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There are certain dense $*$-subalgebras associated with the generator of a
strongly continuous one-parameter automorphism group $\alpha$ of a $c*$-algebra. Among
the typical ones so far considered are the domain of the generator, the algebra of
$C^{\infty}$-elements with respect to $\alpha$, and the algebra of elements of compact a.spectra.
Any derivation defined on any of them seems to behave very well and is likely to
be closely connected to the generator itself [1, 2, 3, 7]. In this note we continue to
study this problem and give a result which generalizes Theorem 3.1 in [1], at least
when the $c*$-algebra is separable. In particular we can show the following:

Let $A$ be a unital simple $c*$-algebra and $\alpha$ a strongly continuous one-parameter
automorphism group of $A$ with $\delta_{\alpha}$ its generator. Let $A_{\infty}=\cap D(\delta_{a^{n}})$ , i.e., the set
of $C^{\infty}$-elements of $A$ with respect to $\alpha$ , and let $\delta$ be a $*$-derivation of $A_{\infty}$ into $A$ .
When $\alpha$ is approximately inner, $\delta$ is closable and its closure generates a one-
parameter automorphism group of $A$ .

The assumption that $\alpha$ is approximately inner was made only to ensure that
there is an $\alpha$-covariant irreducible representation of $A$ , which follows, in this
case, from the existence of ground states [9]. Hence we may have replaced this
assumption by the following when $A$ is separable: The crossed product of $A$ by
$\alpha$ is not simple (or in particular $\alpha$ is periodic) [6]. But we do not know if this
kind of assumption is really necessary in the above assertion.

The assumtion that the domain $D(\delta)$ is $A_{\infty}$ can be replaced by the one that
$D(\delta)$ is algebraically isomorphic to $A_{\infty}$ because then the isomorphism is easily
shown to be isometric using that $A_{\infty}$ is closed under the $C^{\infty}$-calculus.

Now we state the main result:

Theorem. Let $A$ be a $c*$-algebla, $G$ a locally compact abelian group, and $a$ a
continuous action of $G$ on A. Let $A_{F}=\cup A^{\alpha}(K)$ , where $K$ runs over the compact
subsets of the dual $\hat{G}$ of $G$ , and $A^{\alpha}(K)$ denotes the $\alpha- sPectral$ subsPace corresponding
to $K$, and let $\delta$ be a $*$-derivation of $A_{F}$ into $A$ .

SuPpose that $\delta|A^{\alpha}(K)$ is bounded for any comPact subset $K$ of $\hat{G}$ and that
there exists a faithful family of a-covariant irreducible $rePresentations$ of $A$ .
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Then $\delta$ is closable and the closure $\overline{\delta}$ of $\delta$ is a generator, and there exists a
constant $c\geqq 0$ such that for any $f\in L^{1}(G)$ with $\hat{f}(0)=0$, the linear map $\delta_{f}$ on $A_{F}$

defined by

$\delta_{f}(x)=\int_{0}f(t)a_{\ell}\circ\delta\circ a_{-t}(x)dt$ , $x\in A_{F}$

is bounded by $c||f\Vert_{1}$ .
We first indicate how to prove the assertion made before the theorem. The

assumption $D(\delta)=A_{\infty}$ implies that $\delta$ is $\{\delta_{\alpha^{k}}:k=1, \cdots, n\}$-relatively bounded for some
$n=1,2,$ $\cdots[21\cdot$ Hence $\delta|A^{a}(K)$ is bounded for any compact subset $K$ of $\hat{G}$,
which is the only assumption left to prove. Thus by the theorem the closure
$\delta_{1}$ of $\delta \mathfrak{t}A_{F}$ is a generator. By the relative boundedness of $\delta,$ $D(\delta_{1})$ contains $A_{\infty}$

and $\delta_{1}$ extends $\delta$ .
In the above theorem with $G=R$ one cannot conclude that $D(\overline{\delta})\supset A_{\infty}$ in general.

For example consider the example constructed in [7], i.e., the infinite tensor pro-
duct $ A=A_{1}\otimes A_{2}\otimes\cdots$ of copies of the $2\times 2$ matrices with a one-parameter auto-
morphism group $a$ of product type: $\alpha_{t}=AdU^{(1)}\otimes AdU_{t}^{(2)}\otimes\cdots$ where

$U_{t}^{(n)}=(01$

exp
$(-i\lambda_{n}t)0$).

Note that $a$ is determined by the sequence $\{\lambda_{1}, \lambda_{2}, \cdots\}$ of real numbers. If $\{\lambda_{n}\}$

increases sfficiently rapidly, the Arveson spectrum of $a$ is discrete and hence $A_{p}$

is the algebra generated by the $c*$-subalgebra of diagonal matrices and $A_{1},$ $A_{2},$ $\cdots$

where $A_{n}$ are regarded as subalgebras of $A$ . Define $\sigma_{n}\in A_{n}$ by

$\sigma_{n}=\left(\begin{array}{ll}0 & 1\\0 & 0\end{array}\right)$ .

Then $x\equiv\sum e^{-\lambda_{\hslash}}\sigma_{n}$ is analytic for $a$ . Let $\delta$ be the generator of the automorphism
group corresponding to the sequence $\{e^{2\lambda_{1}}, e^{2\lambda_{2}}, \cdots\}$ . Then $x$ is not in the domain
of the generator $\delta$ , but apparently $A_{p}$ is a core for $\delta$ .

Before going into the proof of the theorem, we show the following as an
application of the theorem and results in $[1, 7]$ .

Corollary. Let $A$ be the CAR algebra and $a$ a strongly continuous one-
parameter $\Psi ouP$ of quasi-free automorPhisms of A. Let $A_{\infty}$ be the algebra of
$C^{\infty}$-elements, and let $\delta$ be a $*$-derivation of $A_{\infty}$ into $A$ .

Then there are a Pregenerator $\delta_{1}$ (i.e., its closure is a generator) which com-
mutes with $a$ and a bounded $*$-derivation $\delta_{b}$ such that $\delta=\delta_{1}+\delta_{t}$ . Furthermore if
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the Connes spectrum of $a$ is not trivial, then $\delta_{1}$ can be chosen as $\lambda\delta_{a}|A_{\infty}$ for some
$\lambda\in R$ where $\delta_{\alpha}$ is the generator of $\alpha$ .

Proof. First note that $\alpha$ is approximately inner, or the Fock representation

is $\alpha$-covariant and irrducible. Hence we can apply the theorem to this case.
Let $H$ be the generator of the one-parameter unitary group, on the one-

particle Hilbert space, which corresponds to $a$ . If $H$ has a pure point spectrum,

then $\alpha$ is almost periodic. Thus

$\overline{\delta}(x)=\lim\frac{1}{2T}\int_{-T}^{T}$ a $0\delta 0\alpha_{-\iota}(x)dt$

exists for any $x\in A_{\infty}$ , and $\overline{\delta}$ commutes with $\alpha$ . The boundedness of $\delta-\overline{\delta}$ follows

from the last statement of the theorem. If the Connes spectrum of $\alpha$ is not
trivial, $\overline{\delta}$ equals $\lambda\delta_{a}+\delta^{\prime}$ with $\delta^{\prime}$ a bounded $*$-derivation by Corollary 2.2 in [7].

If $H$ has a continuous part, a KMS state of this system gives a type $III_{1}$

factorial covariant representation. Hence the conclusion follows from Theorem 3.6
in [1] with slight modifications.

Now we come to the proof of the theorem.
Let $(\pi, u)$ be an $\alpha$-covariant irreducible representation, and let $M=\pi(A)^{\prime\prime}=$

$B(H_{l})$ and $\overline{\alpha}$ the automorphism group of $M$ with $\overline{\alpha}_{t}\circ\pi=\pi\circ a_{t},$ $t\in G$ . Our first
purpose is to prove that the map $\pi(x)\mapsto\pi\circ\delta(x)$ extends to a generator on $M$.

In the following let $K$ be a compact subset of $\hat{G}$ and let $\gamma_{K}$ be the infimum
of $||\delta|A^{a}(K+\Omega)\Vert$ where $\Omega$ runs over the compact neighbourhoods of $0\in\hat{G}$ .

Lemma 1. For any $x\in A^{a}(K),$ $\Vert\pi\circ\delta(x)\Vert\leqq\gamma_{K}\Vert\pi(x)\Vert$ .
Proof. Let $I$ be the kernel of $\pi$ . Then $I$ is an $\alpha$-invariant closed ideal of

$A$ . If $I=(O)$ , there is nothing to prove. So $suPpose$ that $I\neq(O)$ .
Let $(e_{\lambda})$ be an approximate identity for $I$, and let $\Omega$ be a compact neighbour-

hood of $0\in\hat{G}$ . By considering $\int f(t)\alpha_{\iota}(e_{\lambda})dt$ with a suitable non-negative $f\in L^{1}(G)$

instead of $e_{\lambda}$ , we may suppose that $e_{\lambda}\in A^{\alpha}(\Omega)\cap I$. Then for $x\in I$ with compact

a-spectrum, $e_{\lambda}x$ converges to $x$, and the spectra of $e_{\lambda}x$ are contained in a compact

subset of $\hat{G}$ . Hence $\delta(e_{\lambda}x)$ converges to $\delta(x)$ . Since

$\delta(e_{\lambda}x)=e_{\lambda}\delta(x)+\delta(e_{\lambda})x\in I$ ,

it follows that $\delta(x)\in I$. Since $\delta(e_{\lambda})$ is bounded, $\delta(e_{\lambda})x$ converges to zero for any
$x\in I$. Thus, as $\delta(e_{\lambda})\in I,$ $\delta(e_{\lambda})$ converges to zero in the weak* topology. Hence
by choosing a suitable net from the convex hull of $e_{\lambda}$ , we may further suppose
that $\delta(e_{\lambda})\infty nverges$ to zero in norm.
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Now for $xeA^{a}(K)$ ,

$\Vert\pi\circ\delta(x)\Vert=\lim\Vert(1-e_{\lambda})\delta(x)\Vert=\lim\Vert\delta(x-e_{\lambda}x)+\delta(e_{\lambda})x\Vert=\lim\Vert\delta(x-e_{\lambda}x)\Vert$

$\leqq\Vert\delta|A^{\alpha}(K+\Omega)\Vert$ $\lim\Vert x-e_{\lambda}x\Vert=||\delta|A^{\alpha}(K+\Omega)\Vert\Vert\pi(x)||$

where the first and last equalities follow from e.g., 1.5.4 in [8]. Since $\Omega$ is arbi-
trary this completes the proof.

Lemma 2. The linear map $\pi(x)-\pi\circ\delta(x)$ from $\pi(A^{\alpha}(K))$ into $\pi(A)$ is continuous
in the $\sigma$-weak topology on each bounded set.

Proof. Let $\Omega$ be a compact neighbourhood of $0\in\hat{G}$, and let $a,$ $b\in A^{\alpha}(\Omega)$ with
$||a||,$ $\Vert b\Vert\leqq 1$ . Then for $x\in A^{\alpha}(K)$ ,

$||\pi(a\delta(x)b)\Vert=||\pi(\delta(axb)-\delta(a)xb-ax\delta(b))\Vert\leqq\gamma^{\prime}(\Vert\pi(axb)||+\Vert\pi(xb)\Vert+\Vert\pi(ax)\Vert)$

where $\gamma^{\prime}=\max(\Vert\delta|A^{\alpha}(K+\Omega+\Omega)\Vert, \Vert\delta|A^{\alpha}(\Omega)\Vert)$ . Hence with $\gamma=3\gamma^{\prime}/2$,

$(^{*})$ II $\pi(a\delta(x)b)\Vert\leqq\gamma(\Vert\pi(ax)\Vert+\Vert\pi(xb)\Vert)$ .
This is the basic inequality we use below.

Let $p$ be a one-dimensional projection in $M$ and $\varphi$ the pure state of $A$ defined
by $P\pi(x)P=\varphi(x)P,$ $x\in A$ . Let $e_{\lambda}$ be an approximate identity of the hereditary
$C^{*}\cdot subalgebra\{x\in A:\varphi(x^{*}x)=\varphi(xx^{*})=0\}$ , and let $a_{\lambda}=1-e_{\lambda}$ . Then $a_{\lambda}$ decreases to
$p$ in $A**wherep$ is regarded as a minimal projection of $A**$ .

Let $f$ be a $non\cdot negative$ function in $L^{1}(G)$ with supp $\hat{f}\subset\Omega$ and $\hat{f}(0)=1$ . Define

$a_{\lambda}(f)=\int a_{t}(a_{\lambda})f(t)dt$

$p(f)=\int\overline{\alpha}(p)f(t)dt$ .

Then we assert that $a_{\lambda}(f)$ decreases to $P(f)$ in $A^{**}$ . Since $\pi(a_{\lambda}(f))$ converges to
$P(f)$ on $H_{\kappa}$ , it suffices to show that for any state $\phi$ of $A$ which is singular in $\pi$,
$\phi(a_{\lambda}(f))$ converges to zero. Since $\pi_{\phi^{\circ}}a_{t}$ is disjoint from $\pi$ for any $t\in G,$ $\phi(\alpha_{t}(a_{\lambda}))$

converges to zero. Thus

$\psi(a_{\lambda}(f))=\int\phi(a_{\iota}(a_{\lambda}))f(t)dt$

converges to zero by the Lebesgue dominated convergence theorem.
Then one obtains that

$\lim\Vert x^{*}a_{\lambda}(f)x\Vert=\Vert x^{*}P(f)x\Vert=||\pi(x^{*})p(f)\pi(x)\Vert$

and so
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lim $sup\Vert\pi(x^{*})\pi(a_{\lambda}(f)^{2})\pi(x)||\leqq\lim||\pi(x^{*})\pi(a_{\lambda}(f))\pi(x)\Vert=||\pi(X^{*})p(f)\pi(x)||$ .
Hence

lim $sup\Vert\pi(a_{\lambda}(f))\pi(x)\Vert\leqq\Vert p(f)^{1/2}\pi(x)\Vert$ .
On the other hand

lin $inf||\pi(a_{\lambda}(f))\pi(x)\Vert\geqq\Vert p(f)\pi(x)\Vert$ .
Now we substitute $a_{\lambda}(f)$ into $a$ in $(^{*})$ . This is justified even if $A$ does not

have an identity because in this case $1-a_{\lambda}(f)$ belongs to $A$ and $\delta(a_{\lambda}(f))$ can read
$-\delta(1-a_{\lambda}(f))$ which satisfies that $\Vert\delta(1-a_{\lambda}(f))\Vert\leqq\gamma^{\prime}$ . Thus we obtain

Il$p(f)\pi\circ\delta(x)\pi(b)\Vert\leqq r(\Vert p(f)^{1/2}\pi(x)\Vert+\Vert\pi(x)\pi(b)\Vert)$ .
By a similar procedure for $b$ with a one-dimensional projection $q$ in $M$ and a
non-negative $g\in L^{1}(G)$ with supp $\hat{g}\subset\Omega$ and $\hat{g}(O)=1$ ,

$\Vert p(f)\pi\circ\delta(x)q(g)\Vert\leqq\gamma(||p(f)^{1/2}\pi(x)\Vert+[|\pi(x)q(g)^{1/2}\Vert)$ .
Suppose that there is a bounded net $x_{\lambda}$ in $A^{a}(K)$ such that $\pi(x_{\lambda})nverges$ to

zero and $\pi\circ\delta(x_{\lambda})$ converges to $Q$ weakly. By choosing a net from the convex
hull of $x_{\lambda}$ , we suppose that $\pi(x_{\lambda})$ (resp. $\pi\circ\delta(x_{\lambda})$ ) converges strongly* to $0$ (resp.

$Q)$ ([4], 2.4.7). Since $P(f)$ and $q(g)$ are compact, we must have that $\Vert P(f)^{1/2}\pi(x_{\lambda})\Vert\rightarrow 0$

etc. Hence

$P(f)Qq(g)=0$ .
Since this does not depend on $\Omega$ , it follows that $pQq=0$ . Thus $Q=0$ since $l$ and
$q$ are arbitrary one-dimensional projections.

Let $x_{\lambda}$ be a net in $A^{\alpha}(K)$ such that $\pi(x_{\lambda})$ is bounded and converges to zero.
Since $\pi\circ\delta(x_{\lambda})$ forms a bounded set in $\pi(A)$ , there is a subset $y_{\lambda}$ of $x_{\lambda}$ such that
$\pi\circ\delta(y_{\lambda})nverges$ in the weak topology. Then by the above argument the limit
must be zero. This shows the continuity of the map $\pi(x)-\triangleright\pi\circ\delta(x),$ $x\in A^{\alpha}(K)$ .

Lemma 3. Let $M_{F}=\cup M^{\overline{\alpha}}(K)$ where $K$ runs over the compact subsets of $\hat{G}$ .
Then there is a $*$-derivation $\Delta$ of $M_{F}$ into $M$ such that

$\Delta\circ\pi(x)=\pi\circ\delta(x)$ , $x\in A_{F}$ ,

$\Delta|M^{\overline{\alpha}}(K)$ is $\sigma$-weakly continuous on each bounded set, and $||\Delta|M^{\overline{\alpha}}(K)\Vert\leqq\gamma_{K}$ .
Proof. The weak closure of $\pi(A^{\alpha}(K))$ is contained in $M^{\overline{\alpha}}(K)$ . Let $Q\in M^{\overline{\alpha}}(K)$ .

Then by Kaplansky’s density theorem there is a bounded net $\pi(x_{\lambda})$ in $\pi(A)$ such
that $\pi(x_{\lambda})$ converges to $Q$ . For a compact neighbourhood $\Omega$ of $0\in\hat{G}$, let $f$ be a
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function in $L^{1}(G)$ such that $\hat{f}(p)=1,$ $p\in K$ and supp $\hat{f}\subset K+\Omega$ . By replacing $x_{\lambda}$ by
$\int f(t)a(x_{\lambda})dt$, we suppose that $x_{\lambda}\in A^{\alpha}(K+\Omega)$ . Thus $M^{\overline{\alpha}}(K)$ is contained in the
weak closure of $\pi(A^{\alpha}(K+\Omega))$ and the map $\pi(x)-\rangle$ $\pi\circ\delta(x)$ on $\pi(A_{F})$ extends to a linear
map from $M_{F}$ into $M$ by the continuity shown in Lemma 2. The rest is easy.

Lemma 4. There exists a self-adjoint $k$ in $M$ such that $\Vert k\Vert\leqq\gamma_{\{0\}}\equiv\gamma_{0}$ and
$\Delta_{1}=\Delta-[ik, ]$ commutes with bl i.e., $\overline{\alpha}_{\iota}\circ\Delta_{1}\circ\overline{\alpha}_{-\ell}=\Delta_{1},$ $t\in G.$ Furthermore if there
is a compact neighbourhood $\Omega$ of $0\in\hat{G}$ such that $\delta(A^{a}(K))\subset A^{\alpha}(K+\Omega)$ for any com-
Pact $K$, then $k$ can be chosen from $M^{\overline{\alpha}}(\Omega)$ .

Proof (Lemma 3.5 in [1]). Let $C$ be the von Neumann algebra generated by
$u_{t},$ $t\in G$ . Then $C\subset M^{\overline{\alpha}}(\{0\})$ and $\Vert\Delta|C\Vert\leqq\gamma_{0}$ . Then there exists a $k=k^{*}\in M$ with
$||k\Vert\leqq\gamma_{0}$ such that $\Delta(Q)=[ik, Q],$ $Q\in C$ . This $k$ satisfies the above conditions.

If $\delta$ satisfies the additional assumption, $\Delta$ also satisfies that

$\Delta(M^{\overline{\alpha}}(K))\subset M^{\overline{\alpha}}(K+\Omega)$ .
From this the second assertion easily follows.

Lemma 5. $\Delta_{1}$ is a-weakly closable and its closure generates $a$ one-parameter
automorphism group of $M$ which commutes with $\overline{\alpha}$ .

Proof. Let $M_{0}$ be the norm-closure of $M_{p}$ . Then $\Delta_{1}$ extends to the generator
of a one.parameter automorphism group of $M_{0}$ (cf. [5, 7]). Denoting by $\beta$ this
automorphism group, we show that $\beta_{*}$ is continuous in the $a$-weak topology.

Suppose that a bounded net $Q_{\lambda}$ in $M_{0}$ converges to zero and $\beta_{*}(Q_{\lambda})$ converges
to $Q$ a-weakly. Then for any $f\in L^{1}(G)$ with supp $f$ compact,

I $\overline{\alpha}_{t}(\beta_{*}(Q_{\lambda}))f(t)dt=\beta.(\int\overline{\alpha}_{l}(Q_{\lambda})f(t)dt)$

which converges weakly to zero since $\beta_{*}$ is continuous on each bounded set of
$M^{\overline{\alpha}}(K)$ . Hence

$\int\overline{\alpha}_{t}(Q)f(t)dt=0$ .

This implies that $Q=0$ . Thus $\beta$ extends to an automorphism group, say $\beta$, of
$M$ by Kaplansky’s density theorem. Then each $\overline{\beta}$. must be continuoUs in the
$a$-weak topology. The continuity of $ s\mapsto\beta$. follows easily (see the proof of Lemma
3.4 in [1]).

The generator of $\beta$ is an extension of $\Delta_{1}$ . Since both the generator and $\Delta_{1}$

have a dense common set of analytic vectors, the generator equals the closure
of $\Delta_{1}$ in the $\sigma$-weak topology.
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Corollary 6. $\delta$ is well-behaved.

Proof. Since $\Delta$ is a bounded perturbation of $\Delta_{1},$
$\Delta$ is also $\sigma\cdot weakly$ closable

and its closure is a generator. Since $\Delta\circ\pi(x)=\pi\circ\delta(x),$ $x\in A_{F}$ , it follows that

$||\pi(x\pm\delta(x))\Vert\geqq||\pi(x)||$ , $x\in A_{F}$ .
Since there is a faithful family of such $\pi$ by the assumption, it follows that
$\Vert x\pm\delta(x)\{|\geqq\Vert x]|,$ $x\in A_{l}.$ .

Lemma 7. Suppose that there exists a compact neighbourhood $\Omega$ of $0\in\hat{G}$ such
that $\delta(A^{\alpha}(K))\subset A^{\alpha}(K+\Omega)$ for any compact subset $K$ of $\hat{G}$ . Let $\gamma=\max(\gamma_{K}, \gamma_{\rho})+2\gamma_{0}$ .
Then for any $Q\in M^{\overline{a}}(K)$ and $n=1,2,$ $\cdots$ ,

$\Vert\Delta^{n}(Q)\Vert\leqq(2\gamma)^{n}n!\Vert Q\Vert$ .
Proof. Note that $\Delta=\Delta_{1}+\Delta_{\ell k}$ where $\Delta_{\ell k}=[ik, \cdot],$ $k\in M^{a}(\Omega),$ $\Vert k\Vert\leqq\gamma_{0}$ and that

$\Delta_{1}(M^{\overline{\alpha}}(K))\subset M^{f}(K)$ .
We first expand $(\Delta_{1}+\Delta_{\ell k})^{n}$ into $2^{n}$ terms, and apply the formula

$\Delta_{1}\Delta_{\hslash}=[\Delta_{1\prime}\Delta_{h}]+\Delta_{\hslash}\Delta_{1}$

$=\Delta_{\ell A_{1}(\hslash)}+\Delta_{\ell h}\Delta_{1}$

to a factor $\Delta_{1}\Delta_{h}$ with $h=k$, if any, in each term, by so doing, making each term
into two. We repeat this process to a factor $\Delta_{1}\Delta_{\ell\hslash}$ with $h=k,$ $\Delta_{1}(k),$ $\Delta_{\iota^{2}}(k),$ $\cdots$ , if
any, in each resulting term. Eventually every resulting term is a prduct of
inner derivations of the $ty$oe $\Delta_{\ell A_{1}^{j}(k)}j=0,1,2,$ $\cdots$ , multiplied by a $\infty wer$ of $\Delta_{2}$ from
the right, i.e., after being multiplied by $Q$ from the right, it is of the form

$(^{*})$ $\Delta_{\ell\Delta_{1^{1(k)}}^{j}}\cdots\Delta_{t\Delta_{1}^{j_{l}}(k)}\Delta_{\iota^{m}}(Q)$

where $l,$ $j_{1},$
$\cdots,$

$j_{\ell},$ $m$ are non-negative integers and $j_{1}+\cdots+j_{\ell}+l+m=n$ .
We estimate the norm of $(^{*})$ . Since $\Delta_{1}^{m}(Q)=\Delta(\Delta_{1}^{m-1}(Q))+\Delta_{\ell k}(\Delta_{1}^{m-1}(Q))$ and

$\Delta_{\iota^{m-1}}(Q)\in M^{\overline{\alpha}}(K)$ , one obtains

$||\Delta_{1}^{m}(Q)\Vert\leqq\gamma_{K}\Vert\Delta_{1}^{m-1}(Q)\Vert+2\Vert k\Vert$ . II $\Delta_{1}^{m- 1}(Q)\Vert$

$\leqq\gamma\{|\Delta_{1}^{m-1}(Q)||$ .
Hence

$\Vert\Delta_{1}^{m}(Q)\Vert\leqq\gamma^{m}\Vert Q\Vert$ .
Similarly $||\Delta_{1^{j}}(k)||\leqq\gamma^{j}||k||\leqq\gamma^{j+1}/2$ . Thus the norm of $(^{*})$ is at most

$\gamma^{j_{1}+1}\cdots\gamma^{j}\ell^{+1}\gamma^{m}[|Q||=\gamma^{n}||Q||$ .
We now estimate the number of those resulting terms. Note that the resulting
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terms are independent of the processes applied. (This fact may be shown by the
induction on the number of $\Delta_{1}$ appearing in a term and by the induction on the
positions of $\Delta_{1}$ when the numbers of $\Delta_{1}$ are the same. Sinoe using this fact can
easily be avoided by making a convention on the order of applying the procoes,
we will not prove it here.) SuPpose that one obtains $m_{n-1}$ terms by applying the
above procedure to $(\Delta_{1}+\Delta_{ik})^{n-1}$ . Now multiply those terms by $\Delta_{1}+\Delta_{ik}$ from the
left and expand them. The terms multiplied by $\Delta_{ik}$ from the left are already of
the final form, and so there are $m_{n-1}$ of them. By applying the above procedure
to $\Delta_{1}$ in each of the other terms one obtains at most $n$ terms, because there are
at most $n-1$ inner derivations in each term. Hence

$m_{n}\leqq m_{n-1}+nm_{n-1}\leqq 2nm_{n-1}$ .
If $m_{n-1}\leqq 2^{n-1}(n-1)!$ , then $m_{n}\leqq 2^{n}n!$ . Since $m_{1}=2$, this completes the proof.

Lemma 8. Let $f$ be a real function in $L^{1}(G)$ such that the suPport of $f$ is
compact, and define a $*$-derivation $\delta_{f}$ on $A_{F}$ by

$\delta_{f}(X)=\int 0$

Then any element of $A_{F}$ is analytic for $\delta_{f}$ .
Proof. Let $\Omega=supp\hat{f}$. Then $\delta_{f}$ satisfies the assumption $\delta_{f}(A^{\alpha}(K))\subset A^{a}(K+\Omega)$

and also the other Properties of $\delta$ necessary to derive Lemma 7. (In particular
$\delta_{f}|A^{\alpha}(K)$ is bounded, e.g., $\Vert\delta_{f}|A^{\alpha}(K)||\leqq\gamma_{K}||f\Vert_{1}.)$ By Lemma 7,

$||\pi\circ\delta_{J^{n}}(x)\Vert\leqq(2\gamma)^{n}n]$ Ilxll
for $x\in A^{\alpha}(K)$ where $\gamma=||f||_{1}(\max(\gamma_{K}, \gamma_{D})+2\gamma_{0})$ . Since $\gamma$ does not depend on $\pi$ and
there is a faithful family of those $\pi$, it follows that

$\Vert\delta_{J^{n}}(x)||\leqq(2\gamma)^{n}n!||x||$ , $x\in A^{\alpha}(K)$ .
This completes the proof.

Corollary 9. Let $f$ be a real function in $L^{1}(G)$ such that the suppOrt of $\hat{f}$ is
comPact. Then $\delta_{f}$ is a closable $*$-derivation and its closure $\overline{\delta}_{f}$ generates $a$ one.
parameter automorphism group of $A$ .

Proof. By Corollary 6 applied to $\delta_{f},$ $\delta_{J}$ is well-behaved and so in particular
$\delta_{f}$ is closable. By Lemma 8 $\delta_{f}$ has a dense set of analytic vectors. Thus the
conclusion follows from a general theory ([4], 3.2.50).

Lemma 10. Let $f$ be a real function in $L^{1}(G)$ such that $\hat{f}(0)=0$ . Then $\delta_{f}$ is



DERIVATIONS WITH A DOMAIN CONDITION 223

bounded and $\Vert\delta_{f}\Vert\leqq 4\Vert f\Vert_{1}\gamma_{0}$ .
Proof (Proof of Theorem 3.1 in [1]). Let $f$ be a real function in $L^{1}(G)$ such

that $suppf$ is compact and $\hat{f}$ vanishes around $0$ . By Lemma 4 applied to $\delta_{f}$ instead
of $\delta$, one has $k=k^{*}\in M$ such that $\Vert k||\leqq\Vert f\Vert_{1}\gamma_{0}$ and $\Delta_{1}\equiv\Delta-[ik, ]$ commutes with
$\overline{a}$ . Since the $\overline{\alpha}\cdot spectrum$ of $\Delta$ (with respect to the action $\Delta\leftarrow\rangle\overline{\alpha}_{t}\circ\Delta\circ\overline{\alpha}_{-t}$) does not
contain $0$, this implies that $\Vert\Delta_{1}||\leqq\Vert[ik, ]\Vert\leqq 2\Vert k\Vert\leqq 2||f\Vert_{1}\gamma_{0}$ . Hence $||\Delta\Vert\leqq\Vert\Delta_{1}\Vert+$

$\Vert[ik, ]\Vert\leqq 4\Vert f\Vert_{1}\gamma_{0}$ . Since the bound does not depend on $\pi$, it follows that $||\delta_{f}||\leqq$

$4||f||_{1}\gamma_{0}$ . Now the conclusion follows from the density of those $f$ in the maximal
ideal of the real $L^{1}(G)$ consisting of $f$ with $\hat{f}(0)=0$ .

We now complete the proof of the theorem. Let $f$ be a real function in $L^{1}(G)$

such that supp $\hat{f}$ is compact and $\hat{f}(0)=1$ . Then, as in the proof of Theorem 3.1
in [1], Lemma 10 implies that $||\delta-\delta_{f}||\leqq 8||f\Vert_{1}\gamma_{0}$ . Thus $\delta$ is a bounded oerturbation
of $\delta_{f}$ . Since $\overline{\delta}_{f}$ is a generator by Corollary 9, $\overline{\delta}$ is also a generator.

Acknowledgements

Part of this work was done while the author was visiting University of
Edinburgh. He would like to thank C. J. K. Batty for numerous discussions on
this topic.

References

[1] C. J. K. Batty and A. Kishimoto, Derivations and one-parametef subgroups of $C^{*}\cdot dynami$.
cal systems, to appear in J. London Math. Soc.

[2] O. Bratteli, G. A. Elliott and P. E. T. Jorgensen, Decompositions of unbounded derivations
into invariant and approximately inner Parts, J. Reine Angew. Math. 346 (1984), 166-193.

[3] O. Bratteli, F. M. Goodman and P. E. T. Jorgense, Unbounded derivations tangential
to compact groups of automorphisms II, preprint.

[4] O. Bratteli and D. W. Robinson, Operatof algebras and quantum statistical mechanics
I, Springer, 1979.

[5] E. B. Davies, A generation theorem for opefatofs commuting with group actions, pre.
print.

[6] A. Kishimoto, AutomorPhisms and covariant irreducible rePresentaions, Yokohama Math.
J., 31 (1983), 159-168.

[7] A. Kishimoto and D. W. Robinson, Derivations, Dynamical systems, and spectral restric-
tions, to appear in Math. Scand.

[8] G. K. Pedersen, $C^{*}$-algebras and their automorphism groups, Academic Press, 1979.
[9] R. Powers and S. Sakai, Existence of ground states and KMS states for approxjmately

inner dynamics, Commun. Math. Phys., 39 (1975), 273-288.

Department of Mathematics
College of General Education
Tohoku University
Sendai, Japan


	Theorem. Let ...
	References

