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§0. Introduction

On a Riemannian manifold M we can define a function py: M—>R*U{+ oo}
which gives us interesting geometric properties of M where R* is the set of all
positive real numbers. The definition of p, will be given in §2. The purpose
of this paper is to investigate Riemannian manifolds of nonnegative Ricci curva-
ture with p(M)<-+oco where p(M)=sup py. :

In the following let M be an n-dimensional (2=2) connected, complete
Riemannian manifold of nonnegative Ricci curvature. If p(M) is finite then M
is compact and the fundamental group of M is finite. M is homeomorphic to a
standard sphere of dimension #z if M is compact and d(M)=2p(M) where d(M)
denotes the diameter of M. We now suppose that M is compact and is not simply
connected and that p,(p)=dy(p,C(p)) holds for some point p of M where d, is the
distance function on M and C(p) stands for the cut locus of p in M. Then there
exists a homeomorphic involution ¢: S*(1)->S*(1) of fixed point free and M is
homeomorphic to the quotient manifold S*(1)/¢ of S*(1) obtained by identifying
each xeS*(1) with ¢(x) where S*(1) is the #z-dimensional Euclidean sphere of
radius 1.

In §1 we prepare some lemmas. Lemmas [.2 and [.3 are basic lemmas of this
paper. In §2 we give the definition of p,. We will show in this section that if
M is a connected, complete Riemannian manifold satisfying Ky=<1, Ricy=(n—1)2%,
1/2<2<1, then 7n<Z2p,(p)<r/2 for all pe M where K, (resp. Ricy) denotes the
sectional curvature (resp. Ricci curvature) of M, respectively. In the last section
of this paper we investigate Riemannian manifolds of nonnegative Ricci curvature
with o(M)< +co.

§1. Notations and Lemmas

Throughout this paper we always assume that manifolds and apparatus on
them are of class C~, unless otherwise stated.
Let M be an n-dimensional (2=>2) connected, complete Riemannian manifold




192 RYOSUKE ICHIDA

with Riemannian metric <, >. We denote by d, the distance function on M
which is induced from the Riemannian metric of M. We denote by d(M) the
diameter of M. For a peM and an >0 we put B(p,r)={qge M; dy(p, q9)<r},
B, r)={ge M; d,(p, 9)<r} and aB(p,r)={ge M; d,(p, ¢)=r}. Let exp: TM—>M
be the exponential map from the tangent bundle 7TM of M to M. For each
peMexp,: T,M—M is the restriction of exp to the tangent space 7,M to M at
p. If X and Y are orthogonal unit tangent vectors at a point of M then the
quantity K4,(P)=<R(X, Y)Y, X)> is called the sectional curvature of the plane
section P determined by X and Y where R denotes the Riemannian curvature
tensor of M. Let ¢, --,e, be an orthonormal basis of the tangent space T,M at
peM and let X be a unit tangent vector at p. Then the quantity Ricy (X)=
f} {R(e;, X)X, e;> is called the Ricci curvature with respect to X. In this paper,
:n_r(la denote by K,=<i if K,(P)<2 holds for all plane sections P to M, and we
denote by Ricy=(2—1)4 if Ricy (X)=(%—1)2 holds for all unit tangent vectors X
to M.

Let N be a Riemannian manifold of dimension »# (#=2) and let f: S—N be an
isometric immersion of an (2—1)-dimensional Riemannian manifold S into N. (S, f)
is called a minimal hypersurface in N if the trace of the second fundamental
form of S is zero everywhere. (S,f) is called totally geodesic if the second
fundamental form of S vanishes identically.

In the following we shall prepare some lemmas which will be used in the
next sections. Let D be an open metric ball in the #-dimensional (2z=1) Euclidean
space R*. Let (%, ---,%,) be the standard coordinate system in R". Let us
consider a Riemannian manifold N=(D X (—r, 1), ds?), >0, whose line element is
given by ds’= Z”} 9.z, t)dx,dx,+-dt*. Let V be the Riemannian connection of N
induced from ::iiglRiemannian metric of N. For each ¢, |t|<z, we denote by H,
the mean curvature of the level hypersurface S,={(x, ?); = € D} with respect to
d/0t. In case »=1, by the mean curvature we mean the geodesic curvature. H,
is given by H,=(1/n)i ﬁlg%m/a,ia/aw,, d/ot> where g*(x, t) is the (i, /)-component

3=
of the inverse matrix of (g,/(x,%)). We can easily show

noH,/dat=Ricy (9/0t)+ | A.||?

where || A,|| stands for the length of the second fundamental form A, of S,. From
this formula we have the following.

Lemma 1.1. Under the situation stated above, suppose Ricy (3/9t)=0. Then
H.<H, for any t, t' such that t<t'. If H=H, for t, t’ such that t<t’', then
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S, is totally geodesic for any r€[t, t'].

Now for a real valued function » e C*(D), |u|<rz, let us consider a hypersur-
face S={(x,u(x)); xe D} in N. We put X,=a/ox;+u.d/0t and §,,(x)=g,,(x, u(x))+
ux)ux) where wu,=ou/ox;, 1=i, j<n. Let $=i§”}1 £%9/0x,+£7*19/ot be the wunit
normal vector field on S defined by '

g=—ut (L Iulr, e =1L Pule

where IIVulP— Z g4 (x, u(x))unu, and u‘—Z} g% (%, u(zx))u,. Let A be the mean
curvature of S "with respect to & A is glven by A=(1/n) . Zl <V £, X;, & where
3=
G (x)=g" (2, u(x))—u'(x)u'(x)/(1+||F«|2). We have
(L.1) 5 A+ P ulg e, wz) —wutu,
e

i,5=1

—nA(w)(1+lIVullz)m—nH(w w())(1+ [P ul?)

2 Z (agtj/at)(x w(x))u‘u’
1,4=

3 AP, u@) —wu) T, wle

1,9 1

where wu;;=0%u/0x.0x,, nH(x, u(x))=—(1/2) Z, 9% (x, w(x))(0g.,/0t)(x, w(x)) and I%,
denotes the Christoffel’s symbol. In [ 1f We regard 4 as a given continuous
function on D, then we can regard [(1.1) as a nonlinear differential equation of
second order. We put

12) Ay t, ))=(+IpIg"(, H—p'p?
B(&, t, )=nA@(L+p*—nH(w, D1+ 61+ 3 Gufonia, np'p?

+ ,_2; AA+1pl0g (@, H—pPIT (@, OB
Where It|”<77 P=(P1, b ,pn) eRﬂr ”P”Z‘—’t ,Z,;l g”(x: t)ptp!’ ptijél g”(x’ t)ph nH(xv t)=
—(2) 3 g, )0g,lot)(a, b). '

Lemma 1.2. Under the above situation, suppose that Ricy (0/0t)=0 and A=H,
in D. Let u be a solution of the equation (1.1) such that 0=u<rt. If u attains
the minimum in D, then u is constant.

Proof. Put E={x e D; w(x)=m} where m is the minimum of # in D. Suppose
DxE. Then E is not open in D. Therefore we can choose a %,€ D\E and an
open metric ball D, in R" of radius 7, centered at z, so that D,NE=¢g, D,n
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E={y,} and D,c D where D,={x € R*; ||z—=,|<7,}, | || denotes the standard norm
of R*. Let D, be the open metric ball in R* of radius r, centered at g, such
that 0<7»,<7, and D,cD. Then for each z€ D, we have

1.3 r=[e—wol| =7,

where 7,=7,—r, and »;=7,+7,. There exists a constant § (0<5<1) satisfying
(1.4) u>m+36 on D,NaD,

where 0D, ={x € R*: ||x—y,]|=r,}. Since the matrix (A, t, p)) is positive definite,
there are positive constants 4, and 4, such that

L5) HIXIPS 5 A, u(@), p) X XS5 | X))

where e D,, X=(X,, -++, X,)e R*, ll-’fllz=t)j_.“1 X and p(x)=(u,(2), - -+, us(x)). On
D, we have

1B(@, u(@), p@)—Ble, uta), 0)| e( 5 ufa)) "

where
(1.6) c=syp 2 S 10B/3p (e, w(z), tp@))|dt< +oco .

Since Ricy (9/0t)=0, A<H, and 0<u«<r, by [Lemma 1.1l for any € D,
B(z, u(x), 0)=n(A(x)— H(x, u(x))) Sn(H,(x)— H, ,(x))<0 .

Thus we get
1.7 Bz, u(x), p(x))§c<é‘l (u,(m))z)m , wzeD,.

Define a real valued function #: D—R by
(1.8) h(z)=exp (—a ||&—.|*)—exp (—ar,*)
where a is a positive constant such that
1.9 a>max {(—log 9)/r.%, (ni,-+cr)/24,7,%} .
Put w=u—h. Since k<0 on aD,\D,, we have
(1.10) w>m on D\D, .
On the other hand, from [(1.3), [I.4) and (1.9) we obtain
(1.11) w>m+35—exp (—ar,) >m on aD,ND,.
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Since w(y,)=u(y,)=m, by (1.10) and (1.11) w| D, attains the minimum in D,. Let
y be a point of D, at which w| D, attains the minimum. Using [1.7) we have

1.12) ‘ ﬁi 1 Ay, u(), p(y))(wu(y)+hu(?l))§6( él (ut(y))z)l/z .

From (1.8)
(1.13) h(y)=—2az;y (1=i<n), h(y)=—2a(0,;—2az,2,)y (1=i,j=<n)

where z=(2,, *++, 2,)=y—%, and 7=exp(—ally—=,]?). Since w|D, attains the
minimum at y, we have

(1.14) wW)=h(y) (<i<n)
and
(1.15) 3 Ay wy), p)w, )20 .

1,=1

From ((1.3), (1.5), (1.13) and we obtain

(1.16) the left hand side of [(1.12)
=2a7(2al, || 2|2 —nd)=2an(2al,r,t —nl;) .

By (1.13) and [1.14), (é‘l (u‘(y))2>1/2=2ay llz]|=0. It follows from [(1.3), and
(1.16) that 2aa,r,*—ni,=<c||z|]|<cr;. This contradicts (1.9). Hence we have proved
D=E. We complete the proof.

In the rest of this section, let M be an #-dimensional (2=>2) connected, com-
plete Riemannian manifold and let (W, ) and (W,, ¢,) be connected hypersurfaces
embedded in M with unit normal vector fields & and &, respectively, where ¢,
denotes the inclusion map, 2=1,2. We denote by H, the mean curvature of W,
with respect to &, #=1,2. For a subset U of W, and a positive r we put
LAU)={t¢.(q) € TM; |t|<z,qe U} and L *(U)={#.(q) € TM; 0=t<z,qe U}.

Lemma 1.3. Let M, W, and W, be as above. Suppose that M is of non-
negative Ricci curvature, that is, Ricy, (X)=0 for all unit tangent vectors X to M
at every point of M, and suppose that H,=0 on W, and H,<0 on W,. Further-
more assume that there is a point p of W,N W, satisfying the following conditions:
(1) &,(p)=¢.(p), ) For an open neighborhood U, of p in W, and a positive t such
that exp: 1 .(U)—>M is an embedding there is an open neighborhood of p in W,
which is contained in exp(L.*(U,). Then there exists a minimal hypersurface W
embedded in M such that pe W W,n W,.
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Proof. Let p be a point of W, N W, satisfying the conditions (1) and (2)
stated above. Choose a local coordinate neighborhood U, about p in W, and a
positive ¢ so that exp: 1 .(U,)>M is an embedding. By Gauss lemma, the line
element of L. (U,) induced from M by exp can be expressed by ds*=
:i ) 9.,(x, t)dw.dx,+dt* where (x,, +-+, ®,_,) is a local coordinate system on U, and
[(l<z. By the condition (2) and the implicit function theorem, there exists an
open neighborhood V, of p in W,, V,cU,, which is diffeomorphic to an open
metric ball in R*!, and there exists a real valued function » € C=(V,) satisfying .
the following conditions: #($)=0, #=0 in V| and pe V,:={exp, #(q)t.(q); g V .}
W,. Now in we replace H,, 4 and n by H,, H, and n—1, respec-
tively. Then we can apply to the present situation. By
#=0 in V,. Then V,=V, and V, is a minimal hypersurface in M which is
contained in W, N W,. This completes the proof.

§2. Definition of py

In this section let M be an n-dimensional (%2=2) connected, complete Rieman-
nian manifold with Riemannian metric <, >. First we shall give the definition
of py: M>R*U{+oo}. Suppose that for a pe M and an r>0exp,: BO,, r)>M
is of maximal rank where B(0,, 7)={Y e T,M; |Y||<#}, | Y] stands for the length
of Y. Let X be a unit tangent vector at p and c,,r: [0, 0)>M the geodesic
parametrized by arc length emanating from p with intial direction X. Then the
velocity vector ¢,,x(r) is a unit normal vector to the geodesic sphere S(p,7)=
exp,(0B(0,,7)) where 0B(0,,r)={Y e T,M; |Y]|=r}. We denote by Hy(p, r) the mean
curvature of S(p,») with respect to ¢, x(r). Let 2, be the subset of M which
consists of all points p of M satisfying the condition: there exists an >0 such
that exp,: E(Op, r)—-M is of maximal rank and Hy(p,r)=0 for all unit tangent
vectors X at p. We now define p,: M—>R*U{+x} by

px(p)=inf {r>0; Hx(p, r)=0 for all Xe T,M (|X]|=1)} if peQ,,
pu(P)=-+oco if peM\2, .

We note that p,(p)>0 if peR2,. We put po(M)=sup py.
Let M be the universal Riemannian covering manifold of M and II: M->M
the Riemannian covering map. Then pz=py°II.

Remark 2.1. If M is a connected, complete Riemannian manifold of nonposi-
tive sectional curvature then 2, is empty. A typical example of a Riemannian
manifold with 2,>x@ is the Euclidean sphere S*(») of radius r. In this case,
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Ry=S8"r) and py(p)=rnr/2 for any pe S*(»).

Now let p be a point of 2, and let » be a positive such that exp,: E(O,,, r) M
is of maximal rank. Let X be an arbitrary unit tangent vector at p. Choose
an orthonormal basis e,, -+, ¢,-, in the tangent space to S(p, 7) at ¢,,£(r). There
exist Jacobi fields Y,(¢), -+, Y,_.(¢) along c,, x|[0, ] satisfying Y,(0)=0,, Y,(r)=e¢,
(I1=i=n—1). Using the second variation formula, Hx(p,7) can be expressed by

@1 @—DH:(p,n=—% KY)

=—Z | 07/ @1 RO, &5, 200,20, Y0t
0

where Y,/(¢) is the covariant derivative of Y,(¢) along c¢,,y. If M is the »n-dimen-
sional Euclidean sphere S®(1/1), >0, of radius 1/1, then we have

2.2) Hy(p,r)=—Aicot ir , 0<r<z/.

Lemma 2.1. Let M be as above. Suppose Ky,=<1 and Ricy=(n—1)2* (0<1<1).
Then we have

—Acot ir=H,(p,r)<—cotr 0O<r<n)

Jor all unit tangent vectors X at every point p of M. If Hy(p,r)=—2AcotAr (resp.—
cot7) for some Xe T,M (| X|=1), then K, (P(t)=2* (resp. 1) for all plane sections
P(t) containing ¢, x(t) (0=t<r).

Proof. Since Ky=1, for each pe M and an r (0<r<x)exp,: E(O,,, r)->M is
of maximal rank. Fix an r, 0<r<zn. Let p be a point of M. Let X be an
arbitrary unit tangent vector at p. Choose an orthonormal basis e, ---,e,_; in
the tangent space to S(p, ) at c,,x(r). There are Jacobi fields Y,(¢), -+, Y,_.(¢)
along c,,x | [0, 7] satisfying Y,(0)=0,, Y;(»)=e¢; 1=i<n—1). Weextend e, ***, €,
to parallel vector fields e,(¢), - -, e,_,(f) along c,,x | [0, 7], respectively. Put Z,(¢)=
(sin A¢/sin 27)e(t), 0=t=<r, 1<i<n—1. Since I(Y)<I(Z;) 1<i=<n—1) and Ricy=
(n—1)2%, we have Hy(p,r)=—Acotir. If Hy(p,r)=—Aicotir, then Y,()=Z,)
(0=¢=7r), 1=i=n—1. From this we obtain Ky(e,{)\é,,x(1)=2, 0=t=r, 1=iS
n—1. Moreover we can show that K,(P(#))=4* for all plane sections P(f) con-
taining ¢,,x(¢) (0=¢t=r). Similary, K,<1 implies Hy(p,r)<—cotr for all unit
tangent vectors X at every point p of M. If H.(p,r)=—cotr for some Xe T,M
(I X||=1), then K,(P())=1 for all plane sections P(f) containing é,,;(¢) (0=t=7).

implies the following.

Proposition 2.1. Let M be an n-dimensional (n=2) connected, complete
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Riemannian manifold. If Ky<1 and Ricy=(n—1)22 (1/2<2Zl), then 2,=M.
Moreover, py is continuous and n=20,(p)<r/A for all p e M.

Remark 2.2. We note that there are Riemannian manifolds satisfying Ric,=
(n—1)2* (0<2i=1) and 2,=M. For example, the Riemannian product manifold
M=5"(1)x S*(1) (n=3, 4) satisfies such conditions. In this case, p(M)<x.

Proposition 2.2. Let M be an n-dimensional (n=2) connected, complete
Riemannian manifold of positive Ricci curvature. If Q4 is not empty, then M is
compact and the fundamental group =, (M) is finite.

Proof. Let p be a point of 2,. Suppose that M is not compact. Then
there is a geodesic c: [0, 0)—>M parametrized by arc length emanating from p
with d,(p, c(t))=t for all £>0. By the definition of 2, there exists an »’>0 such
that exp,: B(,,7")»>M is of maximal rank and Hy(p,7’)=0 for all XeT,M
(IX|l=1). Since M is of positive Ricci curvature, using we can
choose an r>7’ so that exp,: E(O,,, r)>M is of maximal rank and H,(p,»)>0
for all Xe T,M (]| X||=1). For each ¢ (¢>7) let V(f) be a connected open neigh-
borhood of —(¢—7)é(t) in 8B(0,,, t—7) such that exp,,: CV(f)—>M is an embedding
where CV(t)={sY; 0<s=1, Ye V(#)}. We put W()=exp.., V() (¢>r). Denote
by H(¢) the mean curvature (with respect to ¢(r)) of W(¢) at ¢(r). Then, H(t)= '
H..,(p,7r). Since Ric,>0, H(t)<1/(t—r) for all t>r. Thus we get H;,(p,r)<1/
(t—r7) for all £>r. We obtain H,,(p, r)=0 as t—>co. This contradicts H;,(p,7)>0.
Therefore, M is compact. Let M be the universal Riemannian covering manifold
of M. It is easy to see 23>@. By the same argument as above, we see that
M is compact. Hence =, (M) is finite.

§3. Manifolds with o(M)<+oo

Theorem 3.1. Let M be an n-dimensional (n=2) connected, complete Rieman-
nian manifold of nomnegative Ricci curvature. If there exist distinct points p
and q of M such that d(p, Q) =pu(D)+0ux(q), then M is homeomorphic to a standard
sphere of dimension n.

Proof. Let p and g be distinct points of M such that dy(p, @)=px(D)+0x(Q).
We put A,={Xe T,M; | X||=1, exp,dX=q} where d: =du(p, Q)=pu(D)+0x(q)+2r,
r=0. By completeness of M, A, is a nonempty closed subset in the unit sphere
8B(0,,1) in T,M. We shall show A, is open in 3B(0,, 1). Let X be an arbitrary
unit tangent vector contained in A, and let c: [0, d]>M be the minimal geodesic
from p to ¢ with initial direction- X. Since ¢ is minimal, each ¢(¢) (0<¢<d) is
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not a conjugate point of p along c. Hence we can choose a connected open neigh-
borhood Uy of X in 8B(0,,1) so that exp,: Uy—M is an embedding where U,=
{tZe T,M; 0=t=py(p)+7r, Zc Uy}. By the same reason we can choose a connected
open neighborhood Uy of Y=—¢é(d) in 0B(0,,1) so that exp,: Up—»M is an
embedding where l7y={tZ’ €T, M; 0=t=py(@)+7, Z' € Uy}. Then W,=exp,((ox(p)+
r)Uy) and W,=exp, ((0x(q)+7)Uy) are connected hypersurfaces embedded in M
such that c(o,(p)+7)e W.NW,, where (o,(p)+7)Ur={(ox(p)+7)Ze T ,M; Zec Uy}
and (ox(q) +7)Ur={(ou(q)+7)Z' € T,M; Z’ € Uy}. Let ¢, and &, be unit normal vector
fields on W, and W, respectively which are defined by &,(c,, z(0x(9)+7)) =¢,. z2(0x (D) +7)
(Ze Ux) and &(¢o,z'(0x(@)+7)=—C,z'(0x(@)+7) (Z’€Uy). We denote by H, the
mean curvature of W, with respect to &, i=1,2. Using Lemma 1.1, H,=>0 on
W, and H,=<0 on W,. Moreover, W, and W, satisfy the other hypotheses in
Hence, by there exists a connected minimal hypersurface
W embedded in M such that c(oy(p)+7)e W W,N W,. We can choose open
neighborhoods V; of X in 9B(0,, 1) and V; of Y in 4B(0,, 1) such that exp,((o,(p)+
7)Vy)=exp,((ox(@)+7)Vy)c W. This implies Vyc A,. Hence A, is open in 8B(0,, 1).
Therefore, A,=3B(0,,1). Then we see that exp,sq,.«: B0, d)—B(p,d) is a
diffeomorphism and M=B(p,d)U{g}. It is now clear that M is homeomorphic
to a standard sphere of dimension #.

Remark 3.1. Let M be as in [Theorem 3.1. Suppose that there exist distinct
points p and ¢ of M such that o, (p)+p.(q)<du(p,q). From the proof of the
above theorem we see that for each ¢, 0<t<d:=dy(p, q), M=B(p,t)UB(q, d—¢)U
S(p, t), S(p, t)y=0B(p, t)=0B(q, d—t) and S(p, t) is a hypersurface embedded in M.
Suppose now d—py(p)—px(q)=2r>0. Using Lemma 1.1, the mean curvature of
0B(p, 1), px(p)=t<d, with respect to the outer unit normal vector is nonnegative
and the mean curvature of 9B(q, f), pyx(q)<t<d, with respect to the outer unit
normal vector is nonnegative. By [Lemma 1.1, S(p, ¢) is totally geodesic for each
t, pu(P)=t=pu(p)+2r=d—py(q). Therefore there is an isometric imbedding from
the Riemannian product manifold S(p, ox(p)) X [0, 27] into M. If du(p, @)=px(p)+
ox(q), then S(p, ox(p)) is a minimal hypersurface in M. We see that if M is of
positive Ricci curvature then du(p, 9)=px(p)+o0x(q).

Remark 3.2. Using a similar method as the proof of [Theorem 3.1 we can show
Cheng’s theorem ([3]) which is a generalization of Toponogov Sphere Theorem.

As a consequence of we have the following.

Corollary 3.1. Let M be an n-dimensional (n=2) connected, compact
Riemannian manifold of nonnegative Ricci curvature. If d(M)=2o(M), then M
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ts homeomorphic to a standard sphere of dimension n.

Corollary 3.2. Let M be an n-dimensional (n=2) connected, complete
Riemannian manifold of positive Ricci curvature. If o(M) is finite, then M is
compact and dM)Z2o0(M)=r/2 where 2 is a positive constant such that
AZ2=inf {Ricy (X)/(n—1); Xe T,M (| X||=1), p€ M}.

Proof. Since M is of positive Ricci curvature and p(M) is finite, by
[Proposition 2.2 M is compact. From Remark 3.1 we see d(M)<2p(M). Let p
be an arbitrary point of M. Choose an >0 so that exp,: B(0,,7)—>M is of
maximal rank. By a similar method as in the proof of Lemma 2.1, H;(p, r)=
—Jcotdr for all Xe T,M (| X||=1) where 2 is a positive constant such that
2 =inf {Ricy (X)/(n—1); Xe T,M (| X||=1),ge M}. Suppose 20,(p) > /2. Then
Hy(p, px(9)) >0 for all Xe T, M (| X[|=1). There exists an 7’ such that 0<7' < py(p)
and H(p,r")>0 for all Xe T,M (| X|=1). This contradicts the definition of
px(p). Hence 2px(p)=n/2. This completes the proof.

From [Proposition 2.2| and Corollaries 3.1, 3.2 we have the following.

Theorem 3.2. Let M be an n-dimensional (n=2) connected, complete
Riemannian manifold. Suppose that K, =1 and Ricy=(n—1)22, 1)2<1<Z1. Then
r20(M)=z/2 and d(M)=2o(M). If d(M)=20(M), then M is homeomorphic to a
standard sphere of dimension n.

Theorem 3.3. Let M be an n-dimensional (n=2) connected, complete
Riemannian manifold satisfying the condition Ky<1 and Ricy,=(n—1)2* (1/2<1<1).

(1) IfdM)=2p(M)=nr, then M is isometric to the n-dimensional Euclidean
sphere S*(1) of radius 1.

(2) IfdM)=2o(M)=x/2, then M is isometric to the n-dimensional Euclidean
sphere S™(1/2) of radius 1/A.

Proof. We shall prove (1). Since M is compact, we can choose points p
and g of M such that dy(p, 9)=d(M)==. Since M is of positive Ricci curvature,
Pu(D)+0u(@)=dxy(p, 9)=2p(M) (see Remark 3.1). This implies pu(p)=puy(g)=
o(M)=x/2. From the proof of we see that M=B(p, =/2) UB(q, =/2) U
S(p, 7/2), 0B(p, /2)=0B(q, n/2)=S(p, x/2) and S(p, =/2) is a hypersurface embedded
in M. Since Hy(p, z/2)=0 for all Xe T,M (| X|=1), by Lemma 2.1 Hx(p, z/2)=
—cot (z/2)=0 for all XeT,M (|X||=1). Then for each XeT,M (|X]=1)
Ky (P@#)=1 (0=t==z/2) where P(t) is an arbitrary plane section containing ¢,,£(¢).
This implies that B(p, =/2) is isometric to a closed metric ball of radius z/2 in the
n-dimensional Euclidean sphere S*(1) of radius 1. Similary, B(g, #/2) is isometric
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to a closed metric ball of radius z/2 in S*(1). Then we see that M is isometric
to S*(1).
By the same method as above we can prove (2).

Remark 3.3. We note that (2) of the above theorem also follows from
Cheng’s theorem ([3].

Theorem 3.4. Let M be an n-dimensional (n=2) connected, complete
Riemannian manifold of nonnegative Ricci curvature. If o(M) is finite, then M
is compact and the fundamental group =.(M) of M is finite.

Proof. Let M be the universal Riemannian covering manifold of M with
covering map II. Since py=pyo I, p(M) is finite. We shall show that M is
compact. If M is not compact, then we can choose distinct points p and g of
M such that d3(p, 9)>0z(p)+03(q). By M is homeomorphic to a
standard sphere. This is a contradiction. Hence M is compact. This completes
the proof.

Theorem 3.5. Let M be an mn-dimensional (n=2) connected, compact
Riemannian manifold of nonnegative Ricci curvature. Suppose that M is not
simply connected and that pu(p)=d,(p, C(p)) holds for some pe M, where C(p)
stands for the cut locus of p in M. Then there exists a homeomorphic involution
¢: SM1)—>S™(1) of fixed point free and M is homeomorphic to the quotient manifold
S*(1)/¢ of S*(1) obtained by identifying each x e S™(1) with ¢(x).

Proof. Let p be a point of M such that py(p)<dx(p, C(p)). Let M be the
universal Riemannian covering manifold of M and I7: M—M the Riemannian
covering map. Let I" be the deck transformation group of M corresponding to
the fundamental group =,(M, p). Each element of I',=I"\{identity} acts on M as
an isometry of fixed point free. Let p, be a point of 7' (p). There exists a
g€ 'y such that dx(p,, o(p,))=dzu(p,, 7(p,)) for any rerl',., We put p,=a(p,) and
d=dzu(p., p.). Since py(p)=dy(p, C(p)) and pz=py o II, d=20,(D)=pu(D,)+ 0u(D:).
By the same method as the proof of [Theorem 3.1, exp,, | B(0,,, d) is diffeomorphic
and M=B(p,, d)U{p.}. Then we see I’'={identity, ¢}. Let s be a point of S*(1)
and let @: TPIM—>T,S"(1) be a linear isometry. We now define a map f : M—S*(1)
by f(@)=exp, (?((x/d)¥ (%)) for & € M\{ps} and f(p.)=—s where T=(exp,, | B(0,,, d))™*
and —s denotes the antipodal point of s in S*(1). Then f is homeomorphic.
Let ¢: S*(1)->S"(1) be a map defined by p=fcgof-:. We see that ¢ is a homeo-
morphic involution of fixed point free. Let S*(1)/¢ be the quotient manifold of
S»(1) obtained by identifying each « € S*(1) with ¢(x). Define a map f: M—S*(1)/¢
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by f(g@)=[f(§)] where § € IT-*(g) and [f(§)] stands for the equivalence class containing
f(g). It is easy to see that f is homeomorphic. We complete the proof.

(1]
[2]

(3]
[4]
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