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This paper is concerned with spectral geometry of compact Riemannian
manifolds with boundary under Dirichlet and Neumann boundary conditions.
Under these conditions we can take out constant curvature property of the
interior and totally umbilical property of the boundary, and using these two
Prooerties we can characterize some canonical domains in simply connected space
forms by their Dirichlet and Neumann spectra. In \S 1 we obtain some $s\mu ctral$

invariants and spectral $pro\mu rties$ . \S 2 is devoted to the characterizations of some
canonical domains. \S 3 treats the Kaehlerian case.

\S 1. Some Spectral Invariants and Spectral Properties

Let $M$ be an m-dimensional compact Riemannian manifold with smooth
boundary $\partial M$. Let $\tilde{M}$ be a closed double of $M$. Let $\Delta$ and $\tilde{\Delta}$ be the Laplacians
of $M$ and $\tilde{M}$ acting on functions. Let $\{\lambda_{1}^{-}\leqq\lambda_{2}^{-}\leqq\cdots\}$ and $\{\lambda_{1}^{+}\leqq\lambda_{2}^{+}\leqq\cdots\}$ be the
spectra of $\Delta$ under Dirichlet and Neumann boundary conditions $rae\mu ctively$ . If
$e$ denotes the fundamental solution of the heat ooerator $\partial/\partial t+\tilde{\Delta}$, and $e^{-}$ and $e^{+}$

denote the fundamental solution of $\partial/\partial t+\Delta$ under Dirichlet and Neumann condi $\cdot$

tions, then ([4])

$e^{\pm}(t, x, x)=e(t, x, x)\pm e(t, x, x^{*})$ , $x\in M$

where $x^{*}$ being the double point of $x$ . If we set $Z^{f}(t)=\sum_{=1}^{\infty}e^{-\lambda^{\pm}}$ , then

$Z^{f}(t)=\int_{r}e^{\pm}(t, x, x)=\int_{H}e(t, x, x)\pm\int_{r}e(t, x, x^{*})$

$\int_{r}e(t, x, x)$ and $\int_{r}e(t, x, x^{*})$ admit the following asymptotic expansions for $t\downarrow 0$ :

$\int_{r}e(t, x, x)\sim(4\pi t)^{-m/2}(a_{0}+a_{2}i+at^{g}+\cdots)$ ,

$\int_{r}e(t, x, x^{*})\sim(4\pi\ell)^{-n/2}(b_{1}t^{1/2}+b_{2}t+b_{\epsilon}t^{s/a}+b_{4}t^{a}+\cdots)$ .
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Thus we obtain

$Z^{\pm}(t)\sim(4\pi t)^{-m/2}(a_{0}\pm b_{1}t^{1/2}+(a_{2}\pm b_{2})t\pm b_{8}t^{3/2}+(a_{4}\pm b_{4})t^{2}+\cdots)\ell\downarrow 0$

The geometrical meanings of some coefficients are already known ([2], [3]) as
follows:

$a_{0}=vol(M)$ , $b_{1}=\frac{\sqrt{\pi}}{2}area(\partial M)$ , $a_{2}\frac{1}{6}\int_{H}\overline{\tau}$ , $b_{2}=-\frac{1}{3}\int_{\partial H}H$ ,

$ b_{3}=-\int_{\partial\Pi}\sqrt{\pi}(\sim$ ,

$a_{4}=\frac{1}{360}\int_{H}(2|\overline{R}|^{2}-2|\overline{\rho}|^{2}+5_{\overline{T}^{2}}+12\Delta\overline{\tau})$ ,

$=\frac{1}{360}\int_{H}(2|\overline{C}|^{2}+\frac{2(6-m)}{m-2}|\overline{G}|^{2}+\frac{5m^{2}-7m+6}{m(m-1)}\epsilon^{2}+12\Delta_{T}^{\leftrightarrow})$ .

Here we explain notations used above. $\overline{R},\overline{\rho},\overline{\tau},\overline{C}$ , and $\overline{G}$ are curvature tensor,
Ricci tensor, scalar curvature, Weyl’s conformal curvature tensor, and Einstein
tensor of $M$ respectively. And $H,$ $\tau,$

$S$ are the mean curvature, scalar curvature,
square norm of the second fundamental tensor of $M$ respectively. $\tilde{\tau}$ is defined
by $\sum_{l=1}^{\prime}\overline{R}_{\ell m\ell m}$ .

Let $D- Spec(M)$ and $N- Spec(M)$ denote the spectra of $\Delta$ under Dirichlet and
Neumann boundary conditions respectively. Then all the $a_{2\ell}$ and $b_{j}$ are spectral
invariants of $D- Spec(M)$ and $N- Spec(M)$ , i.e. if $D- Spec(M)=D- Spec(M^{\prime})$ and N-
$Spec(M)=N- Soec(M^{\prime})$ hold, then $a_{2i}=a_{2\ell}^{\prime}$ and $b_{j}=b_{j}^{\prime}$ hold.

In the same way as in [5] and [31, we can take out constant curvature pro-
perty of the interior by the use of $a_{0},$ $a_{2}$ and $a$ , and totally umbilical property
of the boundary by the use of $b_{1},$ $b_{2}$ and $b_{8}$ , as the following Propositions will
show. We shall omit their proofs since they are easy. $\nu$ will denote outer unit
normal vector field of $\partial M$, and we note that in their proofs Green’s theorem is
used.

Proposition 1.1. SuPpose that $D- Spec(M)=D- Spec(M^{\prime})$ and $N- Spec(M)=N-$
$Spec(M^{\prime})$ hold. If $m=3,$ $M$ has a constant curvature $k,$ $\partial M$ is totally umbilic,
and $\int_{\partial H},d\overline{\tau}^{\prime}/d\nu^{\prime}\leqq 0$ holds, then $M^{\prime}$ has also the constant curvature $k$ and $\partial M^{\prime}$ is
totally umbilic.

Proposition 1.2. SuPpose that $D- Spec(M)=D- Spec(M^{\prime})$ and N-Soec$(M)=N-$
$Soec(M^{\prime})$ hold. If $m=4$ or 5, $M$ has a constant curvature $k,$ $H^{\prime}$ is constant and
$\int_{\partial H},d\overline{\tau}^{\prime}/d\nu^{\prime}\leqq 0$ holds, then $M^{\prime}$ has also the constant curvature $k,$ $\partial M^{\prime}$ is totally
umbilic, and $H\cong H^{\prime}$ holds.
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Proposition 1.3. Suppose that D-Soec$(M)=D- Spec(M^{\prime})$ and N-Soec$(M)=N-$
$Spec(M^{\prime})$ hold. If $3\leqq m\leqq 5,$ $M$ has a constant curvature $k,$ $\partial M$ is totally geodesic,
$H^{\prime}\geqq 0$ and $\int_{\partial H},d\overline{\tau}/d\nu^{\prime}\leqq 0$ hold, then $M^{\prime}$ has also the constant curvature $k$ and $\partial M^{\prime}$

is totally geodesic.

Proposition 1.4. Suppose that $D- Spec(M)=D- Spec(M^{\prime})$ and N-Soec$(M)=N-$
$Spec(M^{\prime})$ hold. If, for an arbitrary $m,$ $M$ has a constant curvasure $k,$ $\partial M$ is totally
umbilic, $M^{\prime}$ is Einstein, and $H^{\prime}$ is constant, then $M^{\prime}$ has also the constant curva-
ture $k\partial M^{\prime}$ is totally umbilic.

\S 2. Characterizations of Some Canonical Domains

Let $D^{2m}$ be an m- dimensional unit disk in $R^{m}$ , and $D_{r}^{m}$ denotes a circular
domain of radius $r$ in $S^{m}(0\leqq r<\pi)$ . Let $M$ be an abstract compact Riemannian
manifold with smooth boundary. Note that $M$ needs not to be a campact domain
in $R^{m}$ .

Theorem 2.1. SuPpose that D.Spec $(M)=D$-Spec $(D^{3})$ and $N$-Spec $(M)=N-$
$Spec(D^{3})$ hold. If $\int_{\partial H}d\overline{\tau}/d\nu\leqq 0$ , then $M=D^{3}$ .

Proof. By Proposition 1.1 $M$ is flat and $\partial M$ is totally umbilic. Let $\tilde{M}$ be
a universal covering manifold of $M$. Then by the metric induced from that of
$M,\tilde{M}$ becomes flat and $\partial\overline{M}$ is totally umbilic with the same umbilicity with $D^{3}$ .
Then by a theorem of Alexander ([1]), $\overline{M}=D^{3}$ . On the other hand $vol(M)=vol(D^{3})$ ,
thus $vol(M)=vol(\overline{M})$ and the covering degree is 1, i.e. $M$ is simply connected.
Then by the same argument as applied for $\overline{M},$ $M=D^{3}$ $\square $

In the same reasoning as in the proof of Theorem 2.1, using one of Propositions
in \S 1, we get the following spectral characterizations of $D^{m}$ and $D_{r}^{m}$ .

Theorem 2.2. Suppose that D-Spec $(M)=D$-Spec $(D^{m})$ and N-Spec $(M)=N-$
$Spec(D^{m})$ hold. If $m=4$ or 5, $H$ is constant, and $\int_{\partial H}d_{\overline{T}}/d\nu\leqq 0$ holds, then $M=D^{m}$ .

Theorem 2.3. SuPpose that D-Spec $(M)=D$-Spec $(D^{m})$ and N-Spec $(M)=N-$
$Spec(D^{m})$ hold. If $m\geqq 3,$ $M$ is Einstein, and $H$ is constant, then, $M=D^{n*}$ .

Theorem 2.4. If D-Spec $(M)=D$-Spec $(D_{r}^{3})$ , N-Spec $(M)=N$-Spec $(D_{r}^{3})$ , and
$\int_{\partial H}d\overline{\tau}/d\nu\leqq 0$ hold, then $M=D_{r}^{3}$ .

Theorem 2.5. SuPpose that $D- S\mu c(M)=D$-Spec $(D_{r}^{m})$ and $N\cdot Soec(M)=N-$

$Soec(D_{r}^{m})$ hold. If $m=4$ , or 5, $H$ is constant, and $\int_{\partial H}d\overline{\tau}/d\nu\leqq 0$ holds, then $M=D_{r}^{m}$ .
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Theorem 2.6. SuPpose that $D- Spec(M)=D- Spec(D_{n/2}^{m})$ and $N- Spec(M)=N-$

$Spec(D_{n/2}^{m})$ hold. If $3\leqq m\leqq 5,$ $H\geqq 0$ , and $\int_{\partial H}d\overline{\tau}/d\nu\leqq 0$ holds, then $M=D_{n/2}^{m}$ .

Theorem 2.7. SuPpose that D-Spec $(M)=D\cdot Spec(D_{r^{m}})$ and $N\cdot Soec(M)=N-$

$Spec(D_{r}^{m})$ hold. If $3\leqq m,$ $M$ is Einstein, and $H$ is constant, then $M=D_{r}^{m}$ .
Theorem 2.8. SuPpose that $D$-Spec $(M)=D- Spec(D_{2/\pi}^{m})$ and N-Soec $(M)=N-$

$Spec(D_{2/x}^{m})$ hold. If $M$ is Einstein and $H\geqq 0$ , then $M=_{\kappa/2}^{m}$ .
Finally we note that we can give similar soectral characterizations of the

canonical umbilical domain in a Hyperbolic Space.

\S 3. Kaehlerian Case

Let $M$ be a complex m-dimensional compact Kaehler manifold with $smth$

boundary. Let $B$ be the Bochner curvature tensor of $M$, then $|\overline{R}|^{2}=|\overline{B}|^{2}+$

$(8/m+2)|\overline{G}|^{2}+(2/m(m+2))\overline{\tau}^{2}$ and $a_{4}$ becomes

$a=\frac{1}{360}\int_{H}(2|\overline{B}|^{2}+\frac{2(6-m)}{m+2}|\overline{G}|^{2}+\frac{5m^{2}+4m+3}{m(m+1)}\overline{\tau}^{2}+12\Delta\overline{\tau})$ .

Then as in \S 1 we obtain the following Propositions.

Proposition 3.1. $SuPPose$ that $D\cdot Spec(M)=D- Spec(M^{\prime})$ and $N- S\mu c(M)=N-$

$Spec(M^{\prime})$ hold. If $2\leqq m\leqq 5,$ $M$ has a constant holomorphic curvature $k,$ $\partial M$ is
totally umbilic, $H^{\prime}$ is constant, and $\int_{\partial H},d\overline{\tau}^{\prime}/d\nu^{\prime}\leqq 0$ holds, then $M^{\prime}$ has also the

constant holomorPhic curvature $k$ and $\partial M^{\prime}$ is totally umbilic.

Proposition 3.2. $SuPPose$ that D-Soec$(M)=D- Spec(M^{\prime})$ and $N- S\mu c(M)=N-$

$Spec(M^{\prime})$ hold. If $2\leqq m\leqq 5,$ $M$ has a constant holomorPhic curvature $k,$ $\partial M$ is
totally geodesic, $H^{\prime}\geqq 0$, and $\int_{\partial H},d\overline{\tau}^{\prime}/d\nu^{\prime}\leqq 0$ hold, then $M^{\prime}$ has also the constant

holomorPhic curvature $k$ and $\partial M^{\prime}$ is totally geodesic.

Proposition 3.3. Suppose that $D- Spec(M)=D- Soec(M^{\prime})$ and $N- S\mu c(M)=N$.
$Spec(M^{\prime})$ hold. If, for an arbitrary $m,$ $M$ has a constant holomorphic curvature
$k,$ $\partial M$ is totally umbilic, $M^{\prime}$ is Einstein, and $H^{\prime}$ is constant, then $M^{\prime}$ has also
the constant holomorphic curvature $k,$ $\partial M^{\prime}$ is totally umbilic.

We can regard $D^{2m}$ as a compact Kaehler manifold of constant holomorphic

curvature $0$ with totally umbilic boundary. Then, as in \S 2, using the above
Propositions, we can easily prove the following Theorems.

Theorem 3.4. Suppose that D-Spe$c(M)=D$-Spec $(D^{2m})$ and N-Spec $(M)=N-$
$Spec(D^{2m})$ hold. If $2\leqq m\leqq 5,$ $H$ is constant, and $\int_{\partial H}d\overline{\tau}/d\nu\leqq 0$ hold, then $M=D^{2m}$ .
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Theorem 3.5. SuppOse that D-Spec $(M)=D$-Spec $(D^{2m})$ and $N$-Spec $(M)=N-$
$Soec(D^{2m})$ hold. If $2\leqq m,$ $M$ is Einstein, and $H$ is constant, then $M=D^{2m}$ .
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