ON MANIFOLDS OF NONNEGATIVE RICCI CURVATURE

By
Ryosuke Ichida

(Received April 19, 1984)

§0. Introduction

On a Riemannian manifold M we can define a function $\rho_{\boldsymbol{M}}: M \rightarrow R^{+} \cup\{+\infty\}$ which gives us interesting geometric properties of M where R^{+}is the set of all positive real numbers. The definition of ρ_{M} will be given in $\S 2$. The purpose of this paper is to investigate Riemannian manifolds of nonnegative Ricci curvature with $\rho(M)<+\infty$ where $\rho(M)=\sup \rho_{M}$.

In the following let M be an n-dimensional ($n \geqq 2$) connected, complete Riemannian manifold of nonnegative Ricci curvature. If $\rho(M)$ is finite then M is compact and the fundamental group of M is finite. M is homeomorphic to a standard sphere of dimension n if M is compact and $d(M) \geqq 2 \rho(M)$ where $d(M)$ denotes the diameter of M. We now suppose that M is compact and is not simply connected and that $\rho_{M}(p) \leqq d_{M}(p, C(p))$ holds for some point p of M where d_{M} is the distance function on M and $C(p)$ stands for the cut locus of p in M. Then there exists a homeomorphic involution $\varphi: S^{n}(1) \rightarrow S^{n}(1)$ of fixed point free and M is homeomorphic to the quotient manifold $S^{n}(1) / \varphi$ of $S^{n}(1)$ obtained by identifying each $x \in S^{n}(1)$ with $\varphi(x)$ where $S^{n}(1)$ is the n-dimensional Euclidean sphere of radius 1 .

In § 1 we prepare some lemmas. Lemmas 1.2 and 1.3 are basic lemmas of this paper. In $\S 2$ we give the definition of ρ_{H}. We will show in this section that if M is a connected, complete Riemannian manifold satisfying $K_{M} \leqq 1, \operatorname{Ric}_{\boldsymbol{M}} \geqq(n-1) \lambda^{2}$, $1 / 2<\lambda \leqq 1$, then $\pi \leqq 2 \rho_{M}(p) \leqq \pi / \lambda$ for all $p \in M$ where K_{M} (resp. Ric ${ }_{H}$) denotes the sectional curvature (resp. Ricci curvature) of M, respectively. In the last section of this paper we investigate Riemannian manifolds of nonnegative Ricci curvature with $\rho(M)<+\infty$.

§1. Notations and Lemmas

Throughout this paper we always assume that manifolds and apparatus on them are of class C^{∞}, unless otherwise stated.

Let M be an n-dimensional ($n \geqq 2$) connected, complete Riemannian manifold
with Riemannian metric \langle,$\rangle . We denote by d_{m}$ the distance function on M which is induced from the Riemannian metric of M. We denote by $d(M)$ the diameter of M. For a $p \in M$ and an $r>0$ we put $B(p, r)=\left\{q \in M ; d_{M}(p, q)<r\right\}$, $\bar{B}(p, r)=\left\{q \in M ; d_{M}(p, q) \leqq r\right\}$ and $\partial B(p, r)=\left\{q \in M ; d_{M}(p, q)=r\right\}$. Let exp: $T M \rightarrow M$ be the exponential map from the tangent bundle $T M$ of M to M. For each $p \in M \exp _{p}: T_{p} M \rightarrow M$ is the restriction of exp to the tangent space $T_{p} M$ to M at p. If X and Y are orthogonal unit tangent vectors at a point of M then the quantity $K_{M}(P)=\langle R(X, Y) Y, X\rangle$ is called the sectional curvature of the plane section P determined by X and Y where R denotes the Riemannian curvature tensor of M. Let e_{1}, \cdots, e_{n} be an orthonormal basis of the tangent space $T_{p} M$ at $p \in M$ and let X be a unit tangent vector at p. Then the quantity $\operatorname{Ric}_{M_{M}}(X)=$ $\sum_{i=1}^{n}\left\langle R\left(e_{i}, X\right) X, e_{i}\right\rangle$ is called the Ricci curvature with respect to X. In this paper, we denote by $K_{M} \leqq \lambda$ if $K_{M}(P) \leqq \lambda$ holds for all plane sections P to M, and we denote by $\operatorname{Ric}_{M} \geqq(n-1) \lambda$ if $\operatorname{Ric}_{M}(X) \geqq(n-1) \lambda$ holds for all unit tangent vectors X to M.

Let N be a Riemannian manifold of dimension $n(n \geqq 2)$ and let $f: S \rightarrow N$ be an isometric immersion of an ($n-1$)-dimensional Riemannian manifold S into N. (S, f) is called a minimal hypersurface in N if the trace of the second fundamental form of S is zero everywhere. (S, f) is called totally geodesic if the second fundamental form of S vanishes identically.

In the following we shall prepare some lemmas which will be used in the next sections. Let D be an open metric ball in the n-dimensional ($n \geqq 1$) Euclidean space R^{n}. Let $\left(x_{1}, \cdots, x_{n}\right)$ be the standard coordinate system in R^{n}. Let us consider a Riemannian manifold $N=\left(D \times(-\tau, \tau), d s^{2}\right), \tau>0$, whose line element is given by $d s^{2}=\sum_{i, j=1}^{n} g_{i j}(x, t) d x_{i} d x_{j}+d t^{2}$. Let ∇ be the Riemannian connection of N induced from the Riemannian metric of N. For each $t,|t|<\tau$, we denote by H_{t} the mean curvature of the level hypersurface $S_{t}=\{(x, t) ; x \in D\}$ with respect to $\partial / \partial t$. In case $n=1$, by the mean curvature we mean the geodesic curvature. H_{t} is given by $H_{t}=(1 / n) \sum_{i, j=1}^{n} g^{i j}\left\langle\nabla_{\partial / \partial x_{i}} \partial / \partial x_{j}, \partial / \partial t\right\rangle$ where $g^{i j}(x, t)$ is the (i, j)-component of the inverse matrix of $\left(g_{i j}(x, t)\right)$. We can easily show

$$
n \partial H_{t} / \partial t=\operatorname{Ric}_{N}(\partial / \partial t)+\left\|A_{t}\right\|^{2}
$$

where $\left\|A_{t}\right\|$ stands for the length of the second fundamental form A_{t} of S_{t}. From this formula we have the following.

Lemma 1.1. Under the situation stated above, suppose $\operatorname{Ric}_{N}(\partial / \partial t) \geqq 0$. Then $H_{t} \leqq H_{t^{\prime}}$ for any t, t^{\prime} such that $t<t^{\prime}$. If $H_{t}=H_{t^{\prime}}$ for t, t^{\prime} such that $t<t^{\prime}$, then
S_{r} is totally geodesic for any $r \in\left[t, t^{\prime}\right]$.
Now for a real valued function $u \in C^{2}(D),|u|<\tau$, let us consider a hypersurface $S=\{(x, u(x)) ; x \in D\}$ in N. We put $X_{i}=\partial / \partial x_{i}+u_{i} \partial \partial t$ and $\tilde{g}_{i j}(x)=g_{i j}(x, u(x))+$ $u_{i}(x) u_{j}(x)$ where $u_{i}=\partial u / \partial x_{i}, 1 \leqq i, j \leqq n$. Let $\xi=\sum_{i=1}^{n} \xi^{\imath} \partial / \partial x_{i}+\xi^{n+1} \partial / \partial t$ be the unit normal vector field on S defined by

$$
\xi^{i}=-u^{i} /\left(1+\|\nabla u\|^{2}\right)^{1 / 2}, \quad \xi^{n+1}=1 /\left(1+\|\nabla u\|^{2}\right)^{1 / 2}
$$

where $\|\nabla u\|^{2}=\sum_{i, j=1}^{n} g^{i j}(x, u(x)) u_{i} u_{j}$ and $u^{i}=\sum_{j=1}^{n} g^{i j}(x, u(x)) u_{j}$. Let Λ be the mean curvature of $S_{\text {with }}^{i, j=1}$ respect to ξ. Λ is given by $\Lambda=(1 / n) \sum_{i, j=1}^{n} \tilde{g}^{i j}\left\langle\nabla_{x_{i}} X_{j}, \xi\right\rangle$ where $\tilde{g}^{i j}(x)=g^{i j}(x, u(x))-u^{i}(x) u^{j}(x) /\left(1+\|\nabla u\|^{2}\right)$. We have

$$
\begin{align*}
& \sum_{i, j=1}^{n}\left\{\left(1+\|\nabla u\|^{2}\right) g^{i j}(x, u(x))-u^{i} u^{j}\right\} u_{i j} \tag{1.1}\\
&= n \Lambda(x)\left(1+\|\nabla u\|^{2}\right)^{3 / 2}-n H(x, u(x))\left(1+\|\nabla u\|^{2}\right) \\
&+\frac{1}{2} \sum_{i, j=1}^{n}\left(\partial g_{i j} / \partial t\right)(x, u(x)) u^{i} u^{j} \\
&+\sum_{i, j, k=1}^{n}\left\{\left(1+\|\nabla u\|^{2}\right) g^{i j}(x, u(x))-u^{i} u^{j}\right\} \Gamma_{i j}^{k}(x, u(x)) u_{k}
\end{align*}
$$

where $u_{i j}=\partial^{2} u / \partial x_{i} \partial x_{j}, \quad n H(x, u(x))=-(1 / 2) \sum_{i, j=1}^{n} g^{i j}(x, u(x))\left(\partial g_{i j} / \partial t\right)(x, u(x))$ and $\Gamma_{i j}^{k}$ denotes the Christoffel's symbol. In (1.1) if we regard Λ as a given continuous function on D, then we can regard (1.1) as a nonlinear differential equation of second order. We put

$$
\begin{align*}
A_{i j}(x, t, p)= & \left(1+\|p\|^{2}\right) g^{i j}(x, t)-p^{i} p^{j} \tag{1.2}\\
B(x, t, p)= & n \Lambda(x)\left(1+\|p\|^{2}\right)^{3 / 2}-n H(x, t)\left(1+\|p\|^{2}\right)+\frac{1}{2} \sum_{i, j=1}^{n}\left(\partial g_{i j} / \partial t\right)(x, t) p^{i} p^{j} \\
& +\sum_{i, j, k=1}^{n}\left\{\left(1+\|p\|^{2}\right) g^{i j}(x, t)-p^{i} p^{j}\right\} \Gamma_{i j}^{k}(x, t) p_{k}
\end{align*}
$$

where $|t|<\tau, p=\left(p_{1}, \cdots, p_{n}\right) \in R^{n},\|p\|^{2}=\sum_{i, j=1}^{n} g^{i j}(x, t) p_{i} p_{j}, p^{i}=\sum_{j=1}^{n} g^{i j}(x, t) p_{j}, n H(x, t)=$ $-(1 / 2) \sum_{i, j=1}^{n} g^{i j}(x, t)\left(\partial g_{i j} / \partial t\right)(x, t)$.

Lemma 1.2. Under the above situation, suppose that $\operatorname{Ric}_{N}(\partial / \partial t) \geqq 0$ and $\Lambda \leqq H_{0}$ in D. Let u be a solution of the equation (1.1) such that $0 \leqq u<\tau$. If u attains the minimum in D, then u is constant.

Proof. Put $E=\{x \in D ; u(x)=m\}$ where m is the minimum of u in D. Suppose $D \neq E$. Then E is not open in D. Therefore we can choose a $x_{0} \in D \backslash E$ and an open metric ball D_{0} in R^{n} of radius r_{0} centered at x_{0} so that $D_{0} \cap E=\varnothing, \bar{D}_{0} \cap$
$E=\left\{y_{0}\right\}$ and $\bar{D}_{0} \subset D$ where $\bar{D}_{0}=\left\{x \in R^{n} ;\left\|x-x_{0}\right\| \leqq r_{0}\right\},\| \|$ denotes the standard norm of R^{n}. Let D_{1} be the open metric ball in R^{n} of radius r_{1} centered at y_{0} such that $0<r_{1}<r_{0}$ and $\bar{D}_{1} \subset D$. Then for each $x \in \bar{D}_{1}$ we have

$$
\begin{equation*}
r_{2} \leqq\left\|x-x_{0}\right\| \leqq r_{8} \tag{1.3}
\end{equation*}
$$

where $r_{2}=r_{0}-r_{1}$ and $r_{8}=r_{0}+r_{1}$. There exists a constant $\delta(0<\delta<1)$ satisfying

$$
\begin{equation*}
u>m+\delta \quad \text { on } \bar{D}_{0} \cap \partial \bar{D}_{1} \tag{1.4}
\end{equation*}
$$

where $\partial \bar{D}_{1}=\left\{x \in R^{n}:\left\|x-y_{0}\right\|=r_{1}\right\}$. Since the matrix $\left(A_{i j}(x, t, p)\right)$ is positive definite, there are positive constants λ_{1} and λ_{2} such that

$$
\begin{equation*}
\lambda_{1}\|X\|^{2} \leqq \sum_{i, j=1}^{n} A_{i j}(x, u(x), p(x)) X_{i} X_{j} \leqq \lambda_{2}\|X\|^{2} \tag{1.5}
\end{equation*}
$$

where $x \in \bar{D}_{1}, X=\left(X_{1}, \cdots, X_{n}\right) \in R^{n},\|X\|^{2}=\sum_{i=1}^{n} X_{i}{ }^{2}$ and $p(x)=\left(u_{1}(x), \cdots, u_{n}(x)\right)$. On \bar{D}_{1} we have

$$
|B(x, u(x), p(x))-B(x, u(x), 0)| \leqq c\left(\sum_{i=1}^{n}\left(u_{i}(x)\right)^{2}\right)^{1 / 2}
$$

where

$$
\begin{equation*}
c=\sup _{\bar{D}_{1}} \sum_{i=1}^{n} \int_{0}^{1}\left|\partial B / \partial p_{i}(x, u(x), t p(x))\right| d t<+\infty . \tag{1.6}
\end{equation*}
$$

Since $\operatorname{Ric}_{N}(\partial / \partial t) \geqq 0, \Lambda \leqq H_{0}$ and $0 \leqq u<\tau$, by Lemma 1.1 for any $x \in \bar{D}_{1}$

$$
B(x, u(x), 0)=n(\Lambda(x)-H(x, u(x))) \leqq n\left(H_{0}(x)-H_{u(x)}(x)\right) \leqq 0 .
$$

Thus we get

$$
\begin{equation*}
B(x, u(x), p(x)) \leqq c\left(\sum_{i=1}^{n}\left(u_{i}(x)\right)^{2}\right)^{1 / 2}, \quad x \in \bar{D}_{1} . \tag{1.7}
\end{equation*}
$$

Define a real valued function $h: D \rightarrow R$ by

$$
\begin{equation*}
h(x)=\exp \left(-\alpha\left\|x-x_{0}\right\|^{2}\right)-\exp \left(-\alpha r_{0}^{2}\right) \tag{1.8}
\end{equation*}
$$

where α is a positive constant such that

$$
\begin{equation*}
\alpha>\max \left\{(-\log \delta) / r_{2}^{2},\left(n \lambda_{2}+c r_{3}\right) / 2 \lambda_{1} r_{2}^{2}\right\} \tag{1.9}
\end{equation*}
$$

Put $w=u-h$. Since $h<0$ on $\partial \bar{D}_{1} \backslash \bar{D}_{0}$, we have

$$
\begin{equation*}
w>m \quad \text { on } \quad \partial \bar{D}_{1} \backslash \bar{D}_{0} . \tag{1.10}
\end{equation*}
$$

On the other hand, from (1.3), (1.4) and (1.9) we obtain

$$
\begin{equation*}
w>m+\delta-\exp \left(-\alpha r_{2}^{2}\right)>m \quad \text { on } \quad \partial \bar{D}_{1} \cap \bar{D}_{0} \tag{1.11}
\end{equation*}
$$

Since $w\left(y_{0}\right)=u\left(y_{0}\right)=m$, by (1.10) and (1.11) $w \mid \bar{D}_{1}$ attains the minimum in D_{1}. Let y be a point of D_{1} at which $w \mid \bar{D}_{1}$ attains the minimum. Using (1.7) we have

$$
\begin{equation*}
\sum_{i, j=1}^{n} A_{i j}(y, u(y), p(y))\left(w_{i j}(y)+h_{i j}(y)\right) \leqq c\left(\sum_{i=1}^{n}\left(u_{i}(y)\right)^{2}\right)^{1 / 2} . \tag{1.12}
\end{equation*}
$$

From (1.8)

$$
\begin{equation*}
h_{i}(y)=-2 \alpha z_{i} \eta \quad(1 \leqq i \leqq n), \quad h_{i j}(y)=-2 \alpha\left(\delta_{i j}-2 \alpha z_{i} z_{j}\right) \eta \quad(1 \leqq i, j \leqq n) \tag{1.13}
\end{equation*}
$$

where $z=\left(z_{1}, \cdots, z_{n}\right)=y-x_{0}$ and $\eta=\exp \left(-\alpha\left\|y-x_{0}\right\|^{2}\right)$. Since $w \mid \bar{D}_{1}$ attains the minimum at y, we have

$$
\begin{equation*}
u_{i}(y)=h_{i}(y) \quad(1 \leqq i \leqq n) \tag{1.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i, j=1}^{n} A_{i j}(y, u(y), p(y)) w_{i j}(y) \geqq 0 . \tag{1.15}
\end{equation*}
$$

From (1.3), (1.5), (1.13) and (1.15) we obtain

> the left hand side of (1.12)

$$
\geqq 2 \alpha \eta\left(2 \alpha \lambda_{1}\|z\|^{2}-n \lambda_{2}\right) \geqq 2 \alpha \eta\left(2 \alpha \lambda_{1} r_{2}{ }^{2}-n \lambda_{2}\right) .
$$

By (1.13) and (1.14), $\left(\sum_{i=1}^{n}\left(u_{i}(y)\right)^{2}\right)^{1 / 2}=2 \alpha \eta\|z\| \neq 0$. It follows from (1.3), (1.12) and (1.16) that $2 \alpha \lambda_{1} r_{2}{ }^{2}-n \lambda_{2} \leqq c\|z\| \leqq c r_{8}$. This contradicts (1.9). Hence we have proved $D=E$. We complete the proof.

In the rest of this section, let M be an n-dimensional ($n \geqq 2$) connected, complete Riemannian manifold and let (W_{1}, c_{1}) and (W_{2}, c_{2}) be connected hypersurfaces embedded in M with unit normal vector fields ξ_{1} and ξ_{2} respectively, where ι_{k} denotes the inclusion map, $k=1,2$. We denote by H_{k} the mean curvature of W_{k} with respect to $\xi_{k}, k=1,2$. For a subset U of W_{1} and a positive τ we put $\perp_{\tau}(U)=\left\{t \xi_{1}(q) \in T M ;|t|<\tau, q \in U\right\}$ and $\perp_{\tau}{ }^{+}(U)=\left\{t \xi_{1}(q) \in T M ; 0 \leqq t<\tau, q \in U\right\}$.

Lemma 1.3. Let M, W_{1} and W_{2} be as above. Suppose that M is of nonnegative Ricci curvature, that is, $\operatorname{Ric}_{M_{H}}(X) \geqq 0$ for all unit tangent vectors X to M at every point of M, and suppose that $H_{1} \geqq 0$ on W_{1} and $H_{2} \leqq 0$ on W_{2}. Furthermore assume that there is a point p of $W_{1} \cap W_{2}$ satisfying the following conditions: (1) $\xi_{1}(p)=\xi_{2}(p)$, (2) For an open neighborhood U_{1} of p in W_{1} and a positive τ such that exp: $\perp_{r}\left(U_{1}\right) \rightarrow M$ is an embedding there is an open neighborhood of p in W_{2} which is contained in $\exp \left(\perp_{r}{ }^{+}\left(U_{1}\right)\right)$. Then there exists a minimal hypersurface W embedded in M such that $p \in W \subset W_{1} \cap W_{2}$.

Proof. Let p be a point of $W_{1} \cap W_{2}$ satisfying the conditions (1) and (2) stated above. Choose a local coordinate neighborhood U_{1} about p in W_{1} and a positive τ so that $\exp : \perp_{\tau}\left(U_{1}\right) \rightarrow M$ is an embedding. By Gauss lemma, the line element of $\perp_{\tau}\left(U_{1}\right)$ induced from M by exp can be expressed by $d s^{2}=$ $\sum_{i, j=1}^{n-1} g_{i j}(x, t) d x_{i} d x_{j}+d t^{2}$ where $\left(x_{1}, \cdots, x_{n-1}\right)$ is a local coordinate system on U_{1} and $|t|<\tau$. By the condition (2) and the implicit function theorem, there exists an open neighborhood V_{1} of p in $W_{1}, V_{1} \subset U_{1}$, which is diffeomorphic to an open metric ball in R^{n-1}, and there exists a real valued function $u \in C^{\infty}\left(V_{1}\right)$ satisfying . the following conditions: $u(p)=0, u \geqq 0$ in V_{1} and $p \in V_{2}:=\left\{\exp _{q} u(q) \xi_{1}(q) ; q \in V_{1}\right\} \subset$ W_{2}. Now in Lemma 1.2 we replace H_{0}, Λ and n by H_{1}, H_{2} and $n-1$, respectively. Then we can apply Lemma 1.2 to the present situation. By Lemma 1.2, $u \equiv 0$ in V_{1}. Then $V_{1}=V_{2}$ and V_{1} is a minimal hypersurface in M which is contained in $W_{1} \cap W_{2}$. This completes the proof.

§2. Definition of ρ_{M}

In this section let M be an n-dimensional ($n \geqq 2$) connected, complete Riemannian manifold with Riemannian metric \langle,$\rangle . First we shall give the definition$ of $\rho_{H}: M \rightarrow R^{+} \cup\{+\infty\}$. Suppose that for a $p \in M$ and an $r>0 \exp _{p}: \bar{B}\left(0_{p}, r\right) \rightarrow M$ is of maximal rank where $\bar{B}\left(0_{p}, r\right)=\left\{Y \in T_{p} M ;\|Y\| \leqq r\right\},\|Y\|$ stands for the length of Y. Let X be a unit tangent vector at p and $c_{p, x}:[0, \infty) \rightarrow M$ the geodesic parametrized by arc length emanating from p with intial direction X. Then the velocity vector $\dot{c}_{p, x}(r)$ is a unit normal vector to the geodesic sphere $S(p, r)=$ $\exp _{p}\left(\partial B\left(0_{p}, r\right)\right)$ where $\partial B\left(0_{p}, r\right)=\left\{Y \in T_{p} M ;\|Y\|=r\right\}$. We denote by $H_{x}(p, r)$ the mean curvature of $S(p, r)$ with respect to $\dot{c}_{p, x}(r)$. Let Ω_{M} be the subset of M which consists of all points p of M satisfying the condition: there exists an $r>0$ such that $\exp _{p}: \bar{B}\left(0_{p}, r\right) \rightarrow M$ is of maximal rank and $H_{x}(p, r) \geqq 0$ for all unit tangent vectors X at p. We now define $\rho_{\mu}: M \rightarrow R^{+} \cup\{+\infty\}$ by

$$
\begin{aligned}
& \rho_{M}(p)=\inf \left\{r>0 ; H_{X}(p, r) \geqq 0 \text { for all } X \in T_{p} M \quad(\|X\|=1)\right\} \text { if } p \in \Omega_{M}, \\
& \rho_{M}(p)=+\infty \text { if } p \in M \backslash \Omega_{M} .
\end{aligned}
$$

We note that $\rho_{M}(p)>0$ if $p \in \Omega_{\mathcal{L}}$. We put $\rho(M)=\sup \rho_{\mu}$.
Let \tilde{M} be the universal Riemannian covering manifold of M and $\Pi: \widetilde{M} \rightarrow M$ the Riemannian covering map. Then $\rho_{\tilde{M}}=\rho_{\mathcal{M}} \circ \Pi$.

Remark 2.1. If M is a connected, complete Riemannian manifold of nonpositive sectional curvature then Ω_{M} is empty. A typical example of a Riemannian manifold with $\Omega_{\mu} \neq \varnothing$ is the Euclidean sphere $S^{n}(r)$ of radius r. In this case,
$\Omega_{M}=S^{n}(r)$ and $\rho_{M}(p)=\pi r / 2$ for any $p \in S^{n}(r)$.
Now let p be a point of Ω_{μ} and let r be a positive such that $\exp _{p}: \bar{B}\left(0_{p}, r\right) \rightarrow M$ is of maximal rank. Let X be an arbitrary unit tangent vector at p. Choose an orthonormal basis e_{1}, \cdots, e_{n-1} in the tangent space to $S(p, r)$ at $c_{p, x}(r)$. There exist Jacobi fields $Y_{1}(t), \cdots, Y_{n-1}(t)$ along $c_{p, x} \mid[0, r]$ satisfying $Y_{i}(0)=0_{p}, Y_{i}(r)=e_{i}$ ($1 \leqq i \leqq n-1$). Using the second variation formula, $H_{X}(p, r)$ can be expressed by

$$
\begin{align*}
(n-1) H_{X}(p, r) & =-\sum_{i=1}^{n-1} I\left(Y_{i}\right) \tag{2.1}\\
& =-\sum_{i=1}^{n-1} \int_{0}^{r}\left\{\left\|Y_{i}^{\prime}(t)\right\|^{2}-\left\langle R\left(Y_{i}(t), \dot{c}_{p, x}(t)\right) \dot{c}_{p, X}(t), Y_{i}(t)\right\rangle\right\} d t
\end{align*}
$$

where $Y_{i}{ }^{\prime}(t)$ is the covariant derivative of $Y_{i}(t)$ along $c_{p, x}$. If M is the n-dimensional Euclidean sphere $S^{n}(1 / \lambda), \lambda>0$, of radius $1 / \lambda$, then we have

$$
\begin{equation*}
H_{X}(p, r)=-\lambda \cot \lambda r, \quad 0<r<\pi / \lambda . \tag{2.2}
\end{equation*}
$$

Lemma 2.1. Let M be as above. Suppose $K_{M} \leqq 1$ and $\operatorname{Ric}_{\mu} \geqq(n-1) \lambda^{2}(0<\lambda \leqq 1)$. Then we have

$$
-\lambda \cot \lambda r \leqq H_{x}(p, r) \leqq-\cot r \quad(0<r<\pi)
$$

for all unit tangent vectors X at every point p of M. If $H_{x}(p, r)=-\lambda \cot \lambda r$ (resp. $\cot r)$ for some $X \in T_{p} M(\|X\|=1)$, then $K_{M}(P(t))=\lambda^{2}$ (resp.1) for all plane sections $P(t)$ containing $\dot{c}_{p, x}(t)(0 \leqq t \leqq r)$.

Proof. Since $K_{H} \leqq 1$, for each $p \in M$ and an $r(0<r<\pi) \exp _{p}: \bar{B}\left(0_{p}, r\right) \rightarrow M$ is of maximal rank. Fix an $r, 0<r<\pi$. Let p be a point of M. Let X be an arbitrary unit tangent vector at p. Choose an orthonormal basis e_{1}, \cdots, e_{n-1} in the tangent space to $S(p, r)$ at $c_{p, x}(r)$. There are Jacobi fields $Y_{1}(t), \cdots, Y_{n-1}(t)$ along $c_{p, x} \mid[0, r]$ satisfying $Y_{i}(0)=0_{p}, Y_{i}(r)=e_{i}(1 \leqq i \leqq n-1)$. We extend e_{1}, \cdots, e_{n-1} to parallel vector fields $e_{1}(t), \cdots, e_{n-1}(t)$ along $c_{p, x} \mid[0, r]$, respectively. Put $Z_{i}(t)=$ $(\sin \lambda t / \sin \lambda r) e_{i}(t), 0 \leqq t \leqq r, 1 \leqq i \leqq n-1$. Since $I\left(Y_{i}\right) \leqq I\left(Z_{i}\right)(1 \leqq i \leqq n-1)$ and $\operatorname{Ric}_{\boldsymbol{w}} \geqq$ $(n-1) \lambda^{2}$, we have $H_{x}(p, r) \geqq-\lambda \cot \lambda r$. If $H_{X}(p, r)=-\lambda \cot \lambda r$, then $Y_{i}(t)=Z_{i}(t)$ $(0 \leqq t \leqq r), 1 \leqq i \leqq n-1$. From this we obtain $K_{M}\left(e_{i}(t) \wedge \dot{c}_{p, x}(t)\right)=\lambda^{2}, 0 \leqq t \leqq r, 1 \leqq i \leqq$ $n-1$. Moreover we can show that $K_{u t}(P(t))=\lambda^{2}$ for all plane sections $P(t)$ containing $\dot{c}_{p, x}(t)(0 \leqq t \leqq r)$. Similary, $K_{M} \leqq 1$ implies $H_{X}(p, r) \leqq-\cot r$ for all unit tangent vectors X at every point p of M. If $H_{X}(p, r)=-\cot r$ for some $X \in T_{p} M$ $(\|X\|=1)$, then $K_{u}(P(t))=1$ for all plane sections $P(t)$ containing $\dot{c}_{p, x}(t)(0 \leqq t \leqq r)$.

Lemma 2.1 implies the following.
Proposition 2.1. Let M be an n-dimensional ($n \geqq 2$) connected, complete

Riemannian manifold. If $K_{M} \leqq 1$ and $\operatorname{Ric}_{M} \geqq(n-1) \lambda^{2}(1 / 2<\lambda \leqq 1)$, then $\Omega_{M}=M$. Moreover, ρ_{M} is continuous and $\pi \leqq 2 \rho_{\mathcal{L}}(p) \leqq \pi / \lambda$ for all $p \in M$.

Remark 2.2. We note that there are Riemannian manifolds satisfying $\operatorname{Ric}_{\boldsymbol{M}} \geqq$ $(n-1) \lambda^{2}(0<2 \lambda \leqq 1)$ and $\Omega_{M}=M$. For example, the Riemannian product manifold $M=S^{n}(1) \times S^{2}(1)(n=3,4)$ satisfies such conditions. In this case, $\rho(M)<\pi$.

Proposition 2.2. Let M be an n-dimensional ($n \geqq 2$) connected, complete Riemannian manifold of positive Ricci curvature. If Ω_{\sharp} is not empty, then M is compact and the fundamental group $\pi_{1}(M)$ is finite.

Proof. Let p be a point of Ω_{μ}. Suppose that M is not compact. Then there is a geodesic $c:[0, \infty) \rightarrow M$ parametrized by arc length emanating from p with $d_{M}(p, c(t))=t$ for all $t>0$. By the definition of Ω_{M} there exists an $r^{\prime}>0$ such that $\exp _{p}: \bar{B}\left(0_{p}, r^{\prime}\right) \rightarrow M$ is of maximal rank and $H_{X}\left(p, r^{\prime}\right) \geqq 0$ for all $X \in T_{p} M$ $(\|X\|=1)$. Since M is of positive Ricci curvature, using Lemma 1.1 we can choose an $r>r^{\prime}$ so that $\exp _{p}: \bar{B}\left(0_{p}, r\right) \rightarrow M$ is of maximal rank and $H_{X}(p, r)>0$ for all $X \in T_{p} M(\|X\|=1)$. For each $t(t>r)$ let $V(t)$ be a connected open neighborhood of $-(t-r) \dot{c}(t)$ in $\partial B\left(0_{c(t)}, t-r\right)$ such that $\exp _{c(t)}: C V(t) \rightarrow M$ is an embedding where $C V(t)=\{s Y ; 0 \leqq s \leqq 1, Y \in V(t)\}$. We put $W(t)=\exp _{c(t)} V(t)(t>r)$. Denote by $H(t)$ the mean curvature (with respect to $\dot{c}(r)$) of $W(t)$ at $c(r)$. Then, $H(t) \geqq$ $H_{i(o)}(p, r)$. Since $\operatorname{Ric}_{s}>0, H(t)<1 /(t-r)$ for all $t>r$. Thus we get $H_{i(o)}(p, r)<1 /$ $(t-r)$ for all $t>r$. We obtain $H_{i(o)}(p, r)=0$ as $t \rightarrow \infty$. This contradicts $H_{c(o)}(p, r)>0$. Therefore, M is compact. Let \tilde{M} be the universal Riemannian covering manifold of M. It is easy to see $\Omega_{\tilde{\mathcal{M}}} \neq \varnothing$. By the same argument as above, we see that \tilde{M} is compact. Hence $\pi_{1}(M)$ is finite.

§ 3. Manifolds with $\rho(M)<+\infty$

Theorem 3.1. Let M be an n-dimensional ($n \geqq 2$) connected, complete Riemannian manifold of nonnegative Ricci curvature. If there exist distinct points p and q of M such that $d_{M}(p, q) \geqq \rho_{M}(p)+\rho_{M}(q)$, then M is homeomorphic to a standard sphere of dimension n.

Proof. Let p and q be distinct points of M such that $d_{M}(p, q) \geqq \rho_{M}(p)+\rho_{M}(q)$. We put $A_{p}=\left\{X \in T_{p} M ;\|X\|=1, \exp _{p} d X=q\right\}$ where $d:=d_{M(}(p, q)=\rho_{M}(p)+\rho_{M}(q)+2 r$, $r \geqq 0$. By completeness of M, A_{p} is a nonempty closed subset in the unit sphere $\partial B\left(0_{p}, 1\right)$ in $T_{p} M$. We shall show A_{p} is open in $\partial B\left(0_{p}, 1\right)$. Let X be an arbitrary unit tangent vector contained in A_{p} and let $c:[0, d] \rightarrow M$ be the minimal geodesic from p to q with initial direction X. Since c is minimal, each $c(t)(0<t<d)$ is
not a conjugate point of p along c. Hence we can choose a connected open neighborhood U_{x} of X in $\partial B\left(0_{p}, 1\right)$ so that $\exp _{p}: \widetilde{U}_{x} \rightarrow M$ is an embedding where $\widetilde{U}_{x}=$ $\left\{t Z \in T_{p} M ; 0 \leqq t \leqq \rho_{M}(p)+r, Z \in U_{X}\right\}$. By the same reason we can choose a connected open neighborhood U_{Y} of $Y=-\dot{c}(d)$ in $\partial B\left(0_{q}, 1\right)$ so that $\exp _{q}: \tilde{U}_{Y} \rightarrow M$ is an embedding where $\widetilde{U}_{Y}=\left\{t Z^{\prime} \in T_{q} M ; 0 \leqq t \leqq \rho_{M}(q)+r, Z^{\prime} \in U_{Y}\right\}$. Then $W_{1}=\exp _{p}\left(\left(\rho_{M}(p)+\right.\right.$ $\left.r) U_{X}\right)$ and $W_{2}=\exp _{q}\left(\left(\rho_{\mathcal{L}}(q)+r\right) U_{Y}\right)$ are connected hypersurfaces embedded in M such that $c\left(\rho_{H K}(p)+r\right) \in W_{1} \cap W_{2}$, where $\left(\rho_{H K}(p)+r\right) U_{X}=\left\{\left(\rho_{M K}(p)+r\right) Z \in T_{p} M ; Z \in U_{X}\right\}$ and $\left(\rho_{M}(q)+r\right) U_{Y}=\left\{\left(\rho_{M}(q)+r\right) Z^{\prime} \in T_{q} M ; Z^{\prime} \in U_{Y}\right\}$. Let ξ_{1} and ξ_{2} be unit normal vector fields on W_{1} and W_{2} respectively which are defined by $\xi_{1}\left(c_{p, z}\left(\rho_{\mu}(p)+r\right)\right)=\dot{c}_{p, z}\left(\rho_{\mu x}(p)+r\right)$ $\left(Z \in U_{X}\right)$ and $\xi_{2}\left(c_{q, z^{\prime}}\left(\rho_{M}(q)+r\right)\right)=-\dot{c}_{q, z^{\prime}}\left(\rho_{M}(q)+r\right) \quad\left(Z^{\prime} \in U_{Y}\right)$. We denote by H_{i} the mean curvature of W_{i} with respect to $\xi_{i}, i=1,2$. Using Lemma 1.1, $H_{1} \geqq 0$ on W_{1} and $H_{2} \leqq 0$ on W_{2}. Moreover, W_{1} and W_{2} satisfy the other hypotheses in Lemma 1.3. Hence, by Lemma 1.3 there exists a connected minimal hypersurface W embedded in M such that $c\left(\rho_{\mu(}(p)+r\right) \in W \subset W_{1} \cap W_{2}$. We can choose open neighborhoods V_{X} of X in $\partial B\left(0_{p}, 1\right)$ and V_{Y} of Y in $\partial B\left(0_{q}, 1\right)$ such that $\exp _{p}\left(\left(\rho_{H}(p)+\right.\right.$ $\left.r) V_{X}\right)=\exp _{q}\left(\left(\rho_{M}(q)+r\right) V_{Y}\right) \subset W$. This implies $V_{X} \subset A_{p}$. Hence A_{p} is open in $\partial B\left(0_{p}, 1\right)$. Therefore, $A_{p}=\partial B\left(0_{p}, 1\right)$. Then we see that $\exp _{p \mid B\left(0_{p}, d\right)}: \mathrm{B}\left(0_{p}, d\right) \rightarrow B(p, d)$ is a diffeomorphism and $M=B(p, d) \cup\{q\}$. It is now clear that M is homeomorphic to a standard sphere of dimension n.

Remark 3.1. Let M be as in Theorem 3.1. Suppose that there exist distinct points p and q of M such that $\rho_{M}(p)+\rho_{M}(q) \leqq d_{M}(p, q)$. From the proof of the above theorem we see that for each $t, 0<t<d:=d_{m}(p, q), M=B(p, t) \cup B(q, d-t) \cup$ $S(p, t), S(p, t)=\partial B(p, t)=\partial B(q, d-t)$ and $S(p, t)$ is a hypersurface embedded in M. Suppose now $d-\rho_{M}(p)-\rho_{M}(q)=2 r>0$. Using Lemma 1.1, the mean curvature of $\partial B(p, t), \rho_{M}(p) \leqq t<d$, with respect to the outer unit normal vector is nonnegative and the mean curvature of $\partial B(q, t), \rho_{M}(q) \leqq t<d$, with respect to the outer unit normal vector is nonnegative. By Lemma 1.1, $S(p, t)$ is totally geodesic for each $t, \rho_{M K}(p) \leqq t \leqq \rho_{M_{H}}(p)+2 r=d-\rho_{M}(q)$. Therefore there is an isometric imbedding from the Riemannian product manifold $S\left(p, \rho_{M}(p)\right) \times[0,2 r]$ into M. If $d_{M}(p, q)=\rho_{M}(p)+$ $\rho_{M(}(q)$, then $S\left(p, \rho_{M}(p)\right)$ is a minimal hypersurface in M. We see that if M is of positive Ricci curvature then $d_{M}(p, q)=\rho_{M}(p)+\rho_{M}(q)$.

Remark 3.2. Using a similar method as the proof of Theorem 3.1 we can show Cheng's theorem ([3]) which is a generalization of Toponogov Sphere Theorem.

As a consequence of Theorem 3.1 we have the following.
Corollary 3.1. Let M be an n-dimensional ($n \geqq 2$) connected, compact Riemannian manifold of nonnegative Ricci curvature. If $d(M) \geqq 2 \rho(M)$, then M
is homeomorphic to a standard sphere of dimension n.
Corollary 3.2. Let M be an n-dimensional ($n \geqq 2$) connected, complete Riemannian manifold of positive Ricci curvature. If $\rho(M)$ is finite, then M is compact and $d(M) \leqq 2 \rho(M) \leqq \pi / \lambda$ where λ is a positive constant such that $\lambda^{2}=\inf \left\{\operatorname{Ric}_{\mu}(X) /(n-1) ; X \in T_{p} M(\|X\|=1), p \in M\right\}$.

Proof. Since M is of positive Ricci curvature and $\rho(M)$ is finite, by Proposition $2.2 M$ is compact. From Remark 3.1 we see $d(M) \leqq 2 \rho(M)$. Let p be an arbitrary point of M. Choose an $r>0$ so that $\exp _{p}: \bar{B}\left(0_{p}, r\right) \rightarrow M$ is of maximal rank. By a similar method as in the proof of Lemma 2.1, $H_{X}(p, r) \geqq$ $-\lambda \cot \lambda r$ for all $X \in T_{p} M(\|X\|=1)$ where λ is a positive constant such that $\lambda^{2}=\inf \left\{\operatorname{Ric}_{\boldsymbol{\mu}}(X) /(n-1) ; X \in T_{q} M(\|X\|=1), q \in M\right\}$. Suppose $2 \rho_{\mu}(p)>\pi / \lambda$. Then $H_{X}\left(p, \rho_{M}(p)\right)>0$ for all $X \in T_{p} M(\|X\|=1)$. There exists an r^{\prime} such that $0<r^{\prime}<\rho_{M}(p)$ and $H_{x}\left(p, r^{\prime}\right)>0$ for all $X \in T_{p} M \quad(\|X\|=1)$. This contradicts the definition of $\rho_{\boldsymbol{N}}(p)$. Hence $2 \rho_{M}(p) \leqq \pi / \lambda$. This completes the proof.

From Proposition 2.2 and Corollaries 3.1, 3.2 we have the following.
Theorem 3.2. Let M be an n-dimensional ($n \geqq 2$) connected, complete Riemannian manifold. Suppose that $K_{M} \leqq 1$ and $\operatorname{Ric}_{M} \geqq(n-1) \lambda^{2}, 1 / 2<\lambda \leqq 1$. Then $\pi \leqq 2 \rho(M) \leqq \pi / \lambda$ and $d(M) \leqq 2 \rho(M)$. If $d(M)=2 \rho(M)$, then M is homeomorphic to a standard sphere of dimension n.

Theorem 3.3. Let M be an n-dimensional ($n \geqq 2$) connected, complete Riemannian manifold satisfying the condition $K_{M} \leqq 1$ and $\operatorname{Ric}_{M} \geqq(n-1) \lambda^{2}(1 / 2<\lambda \leqq 1)$.
(1) If $d(M)=2 \rho(M)=\pi$, then M is isometric to the n-dimensional Euclidean sphere $S^{n}(1)$ of radius 1 .
(2) If $d(M)=2 \rho(M)=\pi / \lambda$, then M is isometric to the n-dimensional Euclidean sphere $S^{n}(1 / \lambda)$ of radius $1 / \lambda$.

Proof. We shall prove (1). Since M is compact, we can choose points p and q of M such that $d_{M}(p, q)=d(M)=\pi$. Since M is of positive Ricci curvature, $\rho_{M}(p)+\rho_{M}(q)=d_{M}(p, q)=2 \rho(M)$ (see Remark 3.1). This implies $\rho_{M}(p)=\rho_{M}(q)=$ $\rho(M)=\pi / 2$. From the proof of Theorem 3.1 we see that $M=B(p, \pi / 2) \cup B(q, \pi / 2) \cup$ $S(p, \pi / 2), \partial B(p, \pi / 2)=\partial B(q, \pi / 2)=S(p, \pi / 2)$ and $S(p, \pi / 2)$ is a hypersurface embedded in M. Since $H_{X}(p, \pi / 2) \geqq 0$ for all $X \in T_{p} M(\|X\|=1)$, by Lemma 2.1 $H_{X}(p, \pi / 2)=$ $-\cot (\pi / 2)=0$ for all $X \in T_{p} M \quad(\|X\|=1)$. Then for each $X \in T_{p} M \quad(\|X\|=1)$ $K_{M}(P(t))=1(0 \leqq t \leqq \pi / 2)$ where $P(t)$ is an arbitrary plane section containing $\dot{c}_{p, x}(t)$. This implies that $\bar{B}(p, \pi / 2)$ is isometric to a closed metric ball of radius $\pi / 2$ in the n-dimensional Euclidean sphere $S^{n}(1)$ of radius 1 . Similary, $\bar{B}(q, \pi / 2)$ is isometric
to a closed metric ball of radius $\pi / 2$ in $S^{n}(1)$. Then we see that M is isometric to $S^{n}(1)$.

By the same method as above we can prove (2).
Remark 3.3. We note that (2) of the above theorem also follows from Cheng's theorem ([3]).

Theorem 3.4. Let M be an n-dimensional ($n \geqq 2$) connected, complete Riemannian manifold of nonnegative Ricci curvature. If $\rho(M)$ is finite, then M is compact and the fundamental group $\pi_{1}(M)$ of M is finite.

Proof. Let \tilde{M} be the universal Riemannian covering manifold of M with covering map Π. Since $\rho_{\tilde{M}}=\rho_{\mathcal{H}} \circ \Pi, \rho(\tilde{M})$ is finite. We shall show that \tilde{M} is compact. If \tilde{M} is not compact, then we can choose distinct points p and q of \tilde{M} such that $d_{\tilde{M}}(p, q)>\rho_{\tilde{M}}(p)+\rho_{\tilde{M}}(q)$. By Theorem $3.1 \tilde{M}$ is homeomorphic to a standard sphere. This is a contradiction. Hence \tilde{M} is compact. This completes the proof.

Theorem 3.5. Let M be an n-dimensional ($n \geqq 2$) connected, compact Riemannian manifold of nonnegative Ricci curvature. Suppose that M is not simply connected and that $\rho_{M}(p) \leqq d_{M}(p, C(p))$ holds for some $p \in M$, where $C(p)$ stands for the cut locus of p in M. Then there exists a homeomorphic involution $\varphi: S^{n}(1) \rightarrow S^{n}(1)$ of fixed point free and M is homeomorphic to the quotient manifold $S^{n}(1) / \varphi$ of $S^{n}(1)$ obtained by identifying each $x \in S^{n}(1)$ with $\varphi(x)$.

Proof. Let p be a point of M such that $\rho_{M}(p) \leqq d_{M}(p, C(p))$. Let \tilde{M} be the universal Riemannian covering manifold of M and $\Pi: \tilde{M} \rightarrow M$ the Riemannian covering map. Let Γ be the deck transformation group of \tilde{M} corresponding to the fundamental group $\pi_{1}(M, p)$. Each element of $\Gamma_{1}=\Gamma \backslash\{$ identity acts on \tilde{M} as an isometry of fixed point free. Let p_{1} be a point of $\Pi^{-1}(p)$. There exists a $\sigma \in \Gamma_{1}$ such that $d_{\widetilde{M}}\left(p_{1}, \sigma\left(p_{1}\right)\right) \leqq d_{\widetilde{M}}\left(p_{1}, \gamma\left(p_{1}\right)\right)$ for any $\gamma \in \Gamma_{1}$. We put $p_{2}=\sigma\left(p_{1}\right)$ and $d=d_{\widetilde{M}}\left(p_{1}, p_{2}\right)$. Since $\rho_{M}(p) \leqq d_{M}(p, C(p))$ and $\rho_{\widetilde{M}}=\rho_{M} \circ \Pi, d \geqq 2 \rho_{M}(p)=\rho_{\widetilde{M}}\left(p_{1}\right)+\rho_{\widetilde{M}}\left(p_{2}\right)$. By the same method as the proof of Theorem 3.1, $\exp _{p_{1}} \mid B\left(0_{p_{1}}, d\right)$ is diffeomorphic and $\widetilde{M}=B\left(p_{1}, d\right) \cup\left\{p_{2}\right\}$. Then we see $\Gamma=\{$ identity, $\sigma\}$. Let s be a point of $S^{n}(1)$ and let $\Phi: T_{p_{1}} \tilde{M} \rightarrow T_{s} S^{n}(1)$ be a linear isometry. We now define a map $\tilde{f}: \tilde{M} \rightarrow S^{n}(1)$ by $\tilde{f}(x)=\exp _{s}(\Phi((\pi / d) \Psi(x)))$ for $x \in \tilde{M} \backslash\left\{p_{2}\right\}$ and $\tilde{f}\left(p_{2}\right)=-s$ where $\Psi=\left(\exp _{p_{1}} \mid \mathrm{B}\left(0_{p_{1}}, d\right)\right)^{-1}$ and $-s$ denotes the antipodal point of s in $S^{n}(1)$. Then \tilde{f} is homeomorphic. Let $\varphi: S^{n}(1) \rightarrow S^{n}(1)$ be a map defined by $\varphi=\tilde{f} \circ \sigma \circ \tilde{f}^{-1}$. We see that φ is a homeomorphic involution of fixed point free. Let $S^{n}(1) / \varphi$ be the quotient manifold of $S^{n}(1)$ obtained by identifying each $x \in S^{n}(1)$ with $\varphi(x)$. Define a map $f: M \rightarrow S^{n}(1) / \varphi$
by $f(q)=[\tilde{f}(\tilde{q})]$ where $\tilde{q} \in \Pi^{-1}(q)$ and $[\tilde{f}(\tilde{q})]$ stands for the equivalence class containing $\tilde{f}(\tilde{q})$. It is easy to see that f is homeomorphic. We complete the proof.

References

[1] R. Bishop and R. Crittenden, Geometry of Manifolds, Academic Press, New York, 1964.
[2] J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, North Holland Mathematical Library, 1975.
[3] Shiu-Yuen Cheng, Eigenvalue comparison theorem and its geometric applications, Math. Z., 143 (1975), 289-297.
[4] K. Shiohama, The diameter of δ-pinched manifolds, J. Diff. Geom., 5 (1971), 61-74.
Department of Mathematics Yokohama City University 22-2 Seto, Kanazawa-ku Yokohama, 236 Japan

