YOKOHAMA MATHEMATICAL JOURNAL VOL. 32, 1984

A COUNTER EXAMPLE TO A RESULT ON APPROXIMATE POINT SPECTRA OF POLAR FACTORS OF HYPONORMAL OPERATORS

By

TAKAYUKI FURUTA

(Received June 14, 1984)

ABSTRACT. We show a counter example to Rai [2] on approximate point spectra of polar factors of hyponormal operators.

1. An operator T means a bounded linear operator on a separable Hilbert space H. Let $\sigma(T)$ denote the spectrum of T, $A_{\sigma}(T)$ the approximate point spectrum of T and $\Gamma(T)$ the compression spectrum of T respectively. An operator T is said to be hyponormal if $T^*T \ge TT^*$. Using an elegant technique of the Cayley transform of a self adjoint operator, Putnam [1] shows Theorem A.

Theorem A [1]. Let T be hyponormal and suppose that

 $r \in \sigma(T^*T)$ (hence $r \geq 0$).

Then there exists a $z \in \sigma(T)$ for which $|z| = r^{1/2}$.

In order to attempt a precise estimation of Theorem A, Rai [2] states the following Theorem B.

Theorem B [2]. Let T be hyponormal and suppose

 $r \in A_{\sigma}(T^*T)$ (hence r > 0).

Then there exists a $z \in A_o(T)$ for which $|z| = r^{1/2}$.

However we show a counter example to Theorem B [2] as follows.

Example. Put $H=l^2$. Let T denote a weighted right shift in l^2 defined by $Te_1=(1/2)e_2$ and $Te_j=e_{j+1}$ $(j=2, 3, \cdots)$ where (e_j) is an orthonormal basis of l^2 . Then $\sigma(T)=D$, $A_{\sigma}(T)=C$ and $\Gamma(T)=D-C$ where D denote the closed unit disk and also C denotes the unit circle.

Proof. (i) $|\lambda| < 1$. Put $x = (1, 2\lambda, 2\lambda^2, 2\lambda^3, \cdots)$, then $T^*x = \lambda x$, so that $\overline{\lambda} \in \overline{P_{\sigma}(T^*)} = \Gamma(T)$ namely $\Gamma(T) \supset D - C$. Clearly ||T|| = 1 and the boundary of $\sigma(T)$ is included in $A_{\sigma}(T)$, that is, $A_{\sigma}(T) \supset C$.

(ii) $0 \le |\lambda| < 1/2$. Then we have $||Tx - \lambda x|| \ge ||Tx|| - ||\lambda x|| |\ge |1/2 - |\lambda|| ||x||$ for

TAKAYAKI FURUTA

any x, that is, $\lambda \notin A_{\sigma}(T)$ for $0 \leq |\lambda| < 1/2$.

(iii) $1/2 \le |\lambda| < 1$. For any unit vector $x = (a_1, a_2, \dots)$, by Schwarz's inequality we have

$$4 \| Tx - \lambda x \|^{2} = 4 |\lambda|^{2} + 4 - 3 |a_{1}|^{2} - 4 \operatorname{Re}(\lambda \bar{a}_{1} a_{2}) - 8 \operatorname{Re}[\lambda (\bar{a}_{2} a_{8} + \bar{a}_{8} a_{4} + \cdots)]$$

$$\geq 4 |\lambda|^{2} + 4 - \{3 |a_{1}|^{2} + 4 |\lambda| |a_{1}| |a_{2}| + 8 |\lambda| \sqrt{1 - |a_{1}|^{2}} \cdot \sqrt{1 - |a_{1}|^{2} - |a_{2}|^{2}}\}$$

$$\geq 4 |\lambda|^{2} + 4 - 8 |\lambda| = 4(1 - |\lambda|)^{2} > 0$$

because the maximum of $\{ \}$ in the inequality above turns out to be $8|\lambda|$ by a differential calculus on two variables $|a_1|$ and $|a_2|$, so that $\lambda \notin A_{\sigma}(T)$ for $1/2 \leq |\lambda| < 1$. Combining (i), (ii) and (iii), we have $\sigma(T)=D$, and $A_{\sigma}(T)=C$ and $\Gamma(T)=D-C$, so the proof is complete.

In fact it is known that $A_{\sigma}(T)=C$ and $\Gamma(T)=D-C$ in the example, but we give an elementary proof if this fact.

Remark. As easily seen, T in the example is hyponormal and $1/4 \in A_{\sigma}(T^*T)$, but $z \notin A_{\sigma}(T)$ for which |z|=1/2 by the example, so that this example, shows a counter example to Theorem B.

References

- [1] C.R. Putnam, Spectra of polar factors of hyponormal operators, Trans. Amer. Math. Soc., 188 (1974), 419-428.
- [2] S. N. Rai, Approximate point spectra of polar factors of hyponormal operators, Indian J. Pure Appl. Math., 8 (1977), 1083-1088.

Department of Mathematics, Faculty of Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori-ken 036 Japan

226