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1. Introduction

According to Smale’s formulation which describes the regularity of electric $\cdot$

electronic circuits with resistors, inductors and capacitors [1], we analyze local
solvability [2] and jump phenomena on the following two systems. One is called
Multivibrator, the other is Blocking Oscillator. In the dynamical nonlinear cir-
cuits, the property of local solvability has been already investigated [3], [4]. This
property ensures that a vector field of the system is defined uniquely.

In this paper, we show that a simple geometric description of the dynamics
can be obtained by choosing a suitable coordinate system which makes clear the
relation between the Property of local solvability and of jump phenomena.

2. Preliminaries

A state of the circuit is described by choosing a currents vector $ i=(i_{R}, i_{c}, i_{L})\in$

$R^{n}$ and a voltages vector $v=(v_{R}, v_{c}, v_{L})\in R^{n}$ as $(i, v)\in R^{2n}$ where $n$ is the number of
elements and $R,$ $C$ and $L$ denote resistors, linear capacitors and linear inductors,
respectively. Now let $n_{R},$ $n_{\sigma}$ and $n_{L}$ be the numbers of resistors, capacitors and
inductors, then $n_{R}+n_{C}+n_{L}=n$ . Resistor constitutive relations are represented by

(1) $(i_{R}, v_{R})\in A4_{R}\subset R^{2n_{R}}$ ,

(2) $i_{R}=f(v_{R})$ ,

where $\Lambda_{R}$ is an $n_{R}\cdot dimensiona1smth$ submanifold given by (2) ( $\Lambda_{R}$ is $ntrolld$

by voltages) and $f:R^{n_{R}}\rightarrow R^{n_{R}}$ represents a nonlinear smooth mapping. Capacitor
currents and voltages are related as follows:

(3) $(i_{\sigma}, v_{C})\in R^{2n_{C}}$ ,

(4) $i_{\sigma}=C_{m}\dot{v}_{C}$ , $(\dot{v}_{C}=dv_{c}/dt)$ ,

where $C_{m}$ is an $(n_{C}\times n_{\sigma})$ diagonal matrix. Inductor currents and voltages are
related as follows:
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(5) $(i_{L}, v_{L})\in R^{2n_{L}}$ ,

(6) $v_{L}=L_{m}\dot{i}_{L}$ ,

where $L_{m}$ is an $(n_{L}\times n_{L})$ diagonal matrix.
Kirchhoff’s current and voltage laws restrict the possible states to an

n-dimensional $(2n-n=n)$ linear subspace $K\subset R^{2n}$ . The restraint of the branch
characteristics denoted by $\Lambda$ is $(n+n_{C}+n_{L})$-dimensional $(2n-n_{R}=n+n_{C}+n_{L})$ smooth
submanifold, where

(7) $\Lambda=\{(i, v)\in R^{2n_{R}}|(i_{R}, v_{R})\in\Lambda_{R}\}$ .
Then the configuration space $\Sigma$ where the dynamics takes place is defined as
follows:

(8) $\Sigma=\Lambda\cap K$ .
The transversality of $\Lambda$ and $K$ which the systems treated with this paper satisfy
assures that $\Sigma$ is an $(n_{C}+n_{L})$-dimensional $(2n-n-n_{R}=n_{\sigma}+n_{L})$ submanifold.

Let $\pi_{LC};\Sigma\rightarrow R^{n_{C}+n_{L}}$ be the natural projection defined by

(9) $\pi_{LC}(i, v)=(i_{L}, v_{c})$ ,

and let $D_{p}\pi_{LC}$ denote the derivatives of $\pi_{L\sigma}$ at $ p=(i, v)\in\Sigma$ . If the dynamics of
the system can be well defined at $p$ , then we call $p$ local solvable point. It is
known that if Ker $D_{p}\pi_{LC}$ and $T_{p}(\Sigma)$ , the tangent space of $\Sigma$ at the above position,
intersect transversally, the systems are local solvable at $p$ .
3. Local solvability and jump

We mean, by “jump” at $ p\in\Sigma$ , an instantaneous $tr$ansition $\Delta p\langle\neq 0$) of the
state $p$ such that $ p+\Delta p\in\Sigma$ . It will be clear from the last statement of the
previous section that the necessary condition for the system to have jump at
$ p\in\Sigma$ is the following:

(10) $T_{p}(\Sigma)\cap KerD_{p}\pi_{LC}\neq\{0\}$ .
It follows from (4), (6) that

(11) $v_{C\ell}=C_{m_{ii}}^{-1}\int i_{C\ell}dt$ , $i=1,$ $\cdots,$ $n_{O}$ ,

(12) $i_{L_{j}}=L_{m_{fj}}^{-1}\int v_{L_{f}}dt$ , $j=1,$ $\cdots,$ $n_{L}$ .

Under the natural physical restraint, the energy of capacitors and inductors, and
hence the value of $(i_{L}, v_{c})$ is preserved at $p$ and $p+\Delta p$ (energy’s continuity). In
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other words, capacitor and inducto$r$ have inertia through the jump process. On
the other hand, Ker $D_{p}\pi_{L\sigma}$ represents the orthogonal complement of the subspace
$\pi_{L\sigma}(R^{2n})$ . On jump points, by the ”inertia”, the gradient vector induced from
(11), (12) coincides with $D_{p}\pi_{LC}(\Delta p)$ which implies

(13) $\Delta P\in$ Ker $D_{p}\pi_{LC}$ .
Since $T_{p}(\Sigma)$ denotes the subspace in which the dynamics of the system at $p$ is
described, by introducing a natural convention: even if jump occurs at $p$, the
tangent vector keeps the direction, we may conclude that

(14) $\Delta P\in T_{p}(\Sigma)$ .
Thus, we can examine whether $\Delta p(\neq 0)$ exists or not by solving linear homo-
geneous equations induced from (13), (14). In the successive sections, we will
actually show the degeneracy of the linear equation system at every jump point.

4. Multivibrator

Figure 1 describes Multivibrator which is well known as an oscillator used
to generate voltages pulses. On the system, $n_{R}=7$ (cf. Fig. 4, (25)), $n_{\sigma}=2,$ $n_{L}=0$,
therefore $n=7+2=9$ .
4.1. Phase portrait

In this system (Fig. 1), the following condition is assumed: a gate current $i_{g}$

Fig. 1. Multivibrator system.
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is negligible $(i_{g}=0)$ . Using gate voltages $v_{7},$ $v_{8}$ which are regarded as state vari-
ables, from voltage’s relations, we obtain two first order differential equations
(15) as a system representation [6], [7].

(15) $\left\{\begin{array}{l}K(\theta_{8}+\theta_{7}=-v_{\tau}/\tau,\\(R_{a}\langle\langle R_{\sigma}),\\\theta_{8}+K(v_{7})\dot{v}_{\tau}=-v_{8}/\tau,\end{array}\right.$

which is called ”implicit form”, where

(16) $K(v_{7})=R.S(v_{7})$ ,

(17) $\tau=CR_{c}$

and $S(v_{\tau})$ denotes a derivative of the characteristics of FET (Fig. 2). Rewriting
the implicit form equation to the normal form one, we have

Fig. 2. Characteristic curve of Drain current.

Fig. 3. Phase portait of multivibrator $(3/2>K(0)>1)$ .
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(18) $\left\{\begin{array}{l}\theta_{8}=(1/\tau)(K(v_{\tau})v_{\tau}-v_{8})/(1-K(v_{\tau})K(v_{8}))\\\theta_{7}=(1/\tau)(K(v_{8})v_{8}-v_{7})/(1-K(v_{r})K(v_{8})).\end{array}\right.$

On the phase space, if $K(O)>1$ , then there is a closed continuous curve $\Gamma_{m}$ :
(19) $K(v_{7})K(v_{8})=1$ ,

which contains jump points of phase paths of (18). On $\Gamma_{m}$ , only two points lying
on $y=x$ are not jump points. As $1<K(O)<3/2$, we obtain phaae portrait Fig. 3
of (18). Under the above assumption, a graph $G_{m}$ induced from the system is
representd as Fig. 4.

4.2. Local solvability
Kirchhoff space $K$, the tangent space of the branch characteristic space $\Lambda$

and the configuration space $\Sigma$ at $ p\in\Sigma$ are represented as follows:

(20) $K=\{(i, v)|[Q|0](i, v)^{t}=0, [O|B](i, v)^{t}=0\}$ ,

(21) $T_{p}(\Lambda)=\{(i, v)|R(i, v)^{t}=0\}$ ,

(22) $T_{p}(\Sigma)=\{(i, v)|J(i, v)^{t}=0\}$ ,

where $(i, v)=(i_{1}, i_{2}, i_{4}, i_{f}, i_{3}, i_{6}, i_{\tau}, i_{8}, i_{9}, v_{1}, \cdots, v_{\mathfrak{g}})$ ,

(23) $Q=\left\{\begin{array}{llll}-1 0 & 1 & 0 & \\0 -1 & 0 & 1 & \\-1 0 & 1 & 0 & I\\0 -1 & 0 & 1 & \\-1 -1 & 0 & 0 & \end{array}\right\}$ , (which is called the cut set matrix) ,

Fig. 4. Graph of multivibrator.
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(24) $B=[$ $I-1001$ $-1001$ $-1001$ $-I001$ $0011]$ , which is called the loop matrix) ,

(25) $R=\left\{\begin{array}{lllllllllll}R_{a} & & & & & & -1 & & & & \\ & R_{l} & & & & & & -1 & & & \\ & & 1 & & & & & & & -S_{8} & \\ & & & 1 & & & & & -S_{7} & & \\ & & & & R_{c} & & & & -1 & & \\ & & & & & R_{c} & & & & -1 & 1\end{array}\right\}\}\Lambda_{R}$

,

$(S_{\tau}=S(v_{\tau}) , S_{8}=S(v_{8}))$ ,

and

(26) $J=\left\{\begin{array}{lll}Q & & 0\\0 & R & B\end{array}\right\}$ .

Thus, on this system,

(27) dim $K=n=9$ ,

(28) dim $\Lambda=n+n_{\sigma}+n_{L}=9+2=11$ ,

and if $K$ intersects $\Lambda$ transversally,

(29) dim $\Sigma=n_{\sigma}+n_{L}=2$ .
In this section, we examine the transversality between $T_{p}(\Sigma)$ and Ker $D_{p}\pi_{LC}$ which
implies local solvability. If jump phenomena occur on this system, then the
Prooerty of local solvability is destroyed, as precisely mentioned in Section 3.
Therefore, a subset of the following set $M_{j}$ :

(30) $\{(i, v)|$ det $\left\{\begin{array}{l}J\\D_{p}\pi_{LC}\end{array}\right\}=0\}$

corresponds to jump points where $\pi_{LC};\Sigma\rightarrow R^{2}$ is

(31) $\pi_{LC}(i, v)=(v_{3}, v_{\epsilon})$ .
The derivative of $\pi_{LC}$ at a jump point $ p\in\Sigma$ is given by

(32)
$D_{p}\pi_{LC}=’\left\{\begin{array}{lllll} & & & & 1\\0 & \vdots & 6 & 1 & 6\end{array}\right\}$ .

By applying elementary operations to the matrix in (30), we have the following:
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(33) det $\left\{\begin{array}{l}J\\D_{p}\pi_{LC}\end{array}\right\}=\det\left\{\begin{array}{ll}R_{a}+R_{C} & R_{\sigma}R_{a}S_{8}\\R_{\sigma}R_{a}S_{\tau} & R_{a}+R_{\sigma}\end{array}\right\}$ ,

Consequently, we obtain the set $M_{j}$ as follows:

(34) $M_{j}=\{(i, v)|K(v_{\tau})K(v_{8})=(1+R_{a}/R_{c})^{2}\}$ .
Then we assume that a drain resistor $R_{a}$ is small enough than a gate resistor $R_{c}$

$(R_{a}\langle\langle R_{c})$ . So, we reduce the same results as the phase plane analysis, i.e.,

(35) $M_{j}=\Gamma_{m}$ ,

which is defined in (19). On the other hand, rank $[J]$ is the full rank as follows:

(36) det $\left\{\begin{array}{ll}1+R_{c}/R_{a} & R_{C}S_{8}\\R\beta_{\tau} & 1+R_{\sigma}/R_{\alpha}\end{array}\right\}=1-R_{C^{2}}S_{f}S_{8}(1-R_{c}/(R_{a}+R_{c}))^{2}=1$ .
It follows from a similar argument to (33) that the transversality of $K$ and $\Lambda$

holds.

5. Blocking Oscillator

Although Blocking Oscillator which is shown by Fig. 5 does not satisfy (5),
(6), under the following assumption (i), we can reduce the system which satisfies
(1)$-17)$ . Considering mutual inductance, coupled inductors are transformed into
another inductor (50). At the same time, there is a new current’s relation (51)

and there are new two voltage’s relations. One is a Kirchhoff’s voltage law (53)

and the other is a relation between $v_{2}$ and $v_{s}(52)$ .
5.1. Phase portrait

In this system (Fig. 5), it is natural to assume that
(i) the magnetic leakage flux is zero $(M^{2}=LL_{a})$ ,
(ii) the anode current $\dot{t}_{2}$ is a function of $v_{3},$ $v_{4}(i_{2}=\phi(v_{4}, v_{3})$ ,

Fig. 5. Blocking oscillator system.
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Fig. $6_{a}$ . Fig. $6_{b}$ . Characteristic curve of $I_{\epsilon}$ .
$Z=v_{4}+\frac{v_{3}-E}{u},$ $u=constant$ .

(iii) the grid current $i_{c}$ depends only on the grid voltage $v_{4}(i_{\epsilon}=\phi(v_{4}))$ ,

where $\phi$ and $\psi$ are given in Fig. 6. We choose grid voltages $v_{3},$ $v_{4}$ as the state
variables. Then, rewriting the implicit form differential equation (first order), we
can obtain the following normal form one as a representation of the system [7]:

(37) $\left\{\begin{array}{l}\theta_{4}=-\frac{v_{3}-E}{n\theta}+\frac{n^{2}L}{\tau R_{\ell}\theta}(v_{4}+R\phi(v_{4}))\\\theta_{3}=\frac{v_{3}-En}{\theta\tau}(1+\frac{n^{2}L}{R\theta})(v+R\phi(v_{4}))\end{array}\right.$

where $\theta,$ $S_{a}$ and $R_{\ell}$ denote abbreviation of $\theta(v_{4}, v_{3}),$ $S_{a}(v_{4}, v_{3})$ and $R(v_{4}, v_{3}),$ $res\mu c-$

tively. In (37), $E$ denotes a suPply voltage, $L$ denotes the grid self-inductance
and othe$r$ notations are defined as follows:

(38) $\theta(v_{4}, v_{3})=\tau_{c}[(1-n/u(v_{4}, v_{3}))nRS_{a}(v_{4}, v_{3})-1-RS_{c}(v_{4})]$ ,

(39) $S_{a}(v_{4}, v_{3})=\partial\phi/\partial v_{4}$ ,

(40) $1/R_{i}(v_{4}, v_{3})=\partial\phi/\partial v_{3}$ ,

(41) $S_{c}(v_{4})=d\psi/dv_{4}$ ,

(42) $u(v_{4}, v_{3})=R_{\ell}(v_{4}, v_{3})S_{a}(v_{4}, v_{3})$ ,

(43) $\tau=CR$ ,

(44) $\tau_{c}=L/R$ .
As an approximation, we suppose that the value of (42) holds constant on a neigh-

borhood of the equilibrium point. If $\theta(0, E)>0$, then the set $\Gamma_{b}$ :

(45) $\{(v_{4}, v_{3})|\theta(v_{4}, v_{3})=0\}$

which consists of two lines and includes jump points, is constructed on the phase
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space as Fig. 7. On the phase portrait Fig. 8 of (37), the set $\Gamma_{b}$ deleted the region
of two dotted lines shows jump points.

On the other hand, under the assumptions (i), (ii) and (iii), we can obtain a
graph $G_{b}$ induced from the system in Fig. 9.

5.2. Local solvability
Let $(i, v)=(i_{r}, i_{1}, i_{3}, i_{4}, i_{0}, i_{2}, i_{6}, v_{f}, \cdots, v_{6})$ , where $i_{r}$ and $v_{f}$ are defined by (51),

Fig. 7. Curves of $(1-\frac{n}{u})nR\frac{\partial\phi(Z)}{\partial v_{4}}$ , and $\Gamma,$ $z=v_{4}+\frac{v_{3}-E}{u},$ $u=constant$ .

Fig. 8. Phase portrait of blocking oscillator $(\theta(0, E)>0)$ .
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Fig. 9. Graph of blocking oscillator.

(53), then each matrix $A,$ $R$ and $J$ which determines $K,$ $T_{p}(\Lambda)$ and $T_{p}(\Sigma)$ at $ p\in\Sigma$

are represented as follows respectively:

(46) $A=[0$

1
1

1
1

$-1-1$

$-1-1$

(47) $R=[1$

1
1

$-n$ 1

1

1 1
1 1

1
$-11]$

} $\Lambda_{L_{r}}$

1

$*1**23$

1
$n]_{\}\Lambda_{L_{r}}}^{\}\Lambda_{R}}$ .

$(*1=-1/R,$ $*2=-S_{a},$ $*3=-\frac{1+RS_{c}}{R})$ ,

(48) $J=\left\{\begin{array}{l}A\\R\end{array}\right\}$ .
By the way $\Lambda_{L_{f}}$ :

(49) $\{(i_{2}, i_{b}, v_{2}, v_{f})|\left(\begin{array}{l}v_{2}\\v_{f}\end{array}\right)=\left\{\begin{array}{ll}L_{a} & -M\\M & -L\end{array}\right\}\left(\begin{array}{l}i_{2}\\i_{b}\end{array}\right)\}$

is a set which shows the relation of a coupled inductors given initially in the
network. Considering mutual inductance $M$, from assumption (i), which implies

that the matrix in (49) is singular, we reduce the relation in (49) to the followings:

(50) $v_{b}=Li_{r}$ ,

(51) $i_{r}=ni_{2}-i_{b}$ , (which is called the magnetization current) ,

(52) $v_{2}=nv_{t}$ ,
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(53) $v_{r}=v_{6}$ , (which is regarded as a Kirchhoff’s relation).

On this system, let $n_{f}$ be the number of equations which are transformed, then
$n_{R}^{\prime}=n_{R}+n_{r}=3+2=5,$ $n_{c}=1,$ $n_{L}=1$ , therefore $n=n_{R}^{\prime}+n_{\sigma}+n_{L}=7$ .
(54) dim $K=n=7$ ,

(55) dim $\Lambda=n+n_{\sigma}+n_{L}=9$ ,

in case $K$ intersects $\Lambda$ transversally,

(56) dim $\Sigma=n_{O}+n_{L}=2$ .
The derivative of $\pi_{LC}$ at $ p\in\Sigma$ is given by

(57)
$D_{p}\pi_{L\sigma}=r1bt1$

where $\pi_{LC};\Sigma\rightarrow R^{2}$

(58) $\pi_{LC}(i, v)=(i_{r}, v_{0})$ .
Since, applying elementary operations,

(59) det $\left\{\begin{array}{l}J\\D_{p}\pi_{LC}\end{array}\right\}=\det\left\{\begin{array}{lll}1 & *1 & *2\\n & 0 & *3\\0 & -1 & -n\end{array}\right\}=0$

which gives a necessary condition for the property of local solvability to be
destroyed, the following set $B_{j}$ :
(60) $\{(i, v)|\theta(v_{4}, v_{3})=0\}$

includes jump points. This set coincides with (45).

Since,

(61) det $\left\{\begin{array}{ll}-1/R_{\ell} & -S_{a}\\0 & -(1+RS_{c})/R\end{array}\right\}=(1+RS_{e})/RR_{\iota}>0$ ,

the matrix $J$ has the full rank, and hence the transversality of $K$ and $\Lambda$ holds.
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