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1. Introduction

The purpose of this paper is to investigate various properties of sequentially
closed graphs and to obtain the following characterization of sequentially compact
spaces: A $T_{1}$ topological space $Y$ is sequentially compact if and only if for every
toPological sPace $X\in S$, each maPping of $X$ into $Y$ with sequentially closed graph
is sequentially continuous. In this characterization, we let $S$ be a class of first
countable topological spaces containing the class of first countable Hausdorff
completely normal and fully normal spaces. This class $S$ is more restrictive
$(i.e., 1^{o})$ than the class used in [2]. The one-point compactification of the
positive integers $N$ will be denoted by $\overline{N}$. We note that $\overline{N}\in S$ .

2. Preliminaries

The following deflnitions and theorems are stated for future reference.

Definition 2.1. A subset $F$ of a topological space $X$ is sequentially closed if
and only if sequences in $F$ which converge in $X$ have limits in $F$.

Definition 2.2. A function $f:X\rightarrow Y$ is sequentially continuous if and only
if $f(x_{n})\rightarrow f(x)$ whenever $x_{n}\rightarrow x$ .

Deflnition 2.3. The graph of a function $f$ : $X\rightarrow Y$ , denoted by $G(f)$ , is
sequentially closed if and only if $G(f)$ is a sequentially closed subset of $X\times Y$ .

Theorem 2.4. A function $f;X\rightarrow Y$ is sequentially continuous if and only if
$f^{-1}(F)$ is sequentially closed for every sequentially closed subset $F$ of $Y$ [ $1$ , Th. 1.2].

Theorem 2.5. Let $\{y_{n}\}$ be a sequence in $Y$ with no convergent subsequence.
Let $Y$ be $T_{1}$ . Then the set $A=\{(n, y_{n})|n\in N\}$ is sequentially closed in $\overline{N}\times Y[1$ ,
Th. 1.3].

3. Sequentially Closed Graphs

Theorem 3.1. Let $Y$ be a topological space with unique sequential limits and
$f:X\rightarrow Y$ a sequentially continuous function, from any space X. Then $G(f)$ is
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sequentially closed.

Proof. Let $(x_{n}, f(x_{n}))\rightarrow(x, y)\in X\times Y$ . Since $x_{n}\rightarrow x$ , we have by sequential
continuity that $f(x_{n})\rightarrow f(x)$ . But $Y$ has unique sequential limits, hence $f(x_{n})$

$\rightarrow y=f(x)$ . Therefore, $(x, y)\in G(f)$ and $G(f)$ is sequentially closed.

Theorem 3.2. Let $f:X\rightarrow Y$ be any function with sequentially closed graph.
If $B$ is a sequentially compact subset of $Y$, then $f^{-1}(B)$ is a sequentially closed
subset of $X$.

Proof. Let $\{x_{n}\}$ be a sequence in $f^{-1}(B)$ such that $x_{n}\rightarrow x$ . Because $B$ is
sequentially compact, the sequence $\{f(x_{n})\}$ in $B$ contains a convergent sub-
sequence; $i.e.$ , there exists a $y\in B$ such that $f(x_{n_{k}})\rightarrow y$ . We now have
$(x_{n_{k}}, f(x_{n_{i}}))\rightarrow(x, y)$ . With $G(f)$ sequentially closed, we conclude that $f(x)=y$ ,
hence $x\in f^{-1}(B)$ and $f^{-1}(B)$ is sequentially closed.

Theorem 3.3. Let $f:X\rightarrow Y$ be any function with $G(f)$ sequentially closed.
If $B$ is a sequentially compact subset of $X$, then $f(B)$ is a sequentially closed
subset of Y.

Proof. The proof is similar to the proof of Theorem 3.2 and is thus
omitted.

Corollary 3.4. If $X$ is sequentially compact and $f:X\rightarrow Y$ has sequentially
closed graph, then $f$ is a sequentially closed function.

Theorem 3.5. If $f:X\rightarrow Y$ is sequentially continuous and $Y$ has unique sequen-
tial limits, then $A=\{(x_{1}, x_{8})|f(x_{1})=f(x_{2})\}=(f\times f)^{-1}(\Delta Y)$ a sequentially closed sub-
set of $X\times X$.

Proof. Let $\{(a_{n}, b_{n})\}\subset A$ and suppose $(a_{n}, b_{n})\rightarrow(a, b)$ . Since $a_{n}\rightarrow a$ and
$b_{n}\rightarrow b$ , we have that $f(a_{n})\rightarrow f(a)$ and $f(b_{n})\rightarrow f(b)$ by sequential continuity. But
since $f(a_{n})=f(b_{n})$ for every $n$ , and additionally $Y$ has unique sequential limits,
we must have $f(a)=f(b)$ . Therefore, $(a, b)\in A$ and $A$ is sequentially closed.

Theorem 3.6. If $X$ is sequentially compact and $f:X\rightarrow Y,$ $f$ surjective, has
sequentially closed graph, then $Y$ has unique sequential limits.

Proof. Let $\{y_{n}\}$ be any convergent sequence in $Y$ and suppose $y_{n}\rightarrow y_{1}$ and
$y_{n}\rightarrow y_{2}$ . Choose $x_{n}\in f^{-1}(y_{n})$ . By sequential compactness, there exists a sub-
sequence such that $x_{n_{k}}\rightarrow x\in X$. Then, we have $(x_{n_{k}}, f(x_{n_{k}}))\rightarrow(x, y_{1})$ and $(x, y_{8})$ .
Since $G(f)$ is sequentially closed, we have $f(x)=y_{1}$ and $f(x)=y_{2}$, hence $y_{1}=y_{\epsilon}$

and $Y$ has unique sequential limits.

Corollary 3.7. Let $f:X\rightarrow Y$ be a sequentially continuous surjection and $X$

sequentially compact. Then the following are equivalent:
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(i) $G(f)$ is sequentially closed
(ii) $Y$ has unique sequential limits
(iii) The set $\{(y, y)|y\in Y\}$ is sequentially closed in $x\times Y$.
Proof. The equivalence of (ii) and (iii) is trivial.

4. Characterizations of Sequential Compactness

Theorem 4.1. If $G(f)$ is sequentially closed and $Y$ is sequentially compact,
then $f;X\rightarrow Y$ is sequentially continuous.

Proof. Let $B$ be a sequentially closed subset of $Y$. Since $Y$ is also sequen-
tially compact, $B$ is sequentially compact, hence $f^{-1}(B)$ is sequentially closed by
Theorem 3.2. Therefore, by Theorem 2.4, $f$ is sequentially continuous.

Theorem 4.2. If for every $X\in S$, each function $f:X\rightarrow Y$ with sequentially
closed graph is sequentially continuous, then $Y$ is sequentially compact if $Y$ is $T_{1}$ .

Proof. SuPpose $Y$ is not sequentially compact. Then there exist a sequence
$\{y_{n}\}$ with no convergent subsequence. Choose $b\in Y$ . Define a function $f:\overline{N}\rightarrow Y$

by $f(n)=y_{n},$ $f(\infty)=b$ . By Theorem 2.5, $A=\{(n, y_{n})\}$ is a sequentially closed
subset of $\overline{N}\times Y$ . Therefore, $A\cup\{(\infty, b)\}=G(f)$ is sequentially closed. To com-
plete the theorem, it is sufficient to show that $f$ is not sequentially continuous.
In particular, the set $\{y_{n}|n\in N\}$ is sequentially closed in $Y$ but $f^{-1}\{y_{n}|n\in N\}$

$=\{x_{n}|n\in N\}$ is not sequentially closed since $ n\rightarrow\infty$ . Therefore, $f$ is not sequen-
tially continuous and the theorem follows.

Corollary 4.3. A $T_{1}$ topological spaace $Y$ is sequentially compact if and only
if for every first countable toPological space $X\in S$ , each maPping of $X$ into $Y$ with
sequentially closed graph is sequentially continuous.

Corollary 4.4. For a $T_{1}$ topOlogjcal space $Y$, the following are equivalent:
(i) $Y$ is sequentially compact;
(ii) For every first countable topological space $X$, each maPping of $X$ into $Y$

with sequentially closed graph is sequentially continuous;
(iii) Each mapping of $\overline{N}$ into $Y$ with sequentially closed graph is sequentially

continuous.
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