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ABSTRACT. A method for constructing the best unbiased predictors in finite
Populations are stated by using the complete sufficient statistic in the sense
of prediction under $super\cdot population$ models.
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1. Introduction

In the latest decade various methods for inferences on finite Populations have
been proposed and discussed under super-population models, e.g. Smith (1976),

Fuller and Isaki (1981), Hansen, Madow and Tepping (1983), etc.
In this Paper methods for constructing the best unbiased prdictors in finite

populations are stated by using the complete sufficient statistic in the sense of
prediction under some $super$-Population models as follows.

Let $\Pi_{N}$ be a finite population of size $N$, the i-th element of which has the
labels $(x_{\ell}, y_{i})$ where $x_{i}$ denotes h-dimensional covariate vector $(x_{1\ell}, x_{2\ell}, \cdots, x_{ki})^{t}$ and
$y_{i}$ objective variate for $1\leqq i\leqq N$.

Besides let us assume $\Pi_{N}$ may be considered to be a sample of size $N$ taken
independently from a super-population $\Pi$ with density function $f(x, y|\theta)$ .

Further let us take a sample of fixed sample size $n$ from $\Pi_{N}$ according to a
suitably chosen sampling design $p(s)$ which may depend on the values of covariates
$x_{1},$ $x_{2},$ $\cdots,$ $x_{N}$ observed in advance of sampling.

Then the conditional distribution of $y_{l}=(y_{i_{1}}, y_{\ell_{2}}, \cdots, y_{\ell_{\hslash}})^{\ell}$ given $x.=(x_{\ell_{1}},$ $x_{\ell_{8}}$ ,..
$x_{\ell_{n}}$) is reproeentd by

(1.1) $p(s)=\prod_{j=1}^{n}f(y_{\ell_{j}}|x_{\ell_{j}}, \theta)$ , $s=(i_{1}, i_{2}, \cdots, i_{n})$

where $f(y|x, \theta)$ denotes the conditional density function of $y$ given $x$ .
In the following we shall construct predictors of parameters in $\Pi_{N}$ utilizing

the correlation between $x$ and $y$, such that predictors may depend only on observed
valuae of $y_{\iota}=(y_{\ell_{1}}, y_{\ell_{2}}, \cdots, y_{i_{\hslash}})^{t}$ and $X=(x_{1}, x_{2}, \cdots, x_{N})^{t}$ .

Finally some definitions and a lemma are stated below.
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Definition 1.1. A statistic $U$ is said to be $\theta$-unbiased or $P\cdot unbiasd$ for a
parameter $z$ in $\Pi_{N}$ if

$E_{\theta}\{U\}=E_{\theta}\{z\}$ or $E_{p}\{U\}=z$

holds for all $\theta$ or $y=(y_{1}, y_{2}, \cdots, y_{N})^{t}$ respectively, where $E_{\theta}$ or $E_{p}$ denote expec-
tation operations with respect to the density function $f$ or sampling design $p$

respectively. $MorverU$ is said to be $p_{\theta}$-unbiased for $z$ if

$E_{\theta}E_{p}\{U\}=E_{\theta}E_{p}\{z\}$

holds for all $\theta$ .
Definition 1.2. A statistic $T$ is said to be sufficient in the sense of prdiction

(pred.-sufficient in short) if $T$ is sufficient for $\theta$ in the usual sense and if $y_{l}$ and
$z$ are conditionally independent under any given $T$.

Lemma 1.1. Let $U$ be an unbiased Predictor of $z$ and $T$ be pred.-sufficient
for $z$ , and define $U_{T}$ by

(1.1) $U_{T}=E_{\theta}\{U|T\}$ .
Then $U_{T}$ is independent of $\theta$ and the relations

(1.2) $E_{\theta}\{U_{T}\}=E_{\theta}\{z\}$ , and

(1.3) $E_{\theta}\{(U_{r}-z\rangle^{2}\}\leqq E_{\theta}\{(U-z)^{2}\}$

holds for all $\theta$, i.e. $U_{r}$ may be considered to be a $\theta$-unbiased predictor for $z$

obtained by improving $U$.
If $T$ is comPIete and sufficient for $\theta$ in addition to the above conditions, then

$U_{T}$ is the best unbiased predfctOr for $z$ which has the smallest mean square error
of prediction among all unbiased predictOrs.

The proof of this lemma may be easily achieved by $nsidering$ that the
quadratic loss $(U-z)^{2}$ is convex in $U$ for any fixed $z$ and that $y_{*}$ and $z$ is con.
ditionally independent under any given $T$. The optimality of $U_{r}$ for complete
$T$ can be shown by the fact that $U_{r}$ is determined uniquely as a function of $T$

because of its completeness.
In the following let us adopt the quadratic loss $(U-z)^{2}$ as the criterion of

goodness for a predictor $U$ for $z$ .
Note that $U$ is necessarily $p_{\theta}$-unbiased if $U$ is $p$-unbiased or $\theta$-unbiased, and

that expectation operations $E_{p}$ and $E_{\theta}$ may be exchanged under the condition
that $x_{1},$ $x_{2},$ $\cdots,$ $x_{N}$ are all fixed.
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2. Main Results (Normal regression case)

Let us $suPpose$ the normal linear regression of $\eta$ on $\xi$ in the $su\mu r$-wpulation
$\Pi$ such that

(2.1) $\eta=\beta_{0}+\xi^{t}\beta+\epsilon$

where $\beta_{0},$ $\beta=(\beta_{1}, \beta_{2}, \cdots, \beta_{k})^{t}$ are regression coefficients of $\eta$ on $\xi=(\xi_{1}, \xi_{2}, \cdots, \xi_{l})^{\ell}$

and $\epsilon\sim N(O, \sigma^{2})$ .
Then the linear regression model of $y$ on $X=(x_{1}, x_{2}, \cdots, x_{N})^{t}$ in $\Pi_{N}$ may be

represented such that

(2.2) $ y=W\gamma+\iota$ ,

where $W=(1_{N}, X),$ $\gamma=(\beta_{0}, \beta^{t})^{\ell},$ $1_{N}=(1,1, \cdots, 1)^{t}$ and $\bullet=(\epsilon_{1}, \epsilon_{2}, \cdots, \epsilon_{N})^{t}\sim N(0, \sigma^{2}I_{N})$ ,
N-variate normal distribution with mean vector $0=(0,0, \cdots, 0)^{\ell}$ and convariance
matrix $\sigma^{2}I_{N}$ ($I_{N}$ : the unit matrix).

As to the sample observations $y.=(y_{\ell_{1}}, y_{\ell_{2}}, \cdots, y_{n})^{t}$ , the similar linear re-
gression holds:

(2.3) $y.=W_{l}\gamma+e$. ,

where $y.=D.y,$ $W=D.W$, $\bullet,=D.\bullet$ and D. denotes a diagonal matrix having 1 as
the $i_{j^{-}}i$ element for $j=1,2,$ $\cdots,$ $n$ and $0$ as the other diagonal elements.

Then it is well-known that the least square estimator

(2.4) $f=(W.{}^{t}W_{1})^{-1}W_{1}^{\ell}y$.
is (conditionally) $\theta$-unbiased for $\gamma$, given $X=(x_{1}, x_{2}, \cdots, x_{N})^{t}$ , and its (conditional)

$variance$ matrix is given by

(2.5) $V_{\theta}(f|X)=\sigma^{2}(W_{l}{}^{t}W_{l})^{-1}$ ,

if $W.{}^{t}W_{l}$ is non-singular.
Now let us construct the best $\theta$-unbiased predictor of the population mean $\overline{y}$

of $\Pi_{N}$ using $f$ given by (2.4) in the following way.
Since the population mean $\overline{y}$ may be represented by (2.2) as

(2.6) $\overline{y}=(N)^{-1}1_{N^{t}}y=(1,\overline{x}^{t})\gamma+\overline{\epsilon}$ ,

then it is easily seen that the predictor $T_{0}$ given by

(2.7) $T_{0}=h(y_{l})=(1,\overline{x}^{t})f$

is (conditionally) $\theta$-unbiased for $\overline{y}$ , where $\overline{x}=(N)^{-1}1_{N}^{\ell}X$ and $\overline{\epsilon}=(N)^{-1}1_{N^{t}}\bullet$ .
It is noted that the statistic
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(2.8) $T=(W_{*}y_{*}, p_{l}{}^{t}y_{*})$

is (conditionally) complete sufficient for $\theta=\langle\gamma,$ $\sigma^{a}$) in the usual sense under the
normal regression model (2.3). Besides it is easily seen that $y_{\iota}$ and $\overline{y}$ are in-
dependent (see APpendix A), i.e. $T$ is complete pred.-sufficient for $\theta$ .

Since $T_{0}$ is a function of such $T,$ $T_{0}$ is proved to be the best unbiased predictor
of $\overline{y}$ by Lemma 1. Namely $T_{0}$ has the smallest mean square error of prediction
among all unbiased predictors of $\overline{y}$ , and it is shown after some calculations to be

(2.9) $E_{\theta}\{(T_{0}-\overline{y})^{2}|X\}=(\sigma^{2}/n)\{(1-n/N)+(x-\overline{x}.)^{t}\hat{\Sigma}_{*}^{-1}(\overline{x}-\overline{x}.)\}$

where $\overline{x}_{*}=(n)^{-1}1_{N^{t}}X$. and $\hat{\Sigma}_{*}=(n)^{-1}X_{*}{}^{t}X_{l}-\overline{x}.\overline{x}^{t}$ (see Appendix B).

Now let us get the best $\theta$-unbiased predictor of $S_{y^{2}}$ , the population variance
of $y$ in $\Pi_{N}$ , as follows.

From (2.2) it is easily seen that

(2.10) $E_{\theta}^{\backslash }\{S_{y^{2}}|X\}^{I}=E_{\theta}\{(N)^{-1}\sum_{i=1}^{N}y_{i^{2}}-\overline{y}^{Z}|x\}$

$=(N)^{-1}\sum_{i=1}^{N}(w_{:}^{t}\gamma)^{2}+\sigma^{2}-((N)^{-1}\sum_{\ell=1}^{N}w_{i}^{t}r)^{2}-(N)^{-1}\sigma^{2}$

$=\beta^{t}\Sigma^{\wedge}\beta+(1-(N)^{-1})\sigma^{a}$ ,

where

$\gamma^{t}(N)^{-1}\sum_{i=1}^{N}(w_{\ell}-\overline{w})(w_{\ell}-\overline{w})^{t}\gamma=(\beta_{0\prime}\beta^{t})\left\{\begin{array}{ll}0 & 0^{t}\\0 & \hat{\Sigma}\end{array}\right\}\left(\begin{array}{l}\beta_{0}\\\beta\end{array}\right)=\beta^{t}\Sigma^{\wedge}\beta$

aad
$\gamma^{t}=(\beta_{0}, \beta^{t})$ , $w_{\ell}^{t}=(1, x_{\ell}^{t})$ for $1\leqq i\leqq N$ ,

$\overline{w}=(N)^{-1}\sum_{\ell=1}^{N}w_{\ell}$ and $\hat{\Sigma}=(N)^{-1}\sum_{\ell=1}^{N}(x_{\ell}-\overline{x})(x_{i}-\overline{x})^{t}$ .

Further it is weIl-known that the residual variance

(2.11) $\partial^{2}=(u,-- W.f)^{t}(y_{\iota}-W_{l}f)f(n-k-1)$

is unbiased for $\sigma^{2}$ if $W.{}^{t}W_{l}$ is noll-singular.
From (2.10) and (2.11) we can get a $\theta$-unbiased predictor as

(2.12) $\hat{s}_{\nu^{2}}=\hat{\beta}^{\ell}\Sigma^{\wedge}\beta-1$

where $\hat{\Sigma}.=n^{-1}\sum_{\dot{g}=1}^{n}(x_{\ell_{j}}-\overline{x}_{l})(x_{\ell_{f}}-\overline{x}\cdot.\rangle$
“ and $fl\Sigma^{\wedge}\Sigma_{l}^{\wedge}-1$ ]$=k$ for large $n$ . (see $App\epsilon ndix$

C)
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3. Discussions

Our method for $\omega nstructing$ the best unbiased predictors in finite populations
may be applicable under the super-population models other than normal regression
case, e.g. log-normal or exrnential, if there exists a $mplete$ pred.-sufficient
statistic under those models.

In the case where the covariate vectors $x_{1},$ $x_{2},$ $\cdots,$ $x_{N}$ may be designated
arbitrarily in a limited region $R$ , it is an interesting $probl\alpha n$ bow to allocate
those $N$ vectors in $R$ such that the mean square error of prediction can be
minimized, i.e. the so-called optimal design. It should be noted, however, that
such optimal design could not be best if the assumed model is far from the true
model, because the “best unbiased predictor” under the assumed model can not
be unbiased including bigger bias as the difference becomes larger between the
assumed models and true oms.

Thus it is important to check the validity of tbe assumed model or to select
a suitable model among the family of assumed models.

We will discuss these points in full detail in near future.
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Appendix A. Since $T$ contains $\sum_{\dot{g}=1}^{n}y_{\ell_{j}}$ as its first component and $\overline{y}=$

$(N)^{-1}\{\sum_{j=1}^{n}y_{j}+\sum^{\prime}y_{j}\}$ where $\sum^{\prime}$ denote the summation over all $y_{i_{j}}s$ other than
the sample $y.=(y_{\ell_{1}}, y_{\ell_{2}}, \cdots, y_{\ell_{\hslash}})^{t}$ , then it is easily seen that $y$. and $\overline{y}$ are condi $\cdot$

tionally independent under any fixed $T$ by the assumption that $y=(y_{1}, y_{2}, \cdots, y_{N})^{t}$

be considered as a sample of $N$ independent observations from $\Pi$ .
APpendIx B. Since

$T_{0}-\overline{y}=(1,\overline{x}^{t})(f-\gamma)-\overline{\epsilon}$

$=(1,\overline{x}^{\iota})(W.{}^{t}W.)^{-1}W_{l}^{t}\circ.-\overline{\epsilon}$
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then

$E_{\theta}\{(T_{0}-\overline{y})^{2}|X\}=\sigma^{2}(1,\overline{x}^{t})(W_{1}^{\ell}W_{l})^{-1}(\frac{1}{x})+\sigma^{2}/N$

$-2(1,\overline{x}^{t})(W_{1}{}^{t}W_{1})^{-1}W_{1}{}^{t}E_{\theta}\{e.\overline{\epsilon}|X\}$ ,

where

$(W_{l}{}^{t}W_{l})^{-1}=[n^{\frac{n}{x}}$. $ X_{\iota^{t}}X_{\iota}n\overline{x}_{|]^{-1}=(n)^{-1}[|}^{t}1+\overline{x}_{l}^{\iota}\hat{\sum_{\overline{X}_{l}-\Sigma_{1}^{-1}}}-1\overline{x}_{1}\wedge$ $-\overline{x}_{l}^{t}\hat{\sum_{\wedge\Sigma_{l}^{-1}}}|-\iota]$

and

$E_{\theta}\{\bullet.\overline{\epsilon}|X\}=(\sigma^{2}/N)D.1_{N}$ .
Therefore we can get

$E_{\theta}\{(T_{0}-\overline{y})^{2}|X\}=\sigma^{2}/n\{1+\overline{x}^{t}\hat{\Sigma}^{-1}\overline{x}.-2\overline{x}^{\ell}\hat{\Sigma}^{-1}\overline{x}+\overline{x}^{t}\hat{\Sigma}_{l}^{-1}\overline{x}\}+\sigma^{2}/N-2\sigma^{2}/N$

$=(\sigma^{2}/n)\{(1-n/N)+(\overline{x}.-\overline{x})^{t}\hat{\Sigma}_{1}^{-1}(\overline{x}.-\overline{x})\}$ ,

which proves (2.9).

Appendix C. Since
$E_{\theta}\{\hat{\beta}\Sigma^{\wedge}\beta|X\}=E_{\theta}\{tr(S\beta\hat{\beta}^{t})|X\}$

$=tr[\Sigma^{\wedge}\beta\beta^{t}+n^{-1}\sigma^{2}\Sigma^{\wedge}\Sigma^{-1}^{\wedge}]$ ,

then
$E_{\theta}\{\hat{S}_{\nu^{2}}|X\}=\beta^{t}\Sigma^{\wedge}\beta+n^{-1}\sigma^{2}tr[\Sigma^{\wedge}\Sigma_{l}^{-1}^{\wedge}]$

$+(1-N^{-1}-n^{-1}tr[\Sigma\Sigma_{l}^{-1}^{\wedge}])\sigma^{2}\wedge$

$=\beta^{t}\Sigma^{\wedge}\beta+(1-N^{-1})\sigma^{2}$ ,

which is equal to the conditional $ex\mu ctation$ of $S_{\nu^{2}}$ given by (2.10).
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