(t-\lambda_{\iota_{p}})^{\rho-\lambda^{\prime}}\kappa_{p}\int_{0}^{t}(u-\lambda_{\iota_{p}})^{\lambda_{i_{p}}^{\prime}-\rho-1}g(u;k_{1}, \cdots k_{p-1})du$

with $k_{j}=1,$ $\cdots$ , $n(j=2, p),$ $k_{1}=2,$ $\cdots$ $n$ . Then we find

$y^{(i)}(t;1)=a_{i1}g(t;k)$ , $k=2,$ $\cdots$ $n$ ,

$y^{(1)}(t;1)\equiv 0$ ,

and for $p\geqq 2$ (inductively) and $k=1,$ $\cdots$ , $n$ :

(1.10) $y^{(i)}(t;p)=\sum_{k_{1}.\cdots.i_{p-1}}a(k, k_{p-1}, \cdots k_{1},1)g(t;k_{1}, \cdots k_{p-1}, k)$
,

where

(1.11) $a(k, k_{p-1}, \cdots k_{1}, j)=a_{ik_{p-1}}a_{k_{p-1}i_{p-2}}\cdots a_{i_{1}j}$

(hence $\neq 0$ only if $k\neq k_{p-1},$ $k_{p-1}\neq k_{p-2},$ $\cdots$ , $k_{1}\neq j$). So each $y(t;p)$ is a Poly-

nomial in the elements of $A$ , and therefore $\sum y(t;p)$ coincides with the power

series expansion of $y(t)$ (for $w=1$), derived in Part I.

As is seen from [21 (or compare Part I), there exist unique functions $e(t)$ ,

$f(t)$ , both analytic for $t=1$ , such that

$y(t)=(t-1)^{\rho-\lambda_{2}^{\prime}}e(t)+f(t)$

(observe (1.2)), and
$e(1)=c\delta_{2}$

with a scalar constant $c$ which we like to refer to as the characteristic constant
(corresponding to $(\lambda_{1},$ $\lambda_{2})$). Given $p\geqq 1$ and indices $k_{j},$ $1\leqq k_{f}\leqq n,$ $j=1,$ $\cdots$ , $p$ ,

with $k_{1}\neq 1$ and no two consective $k_{j}$ equal to 2, one can show in quite the same
manner as in the proof of Proposition 4, Part I (or Proposition 1 of this Paper)

that

(1.12) $g(t;k_{1}, \cdots k_{p})=(t-1)^{\rho-\lambda_{2}^{\prime}}e(t;k_{1}, \cdots k_{p})+f(t;k_{1}, \cdots k_{p})$

with functions $e(t;k_{1}, k_{p}),$ $f(t;k_{1}, \cdots , k_{p})$ which are analytic for $t=1$ , and

$e(1;k_{1}, \cdots k_{p})=0$ if $k_{p}\neq 2$ .
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(If two consecutive $k_{j}$ equal 2, then logarithmic terms will, in general, occur in
the singular behavior of $g(t;k_{1}, \cdots , k_{p})$ at $t=1$ , however such $g(t;k_{1}, \cdots , k_{p})$

do not occur in (1.10), since the corresponding coefficient $a(k, k_{p-1}, \cdots , k_{1},1)$

vanishes.) Defining

(1.13) $d=e(1;2)$ ,

(1.14) $d(k_{1}, \cdots , k_{p})=e(1;k_{1}, \cdots , k_{p}, 2)$

whenever $e(1; k_{1}, \cdots , k_{p}, 2)$ has been defined, and $d(k_{1}, \cdots , k_{p})=0$ otherwise, we
obtain from Theorem 2, Part I, that (for $w=1$ )

$ c=da_{21}+\sum_{p=1}^{\infty}i_{1},\Sigma$ . $pa(2, k_{p}, \cdots k_{1},1)d(k_{1}, \cdots k_{p})$ ,

and the series converges absolutely and can be rewritten to coincide with the
power series expansion of $c$ obtained in Part I.

As a result of the foregoing discussion, we state the following

Expansion Theorem. Let an equation (0.1) be given, and let (1.1), (1.2) be

satisfied. Moreover, let $g(t),$ $g(t;k_{1}, \cdots , k_{p})$ and $d,$ $d(k_{1}, \cdots , k_{p})$ be as defined
above. Then the unique solution vector $y(t)=[y^{(1)}(t), y^{tn)}(t)]^{p}$ of (0.1) satisfy-
ing (1.3) can be expanded as follows:
(1.14) $y^{\langle 1)}(t)=g(t)+\sum_{p=1}^{\infty}k_{1}\ldots..i_{p}\Sigma a(1, k_{p}, \cdots , k_{1},1)g(t;k_{1}, \cdots k_{p}, 1)$ ,

and (for $k=2,$ $\cdots$ , n)

(1.15) $y^{(k)}(t)=a_{k1}g(t;k)+\sum_{p=1}^{\infty}k_{1},\cdots.i_{p}\Sigma a(k, k_{p}, \cdots , k_{1},1)g(t;k_{1}, \cdots , k_{p}, k)$ ,

where the series converge absolutely, and uniformly with respect to $t$ in compact
subsets of the cut plane which stay away from the points $\lambda_{1},$ $\cdots$ , $\lambda_{n}$ . Moreover,

the characteristic constant $c$ can be expanded as

(1.16) $ c=da_{21}+\sum_{p=1}^{\infty}\iota_{1^{i_{p}}}^{\Sigma a(2,k_{p}}\ldots$ , $k_{1},1$ )$d(k_{1}, \cdots , k_{p})$ ,

and the series converges absolutely.

In order to emphasize that expansions of the type (1.14), (1.15) are natural
to consider, we show that the coefficients themselves satisfy differential equations
which are weakly coupled in the sense that “ most ” of the parameters in the
coefficient matrix are zero and others are one:

Lemma 1. Under the assumptions of our Expansion Theorem, let $p\geqq 2$ and
$1\leqq k_{j}\leqq n$ ($j=1$ , – , p) with $k_{1}\neq 1$ be fixed, and define

$g_{p}(t)=[g(t), g(t;k_{1}), g(t;k_{1}, k_{p})]^{T}$,

$\Lambda_{p}=diag[\lambda_{1}, \lambda_{i_{1}}, \lambda_{\iota_{p}}]$ ,
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$A_{p}^{(1)}=\Lambda_{p}^{\prime}+N_{p}$ ,

$\Lambda_{p}^{\prime}=diag[\lambda_{1}^{\prime}, \lambda_{k_{1}}^{\prime}, \lambda_{k_{p}}^{\prime}]$ ,

$N_{p}=$

Then

(1.17) $(tI-\Lambda_{p})g_{p}^{\prime}(t)=(\rho I-A_{p}^{(1)})g_{p}(t)$ .
Proof. Differentiate the formulas (1.7), (1.8), (1.9).

2. Weakly coupled differential equations

Lemma 1 motivates a detailed study of equations of the form (1.17), and
in view of (1.16) we are particularly interested in the singular behavior of
$g(t;k_{1}, \cdots , k_{p})$ at the point $t=1$ (and we may assume $k_{p}=2$). To simplify the
notation, we will, from now on, consider equations of the form

(2.1) $(tI-\Lambda_{p})g^{\prime}=(\rho I-A_{p}^{(1)})g$ ,

where $p$ is a natural number, $\Lambda_{p}$ is a diagonal matrix having (not necessarily
distinct) diagonal entries $\lambda_{j},$ $j=0,$ $\cdots$ , $p;A_{p}^{(1)}=\Lambda_{p}^{\prime}+N_{p}$ , with $N_{p}$ as in Lemma 1
and $\Lambda_{p}^{\prime}$ a diagonal matrix with diagonal entries $\lambda_{j}^{\prime},$ $j=0,$ $\cdots$ , $p$ , and $\rho$ is a com-
plex parameter.

We will, throughout, make the following additional assumptions which do
not affect the application to systems considered in Lemma 1 (as far as they are
relevant in the expansion formulas $(1.14)-(1.16))$ :
(i) Let $\lambda_{0}=\lambda_{0}^{\prime}=0$, and $\lambda_{p}=1$ .
(ii) Let $\lambda_{1}\neq 0$, and whenever $\lambda_{j}=0$, then $\lambda_{j}^{\prime}=0$, for $j=2,$ $\cdots$ , $p$ .
(iii) Whenever $\lambda_{f}=1$ , then $\lambda_{j}^{\prime}=\lambda_{p}^{\prime}$ and $\lambda_{f-1}\neq 1$ , for $j=1,$ $\cdots$ , $p$ .

For fixed $\epsilon,$ $0<\epsilon<\pi/2$ , define $G_{\epsilon}$ by

(2.2) $G_{*}=\Delta-\Delta_{\epsilon/2}$ ,

where

(2.3) $\Delta_{\epsilon}=\{t\neq 0;0<\arg t<\epsilon\}\cap\{t\neq 1_{i}\pi-\epsilon<\arg(t-1)<\pi\}$ .
Given any equation (2.1), we can always find $\epsilon$ as above such that none of the
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points $\lambda_{j}$ $(j=0, \cdots , p)$ , except for those which are zero or one, $ly$ inside or on
the boundary of $G_{\text{\’{e}}}$ , and for a given $e,$ $0<e<\pi/2$ , an equation (2.1) satisfying
$(i)-(iii)$ will be called $\epsilon$ -admissible if none of the points $\lambda_{f}$ (other than those which
are zero or one) lies inside or on the boundary of $G_{*}$ . For $t\in G_{\epsilon}$ , general powers
of $t$ resp. $t-1$ should always be understood consistent with the restrictions of
arg $t$ resp. $\arg(t-1)$ implied by (2.3), and for points $\lambda\not\in G_{\epsilon}$ which are neither
zero nor one, a fixed, but arbitrary selection of a branch of $\arg(t-\lambda)$ (and based
here upon, of general powers of $ t-\lambda$), for $t\in G_{\epsilon}$ , is always assumed, however
in no case it will be essential which selection was made.

Lemma 2. Given $e,$ $0<e<\pi/2$, consider any $\epsilon$ -admissible equation (2.1). For
$\rho\not\equiv 0$ mod 1, there exists a unique solution vector

$g(t)=[g^{(O)}(t), g^{tp)}(t)]^{T}$ , $t\in G_{\epsilon}$ ,

of (2.1) which satisfies
(2.4) $g^{(j)}(t)=t^{\rho}\{\delta_{oj}/\Gamma(1+\rho)+reg_{0}(t)\}$ .

If additionally ${\rm Re}\rho>-1$ , the components $g^{(j)}(t)$ are given by

(2.5) $g^{(o)}(t)=t^{\rho}/\Gamma(1+\rho)$ ,

(2.6) $g^{(j)}(t)=-(t-\lambda_{j})\rho-\lambda^{\prime}J\int_{0}^{t}(u-\lambda_{j})_{\dot{J}^{-\rho- 1}}^{\lambda}g^{(j- 1)}(u)du$ ,

for $j=1,$ $P$ .
Proof. Existence and uniqueness of $g(t)$ easily follow from Frobenius’

method. If ${\rm Re}\rho>-1$ , then (2.5), (2.6) follow by induction with respect to $j$ .
Remark 2.1. Whenever we wish to emphasize the dependence of $g(t)$ upon

$\rho$ , we write $g(t;\rho)$ (resp. $g^{(j)}(t;\rho)$ for its components). Differentiating (2.1),

we find
$(tI-\Lambda_{p})g^{\prime\prime}(t;\rho)=((\rho-1)I-A_{p}^{(1)})g^{\prime}(t;\rho)$ ,

and differentiation of (2.4) implies

$\frac{d}{dt}g^{(j)}(t)=t^{\rho- 1}\{\delta_{0j}/\Gamma(\rho)+reg_{0}(t)\}$ ,

hence according to the uniqueness part of Lemma 2,

(2.7) $g^{\prime}(t;\rho)=g(t_{j}\rho-1)$ .
For ${\rm Re}\rho>-1$ , formulas (2.5), (2.6) still define a solution vector of (2.1) even if
$\rho$ is an integer, and (2.7) may then be used to define $g(t;\rho)$ for negative integer
$\rho$ . Hence we note that $g(t;\rho)$ is defined for every complex $\rho$ and depends
analytically upon $\rho$ (see also [4]).

Proposition 1. Given $\epsilon,$
$0<\epsilon<\pi/2$ , consider any e-admissible equation (2.1).
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For $\rho\not\equiv\lambda_{p}^{\prime}$ mod 1, the solution vector $g(t;\rho)$ is, for $t(\in G_{\epsilon})$ close to 1, of the
form
(2.8) $g(t;\rho)=(t-1)^{\rho-\lambda_{p}^{\prime}}e(t;\rho)+f(t;\rho)$

with $e(t;\rho),$ $f(t;\rho)$ analytic for $t=1$ . If $c=c(\rho)$ denotes the value of the last
component of $e(t;\rho)$ at $t=1$ , then $c(\rho)$ is a single valued analytic function of $\rho$

for $\rho\not\equiv\lambda_{p}^{\prime}$ mod 1.

Proof. Let $e^{(j)}(t;\rho)$ resp. $f^{\langle j)}(t;\rho)$ denote the components of $e(t;\rho),$ $f(t;\rho)$

and proceed by induction with respect to $j$ : For some fixed $j,$ $1\leqq j\leqq P$ , assume
$g^{(j-1)}(t;\rho)=(t-1)^{\rho-\lambda_{p}^{\prime}}e^{(j- 1)}(t;\rho)+f^{(j-1)}(t;\rho)$ ,

with $e^{\langle j-1)}(t;\rho),$ $f^{(j-1)}(t;\rho)$ analytic and single valued in $\rho$ for $\rho\not\equiv\lambda_{p}^{\prime}$ mod 1 (and

every fixed $t\in G_{\epsilon}U\{1\}$ ), and analytic in $t$ for $t\in G_{\epsilon}U\{1\}$ (and every fixed $\rho$ as
above). Moreover, suppose for every $\rho\not\equiv\lambda_{p}^{\prime}$ mod 1

$e^{(j-1)}(1;\rho)=0$ in case $\lambda_{j-1}\neq 1$ .
Note that these assumptions hold for $j=1$ , since then $e^{(O)}(t;\rho)\equiv 0,$ $f^{(0)}(t;\rho)=$

$t^{\rho}/\Gamma(1+\rho)$ . Assume for the moment ${\rm Re}\rho>-1$ , and write (for $t_{0}\in G_{*}$ , close to 1):

$g^{tj)}(t;\rho)=-(t-\lambda_{j})^{\rho-\lambda_{j}^{\prime}}\int_{0}^{t_{0}}(u-\lambda_{f})_{J^{-\rho-1}}^{\lambda^{\prime}}g^{(j-1)}(u;\rho)du$

$-(t-\lambda_{j})^{\rho-\lambda_{j}^{\prime}}\int_{t_{0}}^{t}(u-\lambda_{j})^{\lambda_{j}^{l}-\rho-1}(u-1)^{\rho-\lambda_{p}^{\prime}}e^{(j-1)}(u;\rho)du$

$-(t-\lambda_{j})^{\rho-\lambda_{j}^{\prime}}\int_{t_{0}}^{t}(u-\lambda_{j})^{\lambda_{j}^{\prime}-\rho- 1}f^{\langle j-1)}(u;\rho)du$ .
Case $\alpha$). Suppose $\lambda_{j}\neq 1$ . Since $(t-\lambda_{j})^{\lambda_{j}^{\prime}-\rho-1}(t-1)^{\rho-\lambda_{p}^{\prime}}e^{(j-1)}(t;\rho)$ is of the form
$(t-1)^{\rho-\lambda_{p}^{\prime}}reg(t-1)$ , it has a unique antiderivative $E(t;\rho)$ of the form
$(t-1)^{\rho-\lambda_{p}^{\prime}+1}reg(t-1)$ . Define

$e^{tj)}(t;\rho)=-(t-1)^{\lambda_{p}^{\prime}-\rho}E(t;\rho)(t-\lambda_{j})^{\rho-\lambda_{f}^{\prime}}$ ,

$f^{(j)}(t;\rho)=-(t-\lambda_{j})\rho-\lambda^{\prime}J\int_{0}^{t_{0}}(u-\lambda_{j})^{\lambda_{j}^{\prime}-\rho- 1}g^{\langle j-1)}(u;\rho)du$

$-(t-\lambda_{j})^{\rho}-\lambda^{\prime}J\int_{\iota_{0}}^{t}(u-\lambda_{j})^{\lambda_{j}^{\prime}-\rho- 1}f^{(j- 1)}(u;\rho)du$

$+(t-\lambda_{j})^{\rho-\lambda_{j}^{\prime}}E(t_{0} ; \rho)$ ,

then for fixed $\rho\not\equiv\lambda_{p}^{\prime}$ mod l, ${\rm Re}\rho>-1$ , the functions $e^{(j)}(t;\rho),$ $f^{(j)}(t;\rho)$ are
analytic in $t$ , for $t\in G_{\epsilon}U\{1\}$ , and $e^{(j)}(1;\rho)=0$. Moreover, $E(t_{0} ; \rho)$ is analytic
and single valued in $\rho$ , for $\rho\not\equiv\lambda_{p}^{\prime}$ mod 1, ${\rm Re}\rho>-1$ (since $t_{0}$ is close to 1, we
may evaluate $E(t_{0} ; \rho)$ by termwise integration of the expansion about $t=1$ of
$(t-1)^{\rho-\lambda_{p}^{i}}(t-\lambda_{j})^{\lambda_{j}^{\prime}-\rho-1}e^{(j-1)}(t;\rho))$ . Therefore $E(t;\rho)$ , for every fixed $f\in G.$ , is
seen to be analytic and single valued in $\rho$ (for $\rho$ as above), and the same
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follows for $e^{(j)}(t;\rho),$ $f^{(j)}(t;\rho)$ , even if $t=1$ .
Case $\beta$ ). Suppose $\lambda_{j}=1$ . According to assumption (iii) we then have $\lambda_{j}^{\prime}=\lambda_{p}^{\prime}$

and $\lambda_{j-1}\neq 1$ . Let $F(t;\rho)$ be the unique antiderivative of $(t-1)^{\lambda_{p}^{\prime}-\rho-1}f^{(j-1)}(t;\rho)$

which is of the form $(t-1)^{\lambda_{p^{-\rho}}^{\prime}}reg(t-1)$ , and define

$e^{(j)}(t;\rho)=-\int_{0}^{t_{0}}(u-1)^{\lambda_{p}^{\prime}-\rho- 1}g^{(j- 1)}(u;\rho)du$

$-\int_{t_{0}}^{t}(u-1)^{-1}e^{(j-1)}(u;\rho)du$

$+F(t_{0} ; \rho)$ ,

$f^{(j)}(t;\rho)=-F(t;\rho)(t-1)^{\rho-\lambda_{p}^{\prime}}$ .
Similar reasoning as above shows that $e^{(j)}(t;\rho),$ $f^{(j)}(t;\rho)$ have the same analyt-

icity properties as in Case a) (in particular, note that by assumption $e^{(j-1)}(1;\rho)$

$=0$, since $\lambda_{f- 1}\neq 1$ ).

In both cases we obtained

$g^{(j)}(t;\rho)=(t-1)^{\rho-\lambda_{p}^{\prime}}e^{(j)}(t;\rho)+f^{(j)}(t;\rho)$

for ${\rm Re}\rho>-1$ and $\rho\not\equiv\lambda_{p}^{\prime}$ mod 1. By repeated differentiation with respect to $t$

we can, in view of (2.7), remove the restriction ${\rm Re}\rho>-1$ (and $e^{(j)}(t;\rho),$ $f^{(j)}(t;\rho)$

still have the same analyticity properties). Altogether, this proves (2.8) plus the
fact that $e^{(p)}(1;\rho)=c(\rho)$ is analytic and single valued for $\rho\not\equiv\lambda_{p}^{\prime}$ mod 1. This
completes the proof.

Remark 2.2. We wish to emphasize that the constant $c$ (defined in Prop-

osition 1) does not depend upon $e$ in the sense that if we take any two $\epsilon$ for
which a given equation (2.1) is e-admissible, then the corresponding values of $c$

agree. Therefore, $c$ is determined by the parameters in (2.1), which are $\lambda_{1},$ $\cdots$ ,
$\lambda_{p-1},$ $\lambda_{1}^{\prime},$ $\cdots$ , $\lambda_{p}^{\prime}$ , and $\rho$ (observe assumption $(i)$ ).

3. Calculation of the characteristic constant

In Proposition 1 we defined a constant $c$ which we like to call the character-
istic constant of (2.1). Obviously, $c$ does not only depend upon $\rho$ , but also upon
$\lambda_{1},$ $\cdots$ , $\lambda_{p-1}$ and $\lambda_{1}^{\prime},$ $\cdots$ , $\lambda_{p}^{\prime}$ (see Remark 2.2), and we are going to investigate the
nature of $c$ as a function of some of these parameters. As a first step, we will
calculate $c$ (in terms of convergent series) in case the following assumption holds:

(iv) Let $|\lambda_{j}|>1,1\leqq j\leqq p-1$ .
Given complex parameters $\beta_{1},$ $\cdots$ , $\beta_{p}$ , we define functions of complex vari-

ables $w_{1},$ $\cdots$ , Wp-l by the following recursions:

(3.1) $b=b(\beta_{1})=1/\Gamma(\beta_{I})$ ,
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(3.2) $b(w_{1})=b(w_{1} ; \beta_{1}, \beta_{2})=\sum_{\nu=0}^{\infty}(\beta_{2})_{\nu}b(\nu+\beta_{1})w_{1}^{\nu+1}$ ,

(3.3) $b(w_{1}, w_{j})=b(w_{1}, w_{j} ; \beta_{1}, \beta_{j+1})$

$=\sum_{\nu=0}^{r}(\beta_{j+1})_{\nu}b(w_{1}, w_{j- 1} ; \beta_{1}+\nu, \beta_{j}+\nu)w_{j}^{\nu+1}$ ,

$(2\leqq 1\leqq p-1)$ , where $(\beta)_{0}=1,$ $(\beta)_{1}=\beta,$ $(\beta)_{\nu}=\beta(\beta+1)\cdots(\beta+\nu-1)$ for $\nu\geqq 2$ .
Proposition 2. For arbitrarily given $\beta_{1},$ $\cdots$ , $\beta_{p}$ and every $j,$ $1\leqq j\leqq p$, the

series in (3.3), when regarded as a p0wer series in several variables, converges
absolutely for $|w_{k}|<1,1\leqq k\leqq j$, hence $b(w_{1}, \cdots , w_{j})$ is analytic in each variable
for these values of $w_{1},$ $\cdots$ , $w_{j}$ . If
(3.4) $\beta_{1}=\cdots=\beta_{p}=\beta$ ,

then

(3.5) $b(w_{1}, w_{j})=w_{1}(1-w_{1})^{-1}\cdots w_{j}(1-w_{j})^{-1}/\Gamma(\beta)$ .

Proof. We flrst assume (3.4). Then

$(\beta)_{\nu}b(\nu+\beta)=\beta(\beta+1)\cdots(\beta+\nu-1)/\Gamma(\beta+\nu)=1/\Gamma(\beta)$ ,

hence (3.5) holds for $j=1$ and every complex $\beta$ . If we now assume (3.5) for
some fixed $j\geqq 1$ and arbitrary $\beta$ , then

$b(w_{1}, w_{j+1})=\sum_{\nu=0}^{\infty}(\beta)_{\nu}b(w_{1}, w_{j} ; \beta+\nu, \beta+\nu)w_{j}^{\nu}\ddagger_{1}^{1}$

$=\{\sum_{\nu=0}^{\infty}w_{j}^{\nu}\ddagger_{1}^{1}\}w_{1}(1-w_{1})^{-1}\cdots w_{j}(1-w_{j})^{-1}/\Gamma(\beta)$ ,

$i.e$ . $(3.5)$ holds with $j+1$ in pIace of $j$ .
In order to show convergence of (3.3), let $c\geqq 0$ be the maximum of $|\beta_{j}|$ ,

$1\leqq j\leqq p$ . Since for every complex $\beta$ we have $|(\beta)_{\nu}|\leqq(|\beta|)_{\nu}$, we obtain by induc-
tion with respect to $j$ (with $|w_{i}|\leqq\rho<1,1\leqq k\leqq j$ , and sufficiently large $K=$

$K(j, \rho)>0)$ ;

$|b(w_{1}, w_{j} ; \beta_{1}, \beta_{j+1})|\leqq Kb(|w_{1}|, |w_{j}| ; |\beta_{1}|, |\beta_{j+1}|)$

$\leqq Kb(|w_{1}|, |w_{j}|ic, c)$ ,
which completes the proof.

Proposition 3. Given $e,$ $0<\epsilon<\pi/2$, and an $\epsilon$ -admissible equation (2.1), the
unique solution vector $g(t;\rho)$ has, for $t\in G_{\epsilon},$ $|t|$ sufficiently small, a convergent
expansi0n

$g(t;\rho)=\sum_{\mu=0}^{\infty}f(\mu)t^{\mu+\rho}/\Gamma(1+\mu+\rho)$ ,

with coefficient vectors $f(\mu)=[f^{(O)}(\mu), \cdots , f^{tp)}(\mu)]^{T}$ which are independent of $\rho$ . If
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we additionally assume (iv), then

(3.6)
$\lim_{\mu\rightarrow}f^{(p)}(\mu)/\Gamma(\mu+\lambda_{p}^{\prime})=b(\lambda_{p-1}^{-1}, \lambda_{1}^{-1} ; \lambda_{p}^{\prime}+p, \cdots , \lambda_{1}^{\prime}+1)$ .

Proof. For arbitrarily fixed $\rho\not\equiv 0$ mod 1, if we expand $g(t;\rho)$ as above
and insert into (2.1), we obtain the following identities for the components of
the coefficients (observe $\lambda_{0}=\lambda_{0}^{\prime}=0$):

(3.7) $0=\mu f^{(o)}(\mu)$ , $\mu\geqq 0$ ,

(3.8) $\lambda_{j}f^{(j)}(\mu+1)=(\mu+\lambda_{j}^{\prime})f^{(j)}(\mu)+f^{(j-1)}(\mu)$ , $\mu\geqq 0,1\leqq j\leqq p$ .
According to (2.4) we have $f^{(j)}(0)=\delta_{jo},$ $0\leqq j\leqq p$ , and (3.7), (3.8) determine the
coefficients $f(\mu)$ completely (for $\mu\geqq 1$ ; observe that $\lambda_{j}=0$ implies $\lambda_{j}^{\prime}=0$, due to
assumption (ii)). Therefore, the coefficients do not depend upon $\rho$ .

If we now assume (iv), then we find (by induction with respect to j)

$f^{(j)}(0)=\cdots=f^{(j)}(j-1)=0$ , $1\leqq j\leqq P$ .
Moreover, $f^{(0)}(\mu)=\delta_{po}(\mu\geqq 0)$ , and since (3.8) is an inhomogeneous difference
equation, by the usual “ variation of constants “ technique we obtain

(3.9) $f^{(j)}(\mu)=\lambda_{j}^{-\mu}\sum_{\nu=j-1}^{\mu-1}\lambda_{j}^{\nu}f^{(j- 1)}(\nu)(\nu+\lambda_{j}^{\prime}+1)_{\mu-\nu-1}$ , $1\leqq j\leqq P,$ $\mu\geqq j$

(observe that $f^{(j)}(\mu)$ depends analytically upon the parameters $\lambda_{1}^{\prime},$ $\cdots$ , $\lambda_{p}^{\prime}$ , hence
to obtain (3.9) one can assume that no $\lambda_{f}^{\prime}$ is an integer, $j=1,$ $\cdots$ , $p$). Using (iv),
we may estimate (3.9) to show that for sufficiently small $\delta>0$ and large enough
$K>0$

$|f^{tj)}(\mu)|\leqq K(1-\delta)^{\mu}\Gamma(\mu)$ , $\mu\geqq j,$ $1\leqq j\leqq p-1$ ,

hence $\lim_{\mu\rightarrow\infty}f^{(p)}(\mu)/\Gamma(\mu+\lambda_{p}^{\prime})$ exists, and is equal to

$\sum_{\nu=p-1}^{\infty}f^{(p-1)}(\nu)b(\lambda_{p}^{\prime}+1+\nu)$

(use (3.9) with $j=p$ and observe $(\nu+\lambda_{p}^{\prime}+1)_{\mu-\nu-1}=\Gamma(\mu+\lambda_{p}^{\prime})/\Gamma(\nu+\lambda_{p}^{\prime}+1)$ , for suffi-
ciently large $\mu$). By induction (with respect to $k=p-j$) one obtains, using (3.9),
(3.2), and (3.3), for $j=0,$ $p-2$ :

$\lim_{\mu\rightarrow\infty}f^{(p)}(\mu)/\Gamma(\mu+\lambda_{p}^{\prime})$

$=\sum_{\nu=j}^{\infty}f^{(j)}(\nu)b(\lambda_{p-1}^{-1}, \lambda_{j+1}^{-1} ; \lambda_{p}^{\prime}+p-j+\nu, \lambda_{j+1}^{\prime}+1+\nu)$ .
For $j=0$ (observe $f^{(O)}(\nu)=\delta_{\nu 0}$ ) this implies (3.6). Hence the proof is completed.

Theorem 1. Let a differential equation (2.1) be given, and assume that $(i)-$

(iv) are satisfied. Then the characteristics constant $c$ is given by
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(3.10) $c=c(\lambda_{1}, \cdots , \lambda_{p-1} ; \lambda_{1}^{\prime}, \cdots , \lambda_{p}^{\prime} ; \rho)$

$=e^{i\pi(\lambda_{p}^{\prime}-\rho)}\Gamma(\lambda_{p}^{\prime}-\rho)b(\lambda_{p-1}^{-1}, \lambda_{1}^{-1} ; \lambda_{p}^{\prime}+p, \lambda_{1}^{\prime}+1)$

(for $\rho\not\equiv\lambda_{p}^{\prime}$ mod 1).

Proof. Since both sides of (3.10) are analytic functions of $\rho$ , provided $\rho\not\equiv\lambda_{l)}^{\prime}$

mod 1 (compare Proposition 1), it is sufficient to show (3.10) in case
${\rm Re}(\lambda_{p}^{\prime}-\rho)>0$ .

In this case, we obtain from (2.8) (with suitably small $e>0$)

(3.11) $c=c(\rho)=e^{(p)}(1;\rho)=\lim_{t\rightarrow 1}(t-1)^{\lambda_{p}^{\prime}-\rho}g^{(p)}(t;\rho)$ , $t\in G_{\epsilon}$ .
From Proposition 3 resp. its proof, we conclude

$g^{tp)}(t;\rho)=\sum_{\mu=0}^{\infty}f^{(p)}(\mu)t^{\mu+\rho}/\Gamma(1+\mu+\rho)$ ,

$f^{(p)}(\mu)=\Gamma(\mu+\lambda_{p}^{\prime})\{b+O(1-\delta)^{\mu})\}$ for $\mu>-{\rm Re}\lambda_{p}^{\prime}$ ,

with sufficiently small $\delta>0$ and $b=b(\lambda_{p-1}^{-1}, \lambda_{1}^{-1} ; \lambda_{p}^{\prime}+p, \cdots , \lambda_{1}^{\prime}+1)$ . Obviously,
the limit in (3.11) stays flxed, if we subtract terms from $g^{(p)}(t;\rho)$ which stay

bounded as $t\rightarrow 1$ , hence for arbitrary $\mu_{0}>-{\rm Re}\lambda_{p}^{\prime}$ :

$c=d(\rho)b(\lambda_{p-1}^{-1}, \lambda_{1}^{-1} ; \lambda_{p}^{\prime}+p, \lambda_{1}^{\prime}+1)$ ,

where
$d(\rho)=\lim_{t\rightarrow 1}(t-1)^{i_{p}^{\prime}-\rho}f(t)$ ,

$f(t)=\sum_{\mu=p_{0}}^{\infty}\Gamma(\mu+\lambda_{p}^{\prime})t^{\mu+\rho}/\Gamma(1+\mu+\rho)$ .
Since (for $\mu_{0}>-{\rm Re}\rho$ )

$\Gamma(\rho+\mu_{0})f(t)=-(t-1)^{\rho-l_{p}^{\prime}}\int_{0}^{t}(u-1)^{\lambda_{p}^{\prime}-\rho- 1}u^{\rho+\mu_{0^{-1}}}du\Gamma(\lambda_{p}^{\prime}+\mu_{0})$ ,

(observe that both sides behave the same for $t\rightarrow 0$ and satisfy the same inhomo-
geneous differential equation), we find

$d(\rho)=-\int_{0}^{1}(u-1)^{\lambda_{p}^{\prime}-\rho-1}u^{\rho+\mu_{0}-1}du\Gamma(\lambda_{p}^{\prime}+\mu_{0})/\Gamma(\rho+\mu_{0})$ ,

and observing $\arg(u-1)=\pi$ , this implies

$d(\rho)=e^{\ell\pi(\lambda_{p}^{\prime}-\rho)}\Gamma(\lambda_{p}^{\prime}-\rho)$ .

4. Analyticity properties of the characteristic constant

As a consequence of Theorem 1, we obtain that the characteristic constant
$c$ of a system (2.1) which satisfles $(i)-(iii)$ is an analytic function of $\lambda_{1},$ $\cdots$ , $\lambda_{p-1}$

provided $|\lambda_{f}|>1(1\leqq j\leqq p-1)$ . In this Section we are going to show the analyt-
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icity of $c$ (in these variables) in a bigger region.

Lemma 3. Given $\epsilon,$ 0<\’e<\mbox{\boldmath $\pi$}/2, consider an arbitrarily fixed $\epsilon$ -admissible
equation (2.1), and assume
(4.1) $0<{\rm Re}(\lambda_{p}^{\prime}-\rho)<1$ .
Then for every $k=0,$ $\cdots$ , $p$ , the vector $g_{k}(t)=[g_{k}^{(o)}(t), \cdots , g_{k}^{(p)}(t)]^{T}$ with
(4.2) $g_{i}^{\langle j)}(t)\equiv 0$ if $0\leqq j\leqq k-1$ ,

(4.3) $g_{i}^{tt)}(t)=(t-\lambda_{k})^{\rho-\lambda_{i}^{\prime}}$ ,

(4.4) $g_{i}^{(j)}(t)=-(t-\lambda_{j})^{\rho-\lambda^{\prime}}J\int_{1}^{t}(u-\lambda_{j})^{\lambda_{j}^{\prime}-\rho-1}g_{k}^{(j-1)}(u)du$ if $k+1\leqq j\leqq p$ ,

is a solution vector of (2.1) (for $t\in G_{e}$). Obviously $g_{0}(t),$ $\cdots$ , $g_{p}(t)$ are linearly
independent, and if we expand

(4.5) $g(t)=\sum_{\iota=0}^{p}c_{k}g_{\iota}(t)$ ,

then the characteristic constant $c$ of (2.1) equals $c_{p}$ .
Proof. For every fixed $k$ , by induction with respect to $j$ , one can show

that the integrals in (4.4) all exist (observe that if $k<P$ and $\lambda_{k}=1$ , then $\lambda_{i}^{\prime}=\lambda_{p}^{\prime}$

and $\lambda_{i+1}\neq 1$ , according to assumption (iii)). By differentiation of (4.3), (4.4) it is
easily seen that $g_{k}(t)$ satisfies (2.1) (for every $k=0,$ $p$). If $\lambda_{k}\neq 1$ , then $g_{i}(t)$

is analytic for $t=1$ , and if $\lambda_{i}=1$ and $k<p$ , (using again $\lambda_{k+1}\neq 1$ and $\lambda_{k}^{\prime}=\lambda_{p}^{\prime}$ ) we
flnd $g_{i}^{(f)}(t)=(t-1)^{\rho-\lambda_{p}^{\prime}+1}reg(t-1)$ for $j=k+1,$ $\cdots$ , $p$ . Hence comparing (4.5) to
(2.8), we see

$e(t;\rho)=(t-1)^{\lambda_{p}^{\prime}-\rho}\sum_{\iota\lambda^{i=0}=1}^{p}c_{k}g_{k}(t)$ ,

and in particular

$c=e^{(p)}(1;\rho)=\sum_{\iota\lambda^{i=0}=1}^{p}c_{i}\{(t-1)^{\lambda_{p}^{\prime}-\rho}g_{k}(t)\}_{t=1}$

$=c_{p}$ .
By $E_{\epsilon}$ we denote the complement of the closure of $G_{\epsilon}$ .
Theorem 2. For arbitrarily given $\epsilon,$ $0<\epsilon<\pi/2$ , consider a fixed, but arbitrary

$\epsilon- admi_{SS\dot{l}}ble$ equation (2.1) and its characteristic constant $c$ . For some fixed $j$

$(1\leqq j\leqq p-1)$ , replace $\lambda_{f}$ by any number $\lambda\in E_{\epsilon}$ . Then the resulting equation is
again e-admissible, and its characteristic constant $c_{\lambda}$ (for $\rho\not\equiv\lambda_{p}^{\prime}$ mod 1) is \’an
analytic function of $\lambda$ (for $\lambda\in E_{\epsilon}$ ). In case $\lambda_{j}=0$ resp. $\lambda_{j}=1$ , we have
(4.6)

$c=\lim_{l-0}c_{\lambda}$
$(\lambda\in E_{\text{\’{e}}})$ ,

resp.
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\langle 4.7) $c=\lim_{\lambda\rightarrow 1}c_{\lambda}$

$(\lambda\in E_{\epsilon})$ .

Proof. Let us refer to equation (2.1) (with the original value $\lambda_{j}$) as the
original equation, and to the one obtained when replacing $\lambda_{j}$ by $\lambda$ as the $\lambda$-equa-
tion. Then according to the definition every $\lambda$-equation clearly is admissible.
Let $g(t)$ resp. $\tilde{g}(t)$ be the unique solutions of the original resp. the $\lambda$-equation
which were deflned in Lemma 2 (also observe Remark 2.1). For ${\rm Re}\rho>-1$ , it
may be seen from (2.5), (2.6) that for fixed $t\in G.$ , the components of $\tilde{g}(t)$ ,

regarded as functions of $\lambda\in E.$ , are locally analytic (although not necessarily

single valued), and in case $\lambda_{j}=0$ resp. $\lambda_{f}=1$ , we have

$\lim_{\lambda\rightarrow 0}\tilde{g}(t)=g(t)$ ,

resp.
$\lim_{\rightarrow 1}\tilde{g}(t)=g(t)$ .

Using (2.7) and Cauchy’s integral formula for derivatives, it is easily seen that
these statements generalize to arbitrary values of $\rho$ . If, in particular, we assume
(4.1) and deflne $g_{h}(t)$ resp. $\tilde{g}_{k}(t)(0\leqq k\leqq p)$ (for the original resp. the $\lambda$-equation)

as in Lemma 3, then again we obtain from $(4.2)-(4.4)$ that $\tilde{g}_{i}(t)$ (for fixed $t\in G_{*}$)

is locally analytic in $\lambda$ , for $\lambda\in E_{\epsilon}$ , and tends to $g_{k}(t)$ as $\lambda\rightarrow 0$ (if $\lambda_{f}=0$) resp.
$\lambda\rightarrow 1$ (if $\lambda_{j}=1$), for $k=0,$ $\cdots$ , $p$. Hence if we expand

$\tilde{g}(t)=\sum_{i=0}^{p}\delta_{k}\tilde{g}_{k}(t)$ ,

then obviously $c_{k}\sim(0\leqq k\leqq p)$ are locally analytic functions of $\lambda$ and tend to $c_{i}$ (as

in (4.5)) if $\lambda\rightarrow\lambda_{j}$, even if $\lambda_{j}=0$ or $\lambda_{j}=1$ . However, $\delta_{p}=c_{\lambda}$ and $c_{p}=c$ (according

to Lemma 3). This proves Theorem 2 for $\rho$ restricted by (4.1), since the single-

valuedness of $c_{\lambda}$ is clear according to Theorem 1. In view of (3.10), we see
that $b(\lambda_{\overline{p}-1}^{1}, \cdots , \lambda_{1}^{-1} ; \lambda_{p}^{\prime}+p, \lambda_{\iota}^{\prime}+1)$ (if we replace $\lambda_{j}$ by $\lambda$) becomes an analytic

function for $\lambda\in E_{*}$ , and (3.10) generalizes, first to arbitrary $\lambda\in E$. and $\rho$ as in
(4.1), and then to arbitrary $\rho\not\equiv\lambda_{p}^{\prime}$ mod 1, in view of the analyticity of $c$ with
respect to $\rho$ (compare Proposition 1).

Remark 4.1. For arbitrarily given values $\beta_{1},$ $\cdots$ $\beta_{p}(p\geqq 2)$ , it follows from
the $prf$ of Theorem 2 that $b$( $w_{1},$ $\cdots$ Wp-l; $\beta_{1},$ $\beta_{p}$) is a single valued analytic

function in the variables $w_{j}$ in the region

$\arg(w_{j}-1)\not\equiv 0$ mod $ 2\pi$ , $1\leqq j\leqq p-1$ .
For an explicit calculation of the characteristic constants it is important to have
explicit formulas for $b(w_{1}, \cdots , w_{p-l})$ in the above region. For example, if $p=2$,

then $b(w_{1})$ is a hypergeometric function, and formulas for its analytic continua-
tion are known. In a separate paper, we will try to flnd similar formulas for
higher values of $p$ .
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