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ABSTRACT. An operator $T$ means a bounded linear operator on a complex
Hilbert space $H$. In our previous paper [6], we have an equivalent condition
under which an operator $T_{1}$ doubly commutes with another $T_{2}$ by an elementary
method. As an application of this result, we show correlation between binormal
operators and operators satisfying $[T_{1}^{*}T_{1}, T_{2}T_{2}^{*}]=0$ and moreover more precise
estimation than the results of Campbell, Gupta and Bala on binormal operators.
Also we show conditions on an idempotent operator implying projection and
necessary and sufficient conditions under which partial isometry is direct sum
of an isometry and zero.

1. Introduction

Let $N(X)$ denote the kernel of an operator $X$. An operator $T$ can be decom-
poed into $T=UP$ where $U$ is partial isometry and $P=|T|=(T^{*}T)^{1/2}$ with $N(U)=$

$N(P)$ and this kernel condition $N(U)=N(P)$ uniquely determines $U$ and $P$ in the
decomposition of $T[8]$ . In this paper, $T=UP$ denotes the polar decompoeition
satisfying the kernel condition $N(U)=N(P)$ . For two arbitrary operators $A$ and
$B,$ $[A, B]$ denotes the commutator of $A$ and $B$, that is, $[A, B]=AB-BA$ . Let
$T=UP$ be the polar decomposition of $T$, then $T^{*}=U^{*}Q$ is also the polar decom-
positon of $\tau*$ where $Q=|T^{*}|=UPU^{*}$ because $U^{*}$ is also partial isometry satis-
fying $N(U^{*})=N(Q)$ since

$N(Q)=N(T^{*})=R(T)^{\perp}=R(U)^{\perp}=N(U^{*})$ .
We denote by $(BN)$ the class of all operators $T$ if $[T^{*}T, TT^{*}]=0$, and also

we denote by $\theta$ the class of all operators $T$ if $[T^{*}T, T+T^{*}]=0$ . $T$ is called
dominant if there is a real number $M_{\lambda}\geqq 1$ such that

$\Vert(T-\lambda)^{*}x\Vert\leqq M_{\lambda}\Vert(T-\lambda)x\Vert$

for all $x$ in $H$, and for all complex numbers $\lambda$ . If there is a constant $M$ such
that $M_{\lambda}\leqq M$ for all $\lambda,$ $T$ is called $M$-hyponormaj and also $T$ is called humble
M-hyponormal if there is a constant $M$ such that $M_{\lambda}\leqq M$ for all real $\lambda$ . $T$ is
called k-paranomal if $\Vert x\Vert^{k-1}||T^{k}x||\geqq\Vert Tx\Vert^{k}$ for some fixed integer $k\geqq 2$ . Obviously
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hyponormal is $k$-paranormal. We denote by $(WN)$ the class of all $0\mu rators$ if
[ $T[2\geqq({\rm Re} T)^{g}$ . It is known that if $T$ is $M$-hyponormal or $ T\in\theta$, then $T$ is domi-
nant, and $\theta\subset(WN)$ and if $T\in(WN)$ , then $T$ is humble $M$-hyponormal. $T$ is
called quasinormal if $[T, \tau*\tau]=0$ . Obviously if $T$ is quasinormal, then $T\in(BN)$ .
Moreover it is known that if $T$ is quasinormal, then $T$ is hyponormal and also
$ T\in\theta$ .

In our previous paper[6], we have the following results.

Theorem A [6]. Let $T_{1}=U_{1}P_{1}$ and $T_{2}=U_{2}P_{2}$ be the pOlar decompositions of
$T_{1}$ and $T_{2}$ respectjvely. Then the following conditions (A), (B) and (C) are
equivalent:

(A) $T_{1}$ doubly commutes with $T_{2}$ (that is, $[T_{1},$ $T_{2}]=0$ and $[T_{1},$ $T_{2}^{*}]=0$),
(B) $U_{1}^{*},$ $U_{1}$ and $P_{1}$ commute with $U_{2}^{*},$ $U_{2}$ and $P_{2}$ ,
(C) the following five equations are satisfied

(1) $[P_{1}, P_{2}]=0$ , (2) $[U_{1}, P_{2}]=0$ , (3) $[P_{1}, U_{2}]=0$

(4) $[U_{1}, U_{2}]=0$ , (5) $[U_{1}^{*}, U_{2}]=0$ .
Theorem $B[6]$ . Let $T_{1}=U_{1}P_{1}$ and $T_{2}=U_{2}P_{2}$ be the Polar decomPositions of

$T_{1}$ and $T_{2}resPectively$ . If $T_{1}$ doubly commutes with $T_{2}$ , then $T_{1}T_{2}=(U_{1}U_{2})(P_{1}P_{2})$

is also the pOlar decomposition of $T_{1}T_{2}$ , that is, $U_{1}U_{2}$ is partial isometry with
$N(U_{1}U_{2})=N(P_{1}P_{2})$ and $P_{1}P_{2}=|T_{1}T_{2}|$ .

Theorem $C[61$ Let $T$ be normal. Then there exists unitary $U$ such that
$T=UP=PU$ and both $U$ and $P$ commute with $V^{*},$ $V$ and $|A|$ of the Polar decom-
Position $A=V|A|$ of any $oPerator$ which commutes with $T$ and $\tau*$ .
We remark that Theorem $C$ yields the well known and familiar result [13] of
Ries$z$ and $Sz$ .-Nagy because Theorem $C$ assures that $U$ and $P$ commutes with $A$ .
An extension of Theorem A to the intertwining case is given in [6] with respect
to the Fuglede-Putnam theorem.

2. Binormal operators and operators satisfying $[T_{1}*T_{1}, T_{2}T_{2}*]=0$

In this section we show correlation between binormal operators and operators
satisfying $[T_{1}*T_{1}, T_{2}T_{2}^{*}]=0$ and we give more precise estimation than the results
of Campbell [3], Gupta [7] and Bala [1] on binormal operators.

Lemma. Let $T=UP$ be the Polar decomPosition of T. Then for any integer
$n\geqq 1$ ,

(1) $P^{n}=U^{*}UP$ is the Polar decomposition of $P^{n}$
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(2) $Q^{n}=UU^{*}Q^{n}$ is the polar decomposition of $Q^{n}$

where $P=|T|$ and $Q=|T^{*}|$ .
Proof. (1) $U^{*}UP$ is always valid [8] because $U^{*}U$ is the initial projection

of $U$ to the range of $P$. Then $P^{n}=U^{*}UP^{n}$ holds for any integer $n\geqq 1$ and
$N(U^{*}U)=N(P^{n})$ because $N(U)=N(P)$ by the polar decomposition of $T$ and
$N(U^{*}U)=N(U)$ and $N(P)=N(P)$ are always valid, so that $P^{n}=(U^{*}U)P^{n}$ is the

polar decomposition of $P^{n}$ .
(2) Since $T^{*}=U^{*}Q$ is the polar decomposition of $\tau*$ stated in the Intro-

duction, we have (2) by using the similar method to one stated above in (1), so
the proof is complete.

Theorem 1. Let $T_{1}=U_{1}P_{1}$ and $T_{2}=U_{2}P_{2}$ be the Polar decomPositions of $T_{1}$

and $T_{2}$ resPectively. If $[T_{1}^{*}T_{1}, T_{2}T_{2}^{*}]=0$, then the following ProPerties hold:
(1) $U_{1}U_{2}$ is patial isometry,
(2) $P_{1}$ is reduced by both $N(U_{1})$ and $N(U_{2}^{*})$

(3) $Q_{2}$ is reduced by both $N(U_{1})$ and $N(U_{2}^{*})$

where $P_{1}=|T_{1}|$ and $Q_{2}=|T_{2^{*}}|$ .
Proof. Since $T_{1}^{*}T_{1}=P_{\iota^{2}}=U_{1}^{*}U_{1}P_{\iota^{2}}$ and $T_{2}T_{2}^{*}=Q_{2^{2}}=U_{2}U_{2}^{*}Q_{2}^{2}$ by Lemma,

the hypothesis $[\tau_{1}*\tau_{1}, T_{2}T_{2}^{*}]=0$ is equivalent to that $U_{1}^{*}U_{1}P_{1}^{2}$ doubly commutes

with $U_{2}U_{2}^{*}Q_{2^{2}}$ , so that Theorem A yields

(i) $[U_{1}^{*}U_{1}, U_{2}U_{2}^{*}]=0$ (ii) $[U_{2}U_{2}^{*}, P_{1}^{2}]=0$ (iii) $[U_{\iota^{*}}U_{1}, Q_{2}^{2}]=0$ and
(iv) $[P_{1}^{2}, Q_{2}^{2}]=0$ (this is trivial since this is itself the hypothesis).

(i) is equivalent to that $U_{1}U_{2}$ is partial isometry [91. (2) is obtained by (ii) and
$[U_{1}^{*}U_{1}, P_{1}]=0$ which is always valid by Lemma. Similarly (3) is also obtained
by (iii) and $[U_{2}U_{2}^{*}, Q_{2}]=0$ which is always varid by Lemma, so the proof is
complete.

Corollary 1. Let $T=UP$ be the polar decomPosition of T. If $T\in(BN)$ , then
(1) $U^{2}$ is Partial isometry, that is, $U\in(BN)$ ,
(2) $P$ is reduced by both $N(U)$ and $N(U^{*})$ ,
(3) $Q$ is reduced by both $N(U)$ and $N(U^{*})$

where $P=|T|$ and $Q=|T^{*}|$ .
Remark 1. We remark that if $T=UP$ is the polar decomposition of binormal

operator $T$, then $U$ is also binormal such that $T^{2}=U^{2}|T^{2}|$ is the polar decomposi-

tion of $T^{2}$ and this proof will be shown in the proof of Theorem 4.

Theorem D. Let $U_{1}$ and $U_{2}$ be partial isometry. Then the following (1)
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and (2) are equivalent:
(1) $U_{1}U_{2}$ is partial isometry with $N(U_{1}U_{2})=N(U_{2})$ ,
(2) $U_{1}^{*}U_{1}\geqq U_{2}U_{2}^{*}$, that is, the initial space of $U_{1}$ includes the final one of $U_{2}$ .

Partial isometricity of $U_{1}U_{2}$ is equivalent to $[U_{1}^{*}U_{1}, U_{2}U_{2^{*}}]=0[9]$ and using this
result we can easily give the proof of Theorem $D$ and we omit it.

Corollary 2. Let $U$ be partial isometry. Then the following (1) and (2) are
equivalent:

(1) $U^{2}$ is partial isometry with $N(U^{2})=N(U)$ ,
(2) $U$ is direct sum of an isometry and zero.

Proof. By Theorem $D$, we have only to show that (2) is equivalent to
$N(U)\subset N(U^{*})$ and this proof is easy since $N(U)\subset N(U^{*})$ if and only if $N(U)$

reduces $U$ and $U$ is partial isometry. We remark that (1) $\Rightarrow(2)$ is shown in [7].

Corollary 3. Let $T_{1}=U_{1}P_{1}$ and $T_{2}=U_{2}P_{2}$ be the lolar decompositions of $T_{1}$

and $T_{2}$ respectively. If $[T_{1^{*}}T_{1},T_{2}T_{2^{*}}]=0$ with $N(U_{1}U_{2})=N(U_{2})$ , then $U_{1^{*}}U_{1}\geqq U_{2}U_{2}^{*}$,
that is, the initial space of $U_{1}$ includes the final one of $U_{2}$ .

Proof. This follows by Theorem 1 and Theorem D.

Theorem 2. Let $T=UP$ be the polar decomposition of T. If $\tau\in(BN)$ , then
$T^{2}\in(BN)$ if and only if the following four properties hold:

(1) $[U^{*2}U^{2}, U^{2}U^{*2}]=0$ (2) $[U^{2}U^{*2}, U^{*}PQU]=0$

(3) $[U^{*2}U^{2}, UPQU^{*}]=0$ (4) $[U^{*}PQU, UPQU^{*}]=0$

where $P=|T|$ and $Q=|T^{*}|$ .
Proof. Note that $U^{*}UP=P$ and $UU^{*}Q=Q$ are always valid by Lemma.

Assume $T\in(BN)$ . Then we have the following (i), (ii) and (iii)

(i) $[U^{*}U, UU^{*}]=0$ (ii) $[UU^{*}, P]=0$ (iii) $[U^{*}U, Q]=0$

by Corollary 1, moreover by Theorem $B,$ $PQ=(U^{*}UUU^{*})(PQ)$ is the polar decom-
position of $PQ$ since $P$ doubly commutes with $Q$ , so that we have

(iv) $N(PQ)=N(QP)=N(U^{*}UUU^{*})$ .
Note that $T^{*}=U^{*}Q$ is the polar decomposition of $\tau*$ with $N(U^{*})=N(Q)$ . At
first we show $|T^{2}|=U^{*}PQU$ as follows:

$|T^{2}|^{2}=T^{*2}T^{2}=(U^{*}QPU^{*})(UPQU)=U^{*}PQPQU$

$=U^{*}P(QUU^{*})PQU=(U^{*}l\eta U)^{2}$
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so that $|T^{2}|=U^{*}PQU$ because $[P, Q]=0$ yields that $U^{*}PQU$ is positive. By (ii),

we have

$T^{2}=UPQU=UP(UU^{*}Q)U=U(UU^{*}P)QU$

$=U^{2}(U^{*}PQU)=U^{2}|T^{2}|$ .
Next we show that $N(U^{2})=N(|T^{2}|)$ as follows:

$x\in N(|T^{2}|)\approx U^{*}PQUx=0\Leftrightarrow QPQUx=0$ (by $N(U^{*})=N(Q)$)
$\Leftrightarrow Q^{2}PUx=0$ (by $[P,$ $Q]=0$) $\Leftrightarrow QPUx=0\Leftrightarrow U^{*}UUU^{*}Ux=0$ (by (iv))
$\Leftrightarrow U^{*}UUx=0$ (by $U=UU^{*}U$) $\Leftrightarrow UUx=0\Leftrightarrow x\in N(U^{2})$ .

As $U^{2}$ is partial isometry by Corollary 1 and $N(U^{2})=N(|T^{2}|)$ shown above, so
that $T^{2}=U^{2}|T^{2}|=U^{2}(U^{*}PQU)$ is the polar decomposition of $T^{2}$ . Next we show
that $|T^{*2}|=UPQU^{*}$ as follows:

$|T^{*2}|^{2}=T^{2}T^{*2}=(UPQU)(U^{*}QPU^{*})=UPQPQU^{*}$

$=UPQ(U^{*}UP)QU^{*}=(UPQU^{*})^{2}$

so that $|T^{*2}|=UPQU*$ because $[P, Q]=0$ yields that $UPQU^{*}$ is positive. Similarly
we have $T^{*2}=U^{*2}|T^{*2}|=U^{*2}(UPQU^{*})$ is the polar decomposition of $\tau*2$ By
Lemma we have two polar decompositions of $|T^{2}|^{2}$ and $|T^{*2}|^{2}$

$|T^{2}|^{2}=T^{*2}T^{2}=(U^{*2}U^{2})(U^{*}PQU)^{2}$

$|T^{*2}|^{2}=T^{2}T^{*2}=(U^{2}U^{*2})(UPQU^{*})^{2}$

so that Theorem A yields that $T^{2}\in(BN)$ if and only if $(U^{*2}U^{2})(U^{*}PQU)^{2}$ doubly
commutes with $(U^{2}U^{*2})(UPQU^{*})^{2}$ if and only if the following four propertiae hold

$[U^{*2}U^{2}, U^{2}U^{*2}]=0$ $[U^{2}U^{*2}, (U^{*}PQU)^{2}]=0$

$[U^{*2}U^{2}, (UPQU^{*})^{2}]=0$ $[(U^{*}PQU)^{2}, (UPQU^{*})^{2}]=0$

these four properties are equivalent to (1), (2), (3) and (4) in Theorem 2 so the
proof is complete.

Remark 2. Let $T=UP$ be the polar decomposition of $T$. If $Te(BN)$ , then
$T^{2}=U^{2}(U^{*}PQU)$ is the polar decomposition of $T^{2}$ shown in the proof of $Threm$

$2$, that is, $|T^{2}|=U^{*}PQU$ and $U^{2}$ is partial isometry and $N(U^{2})=N(U^{*}PQU)$ .
Similarly $T^{*2}=U^{*2}(UPQU^{*})$ is also the polar $de\omega mposition$ of $\tau*2$ that is,
$|T^{*2}|=UPQU^{*}$ and $U^{*2}$ is partial isometry and $N(U^{*2})=N(UPQU^{*})$ . Let $T=UP$

be the polar decomposition of $T$. There exists an example $T=UP\in(BN)$ such
that $U^{s}$ is not partial isometry as follows:

Let



250 TAKAYUKI FURUTA

$T=(000$ $\sqrt{3}01$ $\sqrt{3}-01$), then $U=\frac{1}{2}(000$ $\sqrt{3}01$ $\sqrt{3}-01)$ .

$U^{2}$ is also partial isometry by Remark 1 but $U^{s}$ is not so. This example shows
that binormal operator $T$ is not always reduced by $N(T)$ .

Corollary 4. Let $T=UP$ be the Polar decomPosition of T. If $T\in(BN)$ with
$N(T^{2})=N(T)$ , then $N(T)$ reduces $T$.

Proof. By Remark 2, we have $N(T^{2})=N(|T^{2}|)=N(U^{2})$ and the hypothesis
$N(T^{2})=N(T)$ and $N(T)=N(U)$ is always valid, so that $N(U^{2})=N(U)$ and the
result follows by Corollary 3.

Corollary 5 [3]. Let $T=UP$ be the Polar decomPosition of T. Assume $U$ is
unitary. If $T\in(BN)$ , then $T^{2}\in(BN)$ if and only if $[PQ, U^{2}PQU^{*2}]=0$ .

Proof. As $U$ is unitary, (1), (2) and (3) in Theorem 2 automatically hold, so
that by Theorem 2 we have

$T^{2}\in(BN)\Leftrightarrow[U^{*}PQU, UPQU^{*}]=0$

$\Leftrightarrow[PQ, U^{2}PQU^{*2}]=0$ (by $U^{*}=U^{-1}$).

We remark that the condition $[P^{2}Q^{2}, U^{2}P^{2}Q^{2}U^{*2}]=0$ is cited in [3] which is
equivalent to $[PQ, U^{2}PQU^{*2}]=0$ in Corollary 5.

Corollary 6. Let $T=UP$ be the Polar decomposition of T. If $\tau\in(BN)$ , then
$T^{2}$ is quasinormal if and only if $[U^{2}, U^{*}PQU]=0$ . In addition, assume $N(T)=$

$N(T^{*})$ . If $T\in(BN)$ , then $T^{2}$ is quasinormal if and only if $[U^{2}, PQ]=0$ .
Proof. If $T\in(BN)$ , then $T^{2}=U^{2}(U^{*}PQU)$ is the polar decomposition of $T^{2}$

by Remark 2. Then $T^{2}$ is quasinormal if and only if $[U^{2}, U^{*}PQU]=0$ . In addi-
tion, if $N(T)=N(T^{*})$ , equivalently $N(U)=N(U^{*})$ , that is, $U^{*}U=UU^{*}$ , so that

$[U^{2}, U^{*}PQU]=0\Leftrightarrow U^{*}SU=0$ where $S=[U^{2}, PQ]$ .
Then $U^{*}S$ is zero on $\overline{R(U)}$ and $U^{*}S$ annihilates on $N(U^{*})$ since $N(S)\supset N(Q)=$

$N(U^{*})=N(U)$ , so that $U^{*}S=0$ on $H=\overline{R(U)}\oplus N(U^{*})$ , that is, $S^{*}U=0$ . Similarly
$s*$ is zero on $\overline{R(U)}$ and $s*$ annihilates on $N(U^{*})$ since $N(S^{*})\supset N(Q)=N(U^{*})=$

$N(U)$ so that $S^{*}=0$ on $H$, so the proof is complete.

3. Conditions on an idempotent operator implying proiection

We show several conditions under which an idempotent operator implies
projection.
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Theorem 3. If $T_{1}$ and $T_{2}$ are both idemPotent oPerators with the same range.
Then

(i) $T_{1}$ is prOjectiOn if and only if $[T_{1}^{*}T_{1}, T_{2}T_{2}^{*}]=0$ holds.
(ii) $T_{1}$ is pfojectiOn if $M(T_{2}-1)^{*}(T_{2}-1)\geqq(T_{1}-1)(T_{1}-1)^{*}$ holds, where $M$ is

a positive constant.

Proof. It is known [4] that $R(T_{1})=R(T_{2})$ is closed and $T_{1}$ and $T_{2}$ can be
decomposed into

$T_{1}=\left(\begin{array}{ll}l & S_{1}\\0 & 0\end{array}\right)$ and $T_{2}=\left(\begin{array}{ll}1 & S_{2}\\0 & 0\end{array}\right)$

on $R(T_{1})\oplus R(T_{1})^{\perp}$ .
Proof of (i). Hypothesis of $[T_{1}^{*}T_{1}, T_{2}T_{2}^{*}]=0$ if and only if

$\left(\begin{array}{ll}1 & S_{1}\\s_{1}* & s_{1}*s_{1}\end{array}\right)$ commutes with $\left(\begin{array}{ll}1+S_{2}S_{2}^{*} & 0\\0 & 0\end{array}\right)\Leftrightarrow S_{1}^{*}+S_{1}^{*}S_{2}S_{2^{*}}=0$

$\Rightarrow S_{\iota^{*}}S_{1}+(S_{2^{*}}S_{1})^{*}(S_{2}^{*}S_{1})=0$

$\Leftrightarrow S_{1}=0\Leftrightarrow T_{1}=1\oplus 0$

so that $T_{1}$ is projection. Conversely, if $T_{1}=1\oplus 0$, then $[\tau_{1}*\tau_{1}, T_{2}T_{2}^{*}]=0$ is easily

shown.
Proof of (ii). Hypothesis of (ii) yields

$M\cdot\left(\begin{array}{ll}0 & 0\\s_{2}* & -1\end{array}\right)\left(\begin{array}{l}S_{2}0\\0 -1\end{array}\right)\geqq\left(\begin{array}{l}S_{\iota}0\\0 -1\end{array}\right)\left(\begin{array}{ll}0 & 0\\s_{1}* & -1\end{array}\right)$ ,

then we have

$A\geqq 0$ where $A=\left(\begin{array}{ll}-S_{1}S_{\iota^{*}} & S_{1}\\s_{1}* & M(S_{2}^{*}S_{2}+1)-1\end{array}\right)$ .

Then for any $x\in R(T_{1})$ , then $(Ax, x)\geqq 0\Leftrightarrow(-S_{1}S_{\iota^{*}}x, x)\geqq 0\Leftrightarrow S_{1}=0$ if and only if
$T_{1}=1\oplus 0$ which is the desired result.

We remark that $T_{2}$ not always turns out to be projection in Theorem 3.

Corollary 7. An idempotent operator $T$ is projection if and only if $T$ satisfies
any one of the following

(1) $T$ is dominant (2) $T$ is humble MhyponOrmal (3) $ T\in\theta$

(4) $\tau\in(WN)$ (5) $T$ is Mhyponomal (6) $\tau\in(BN)$ .
Proof. (1) in Theorem 3 implies (6) in Corollary 7 and also (2) in Theorem

3 implies (1) and (2) in Corollary 7. (3) and (5) are obtained by (1) and also (4)

follows by (2). (1) is shown in [12] and (3) and (6) are shown in [1] and [2].
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Other extensions are in [4].

4. Necessary and suficient conditions under which partial isometry is the
direct sum of an isometry and zero

We show several equivalent conditions under which partial isometry is the
direct sum of an isometry and zero.

Theorem 4. Let $T$ be partial isometry. Then $T$ is quasinormaf if and only
if $T$ satisfies any one of the following

(1) $T$ is k-paranormal, (2) $T\in\theta,$ (3) $\tau\in(WN)$ , (4) $T$ is dominant, (5) $T$ is
humble M-hyponormal, (6) $T$ is M-hyponormal, (7) $N(T)\subset N(T^{*})$ , that is, $N(T)$

reduces $T$.
Proof. It is shown that “ $T$ is partial isometry and quasinormal’ $\Leftrightarrow Partial$

isometry $T$ is reduced by $N(T)$ , so that we have (7). It is easily shown that
all operators $T$ in (4) and (5) are reduced by $N(T)$ , so that the proofs of “if” of
(4) and (5) are obtained by (7) and the proofs of “only if” of (4) and (5) are
trivial. (4) implies (6) and (5) implies (3) and (2) is derived from (4) or (5).

(1) is shown in [5], (2) is shown in [10] and also (3) is shown in [11]. With
respect to Theorem 4, we remark that there exists an example $U$ of partial iso-
metry and binormal such that $U$ is not quasinormal and this example is cited in
Remark 2.

Addendum

As stated in \S 1, let $T=U|T|$ be the polar decomposition of $T$ , then $T^{*}=$

$U^{*}|T^{*}|$ is also the polar decomposition of $\tau*$ and we would like to cite an
elementary proof of this as follows; $\tau\tau*=U|T|\cdot|T|U^{*}=U|T|U^{*}\cdot U|T|U^{*}=$

$(U|T|U^{*})^{2}$ , so $|T^{*}|=U|T|U^{*}$ and $T^{*}=|T|U^{*}=U^{*}U|T|U^{*}=U^{*}|T^{*}|$ and $N(T^{*})=$

$N(|T^{*}|)=N(U^{*})$ because $T^{*}x=0\leftrightarrow|T|U^{*}x=0\leftrightarrow UU^{*}x=0\leftrightarrow U^{*}x=0$, that is, $T^{*}=$

$U^{*}|T^{*}|$ is also the polar decomposition of $\tau*$ since $U^{*}$ is also partial isometry.
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