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\S 0. Introduction

On a Riemannian manifold $M$ we can define a function $p_{M}$ : $M\rightarrow R^{+}\cup\{+\infty\}$

which gives us interesting geometric properties of $M$ where $R^{+}$ is the set of all
positive real numbers. The definition of $\rho_{K}$ will be given in \S 2. The purpose
of this paper is to investigate Riemannian manifolds of nonnegative Ricci curva-
ture with $\rho(M)<+\infty$ where $\rho(M)=\sup p_{M}$ .

In the following let $M$ be an n-dimensional $(n\geqq 2)$ connected, complete

Riemannian manifold of nonnegative Ricci curvature. If $\rho(M)$ is finite then $M$

is compact and the fundamental group of $M$ is finite. $M$ is homeomorphic to a
standard sphere of dimension $n$ if $M$ is compact and $d(M)\geqq 2\rho(M)$ where $d(M)$

denotes the diameter of $M$. We now suppose that $M$ is compact and is not simply

connected and that $\rho_{r}(p)\leqq d_{r}(p,C(p))$ holds for some point $p$ of $M$ where $d_{r}$ is the
distance function on $M$ and $C(p)$ stands for the cut locus of $p$ in $M$. Then there
exists a homeomorphic involution $\varphi:S^{*}(1)\rightarrow S^{n}(1)$ of fixed point free and $M$ is
homeomorphic to the quotient manifold $ S^{n}(1)/\varphi$ of $S^{n}(1)$ obtained by identifying
each $xeS^{n}(1)$ with $\varphi(x)$ where $S^{n}(1)$ is the n-dimensional Euclidean sphere of
radius 1.

In \S 1 we prepare some lemmas. Lemmas 1.2 and 1.3 are basic lemmas of this
paper. In \S 2 we give the definition of $\rho_{r}$ . We will show in this section that if
$M$ is a connected, complete Riemannian manifold satisfying $K_{r}\leqq 1,$ $Ric_{r}\geqq(n-1)\lambda^{2}$ ,
$1/2<\lambda\leqq 1$ , then $\pi\leqq 2\rho_{K}(p)\leqq\pi/\lambda$ for all $p\in M$ where $K_{r}$ (resp. $Ric_{r}$ ) denotes the
sectional curvature (resp. Ricci curvature) of $M$, respectively. In the last section
of this paper we investigate Riemannian manifolds of nonnegative Ricci curvature
with $\rho(M)<+\infty$ .

\S 1. Notations and Lemmas

Throughout this paper we always assume that manifolds and apparatus on
them are of class $C^{\infty}$ , unless otherwise stated.

Let $M$ be an n-dimensional $(n\geqq 2)$ connected, complete Riemannian manifold
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with Riemannian metric $\langle$ , $\rangle$ . We denote by $d_{H}$ the distance function on $M$

which is induced from the Riemannian metric of $M$. We denote by $d(M)$ the
diameter of $M$. For a $p\in M$ and an $r>0$ we put $B(p, r)=\{q\in M;d_{K}(p, q)<r\}$ ,
$\overline{B}(p, r)=\{q\in M;d_{H}(p, q)\leqq r\}$ and $\partial B(p, r)=\{q\in M;d_{H}(p, q)=r\}$ . Let $exp:TM\rightarrow M$

be the exponential map from the tangent bundle $TM$ of $M$ to $M$. For each
$p\in M\exp_{p}$ : $T_{p}M\rightarrow M$ is the restriction of exp to the tangent space $T_{p}M$ to $M$ at
$p$ . If $X$ and $Y$ are orthogonal unit tangent vectors at a point of $M$ then the
quantity $ K_{K}(P)=\langle R(X, Y)Y, X\rangle$ is called the sectional curvature of the plane

section $P$ determined by $X$ and $Y$ where $R$ denotes the Riemannian curvature
tensor of $M$. Let $e_{1},$ $\cdots,$ $e_{n}$ be an orthonormal basis of the tangent space $T_{p}M$ at
$p\in M$ and let $X$ be a unit tangent vector at $p$ . Then the quantity $Ric_{H}(X)=$

$\sum_{l=1}^{\hslash}\langle R(e_{i}, X)X, e_{l}\rangle$ is called the Ricci curvature with respect to $X$. In this paper,

we denote by $ K_{K}\leqq\lambda$ if $ K_{H}(P)\leqq\lambda$ holds for all plane sections $P$ to $M$, and we
denote by $Ric_{K}\geqq(n-1)\lambda$ if $Ric_{K}(X)\geqq(n-1)\lambda$ holds for all unit tangent vectors $X$

to $M$.
Let $N$ be a Riemannian manifold of dimension $n(n\geqq 2)$ and let $f:S\rightarrow N$ be an

isometric immersion of an $(n-1)$-dimensional Riemannian manifold $S$ into N. $(S,f)$

is called a minimal hypersurface in $N$ if the trace of the second fundamental
form of $S$ is zero everywhere. $(S,f)$ is called totally geodesic if the second
fundamental form of $S$ vanishes identically.

In the following we shall prepare some lemmas which will be used in the
next sections. Let $D$ be an open metric ball in the n-dimensional $(n\geqq 1)$ Euclidean
space $R^{n}$ . Let $(x_{1}, \cdots, x_{n})$ be the standard coordinate system in $R^{n}$ . Let us
consider a Riemannian manifold $N=(D\times(-\tau, \tau),$ $ds^{2}$ )

$,$

$\tau>0$ , whose line element is
given by $ds^{2}=\sum_{\ell,\dot{g}=1}^{*}g_{ij}(x, t)dx_{i}dx_{j}+dt^{2}$ . Let $\nabla$ be the Riemannian connection of $N$

induced from the Riemannian metric of $N$. For each $t,$ $|t|<\tau$ , we denote by $H_{t}$

the mean curvature of the level hypersurface $S_{t}=\dagger(x, t);x\in D$} with respect to
$\partial/\partial t$ . In case $n=1$ , by the mean curvature we mean the geodesic curvature. $H_{t}$

is given by $ H_{t}=(1/n)\sum_{\ell,j=1}^{n}g^{\ell f}\langle\nabla_{\partial/\partial x_{i}}\partial/\partial x_{j}, \partial/\partial t\rangle$ where $g^{\ell j}(x, t)$ is the $(i, j)\cdot component$

of the inverse matrix of $(g_{ij}(x, t))$ . We can easily show

$n\partial H_{t}/\partial t=Ric_{N}(\partial/\partial t)+\Vert A_{t}\Vert^{2}$

where $\Vert A_{t}\Vert$ stands for the length of the second fundamental form $A_{t}$ of $S_{t}$ . From
this formula we have the following.

Lemma 1.1. Under the situation stated above, $suPloseRic_{N}(\partial/\partial t)\geqq 0$ . Then
$H_{t}\leqq H_{\iota^{\prime}}$ for any $t,$ $t^{\prime}$ such that $t<t^{\prime}$ . If $H_{t}=H_{t^{\prime}}$ for $t,$ $t^{\prime}$ such that $t<t^{\prime}$ , then
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$S_{r}$ is totally geodesic for any $r\in[t, t^{\prime}]$ .
Now for a real valued function $u\in C^{2}(D),$ $|u|<\tau$ , let us consider a hypersur-

face $S=\{(x, u(x));x\in D\}$ in $N$. We put $X_{\ell}=\partial/\partial x_{\ell}+u_{i}\partial/\partial t$ and $\tilde{g}_{\ell j}(x)=g_{\ell j}(x, u(x))+$

$u_{\ell}(x)u_{j}(x)$ where $u_{i}=\partial u/\partial x_{i},$ $1\leqq i,$ $j\leqq n$ . Let $\xi=\sum_{\ell=1}^{n}\xi^{\ell}\partial/\partial x_{\ell}+\xi^{n+1}\partial/\partial t$ be the unit
normal vector field on $S$ defined by

$\xi^{\ell}=-u/(1+||\nabla u||^{2})^{1/2}$ , $\xi^{n+1}=1/(1-\vdash\Vert\nabla u\Vert^{2})^{1/2}$

where $\Vert\nabla u||^{2}=\sum^{l}g^{if}(x, u(x))u_{\ell}u_{j}$ and $u=\sum g^{\ell j}(x, u(x))u_{j}$ . Let $\Lambda$ be the mean
curvature of $s_{with}^{\ell,\dot{g}=}$ respect to $\xi$ . $\Lambda$ is $g_{i}venj=1$ by $\Lambda=(1/n)\sum_{i,j=1}^{\hslash}\tilde{g}_{\backslash }^{J/}\nabla_{x_{i}}X_{j},$ $\xi\rangle$ where
$\tilde{g}^{\ell j}(x)=g^{\ell j}(x, u(x))-u(x)u^{j}(x)/(1+\Vert\nabla u\Vert^{2})$ . We have

(1.1) $\sum_{\ell,\dot{g}=1}^{n}\{(1+\Vert\nabla u\Vert^{2})g^{\ell j}(x, u(x))-u^{\ell}u^{j}\}u_{ij}$

$=n\Lambda(x)(1+\Vert\nabla u\Vert^{2})^{3/2}-nH(x, u(x))(1+\Vert\nabla u||^{2})$

$+\frac{1}{2}\sum_{\ell,\dot{g}=1}^{n}(\partial g_{j}/\partial t)(x, u(x))u^{\ell}u^{j}$

$+\sum_{\ell,j.k=1}^{n}\{(1+\Vert\nabla u\Vert^{2})g^{\ell j}(x, u(x))-u^{\ell}u^{j}\}\Gamma_{ij}^{k}(x, u(x))u_{k}$

where $u_{\ell j}=\partial^{2}u/\partial x_{\ell}\partial x_{j}$ , $nH(x, u(x))=-(1/2)\sum_{\ell,\dot{g}=1}^{n}g^{ij}(x, u(x))(\partial g_{\ell j}/\partial t)(x, u(x))$ and $\Gamma_{\ell j}^{k}$

denotes the Christoffel’s symbol. In (1.1) if we regard $\Lambda$ as a given continuous
function on $D$ , then we can regard (1.1) as a nonlinear differential equation of
second order. We put

(1.2) $A_{\ell j}(x, t, p)=(1+\Vert p||^{2})g^{\ell j}(x, t)-p^{\ell}p^{j}$

$B(x, t, p)=n\Lambda(x)(1+\Vert p\Vert^{2})^{3/2}-nH(x, t)(1+\Vert p\Vert^{2})+\frac{1}{2}\sum_{\ell,\dot{g}=1}^{\#}(\partial g_{ij}/\partial t)(x, t)p^{\ell}p^{j}$

$+\sum_{\ell,j,k=1}^{n}\{(1+||P\Vert^{2})g^{\ell j}(x, t)-pp^{j}\}\Gamma_{\ell j}^{k}(x, t)p_{k}$

where $|t|<\tau,p=(p_{1}, \cdots, p_{n})\in R^{n},$
$||p\Vert^{2}=\sum_{\ell,j=1}g^{\ell j}(x, t)p_{\ell}p_{j},$

$p^{\ell}=\sum_{\dot{g}=1}^{n}g^{ij}(x, t)p_{j},$ $nH(x, t)=$

$-(1/2)\sum_{\ell,j=1}^{\hslash}g^{\ell j}(x, t)(\partial g_{\ell j}/\partial t)(x, t)$ .
Lemma 1.2. Under the above situation, suPpose that $Ric_{N}(\partial/\partial t)\geqq 0$ and $\Lambda\leqq H_{0}$

in D. Let $u$ be a solution of the equation (1.1) such that $ 0\leqq u<\tau$ . If $u$ attains
the minimum in $D$ , then $u$ is constant.

Proof. Put $E=\{x\in D;u(x)=m\}$ where $m$ is the minimum of $u$ in D. Suppoee
$D\neq E$. Then $E$ is not open in $D$ . Therefore we can choose a $x_{0}\in D\backslash E$ and an
open metric ball $D_{0}$ in $R^{n}$ of radius $r_{0}$ centered at $x_{0}$ so that $ D_{0}\cap E=\emptyset,\overline{D}_{0}\cap$
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$E=\{y_{0}\}$ and $\overline{D}_{0}\subset D$ where $\overline{D}_{0}=\{x\in R^{n}; \Vert x-x_{0}\Vert\leqq r_{0}\},$ $\Vert$ $\Vert$ denotes the standard norm
of $R^{n}$ . Let $D_{1}$ be the open metric ball in $R^{n}$ of radius $r_{1}$ centered at $y_{0}$ such
that $0<r_{1}<r_{0}$ and $D_{1}\subset D$ . Then for each $x\in D_{1}$ we have

(1.3) $r_{2}\leqq||x-x_{0}||\leqq r_{s}$

where $r_{2}=r_{0}-r_{1}$ and $r_{8}=r_{0}+r_{1}$ . There exists a constant $\delta(0<\delta<1)$ satisfying

(1.4) $ u>m+\delta$ on $\overline{D}_{0}\cap\partial\overline{D}_{1}$

where $\partial\overline{D}_{1}=\{x\in R : \Vert x-y_{0}\Vert=r_{1}\}$ . Since the matrix $(A_{\ell j}(x, t,p))$ is positive definite,
there are positive constants $\lambda_{1}$ and $\lambda_{2}$ such that

(1.5) $\lambda_{1}\Vert X\Vert^{2}\leqq\sum_{\ell,\dot{g}=1}^{n}A_{\ell j}(x, u(x),p(x))X_{\ell}X_{j}\leqq\lambda_{2}\Vert$ X||2

where $x\in\overline{D}_{1},$ $X=(X_{1}, \cdots, X_{n})\in R^{n},$ $||X\Vert^{2}=\sum_{\ell=1}^{\hslash}X_{\ell}^{2}$ and $P(x)=(u_{1}(x), \cdots, u.(x))$ . On
$\overline{D}_{1}$ we have

$|B(x, u(x),P(x))-B(x, u(x),$ $0$) $|\leqq c(\sum_{\ell=1}(u_{\ell}(x))^{2})^{1/2}$

where

(1.6) $c=\sup\sum_{\ell=1}^{n}f_{1}\int_{0}^{1}|\partial B/\partial p_{\ell}(x, u(x),$ $ tp(x))|dt<+\infty$ .
Since $Ric_{N}(\partial/\partial t)\geqq 0,$ $\Lambda\leqq H_{0}$ and $ 0\leqq u<\tau$ , by Lemma 1.1 for any $x\in\overline{D}_{1}$

$B(x, u(x),$ $O$) $=n(\Lambda(x)-H(x, u(x)))\leqq n(H_{0}(x)-H_{u(x)}(x))\leqq 0$ .
Thus we get

(1.7) $B(x, u(x),$ $P(x))\leqq c(\sum_{\ell=1}^{\sim}(u_{\ell}(x))^{2})^{1/2}$ , $x\in\overline{D}_{1}$ .
Define a real valued function $h:D\rightarrow R$ by

(1.8) $h(x)=\exp(-\alpha||x-x_{0}||^{2})$ -exp $(-\alpha r_{0^{2}})$

where $\alpha$ is a positive constant such that

(1.9) $\alpha>\max$ {$($ -log $\delta)/r_{2^{2}},$ $(n\lambda_{2}+cr_{8})/2\lambda_{1}r_{2}^{2}$ }.

Put $w=u-h$ . Since $h<0$ on $\partial\overline{D}_{1}\backslash \overline{D}_{0}$ , we have

(1.10) $w>m$ on $\partial\overline{D}_{1}\backslash \overline{D}_{0}$ .
On the other hand, from (1.3), (1.4) and (1.9) we obtain

(1.11) $w>m+\delta-\exp(-\alpha r_{2}^{2})>m$ on $\partial\overline{D}_{1}\cap\overline{D}_{0}$ .
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Since $w(y_{0})=u(y_{0})=m$ , by (1.10) and (1.11) $w|\overline{D}_{1}$ attains the minimum in $D_{1}$ . Let
$y$ be a point of $D_{1}$ at which $w|\overline{D}_{1}$ attains the minimum. Using (1.7) we have

(1.12) $\sum_{\ell_{\dot{f}}=1}^{\prime}A_{f}(y, u(y),p(y))(w_{lj}(y)+h_{j}(y))\leqq c(\sum_{\ell=1}(u_{i}(y))^{2})^{1/2}$ .
From (1.8)

(1.13) $ h_{\ell}(y)=-2\alpha z_{\ell}\eta$ $(1\leqq i\leqq n)$ , $ h_{j}(y)=-2\alpha(\delta_{\ell j}-2\alpha z_{\ell}z_{j})\eta$ $(1\leqq i, j\leqq n)$

where $z=(z_{1}, \cdots, z_{n})=y-x_{0}$ and $\eta=\exp(-\alpha||y-x_{0}\Vert^{2})$ . Since $w|\overline{D}_{1}$ attains the
minimum at $y$ , we have

(1.14) $u_{i}(y)=h(y)$ $(1\leqq i\leqq n)$

and

(1.15) $\sum_{\ell,\dot{g}=1}A_{j}(y, u(y),P(y))w_{\ell j}(y)\geqq 0$ .
From (1.3), (1.5), (1.13) and (1.15) we obtain

(1.16) the left hand side of (1.12)

$\geqq 2\alpha\eta(2\alpha\lambda_{1}||z\Vert^{2}-n\lambda_{2})\geqq 2\alpha\eta(2\alpha\lambda_{1}r_{2}^{2}-n\lambda_{2})$ .
By (1.13) and (1.14), $(\sum_{\ell=1}(u_{\ell}(y))^{2})^{1/2}=2\alpha\eta\Vert z||\neq 0$ . It follows from (1.3), (1.12) and
(1.16) that $2\alpha\lambda_{1}r_{2^{2}}-n\lambda_{2}\leqq c||z||\leqq cr_{8}$ . This contradicts (1.9). Hence we have proved
$D=E$. We complete the proof.

In the rest of this section, let $M$ be an n-dimensional $(n\geqq 2)$ connected, com-
plete Riemannian manifold and let $(W_{1}, \iota_{1})$ and $(W_{2}, \ell_{2})$ be connected hypersurfaces
embedded in $M$ with unit normal vector fields $\xi_{1}$ and $\xi_{2}$ respectively, where $\ell_{k}$

denotes the inclusion map, $k=1,2$ . We denote by $H_{k}$ the mean curvature of $W_{k}$

with respect to $\xi_{k},$ $k=1,2$ . For a subset $U$ of $W_{1}$ and a positive $\tau$ we put
$1_{\tau}(U)=\{t\xi_{1}(q)\in TM;|t|<\tau, q\in U\}$ and $1_{\tau}^{+}(U)=\{t\xi_{1}(q)\in TM;0\leqq t<\tau, q\in U\}$ .

Lemma 1.3. Let $M,$ $W_{1}$ and $W_{2}$ be as above. SuPpose that $M$ is of non-
negative Ricci curvature, that is, $Ric_{r}(X)\geqq 0$ for all unit tangent vectors $X$ to $M$

at every Point of $M$, and suPpose that $H_{1}\geqq 0$ on $W_{1}$ and $H_{2}\leqq 0$ on $W_{2}$ . Further-
more assume that there is a point $l$ of $W_{1}\cap W_{2}$ satisfying the following conditions:
(1) $\xi_{1}(p)=\xi_{2}(p),$ (2) For an open neighborhood $U_{1}$ of $p$ in $W_{1}$ and a positive $\tau$ such
that $exp:\perp_{t}(U_{1})\rightarrow M$ is an embedding there is an open neighborhood of $p$ in $W_{2}$

which is contained in $\exp(1_{t}^{+}(U_{1}))$ . Then there exists a minimal hypersurface $W$

embedded in $M$ such that $p\in W\subset W_{1}\cap W_{2}$ .
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Proof. Let $p$ be a point of $W_{1}\cap W_{2}$ satisfying the conditions (1) and (2)

stated above. Choose a local coordinate neighborhood $U_{1}$ about $p$ in $W_{1}$ and a
positive $\tau$ so that $exp:1_{\tau}(U_{1})\rightarrow M$ is an embedding. By Gauss lemma, the line
element of $1_{r}(U_{1})$ induced from $M$ by exp can be expressed by $ds^{2}=$

$\sum_{\ell,\dot{g}=1}^{n-1}g_{\ell j}(x, t)dx_{\ell}dx_{j}+dt^{2}$ where $(x_{1}, \cdots, x_{n-1})$ is a local coordinate system on $U_{1}$ and
$|t|<\tau$ . By the condition (2) and the implicit function theorem, there exists an
open neighborhood $V_{\iota}$ of $P$ in $W_{1},$ $V_{1}\subset U_{1}$ , which is diffeomorphic to an open
metric ball in $R^{n-1}$ , and there exists a real valued function $u\in C^{\infty}(V_{1})$ satisfying.
the following conditions: $u(P)=0,$ $u\geqq 0$ in $V_{1}$ and $ p\in V_{2}:=\{\exp_{q}u(q)\xi_{1}(q);q\in V_{1}\}\subset$

$W_{2}$ . Now in Lemma 1.2 we replace $H_{0},$ $\Lambda$ and $n$ by $H_{1},$ $H_{2}$ and $n-1$ , respec-
tively. Then we can aPply Lemma 1.2 to the present situation. By Lemma 1.2,
$u\equiv 0$ in $V_{1}$ . Then $V_{1}=V_{2}$ and $V_{1}$ is a minimal hypersurface in $M$ which is
contained in $W_{1}\cap W_{2}$ . This completes the proof.

\S 2. Definition of $\rho_{M}$

In this section let $M$ be an n-dimensional $(n\geqq 2)$ connected, complete Rieman-
nian manifold with Riemannian metric $\langle$ , $\rangle$ . First we shall give the definition
of $\rho_{M}$ : $ M\rightarrow R^{+}\cup t+\infty$ }. Suppose that for a $p\in M$ and an $r>0\exp_{p}$ : $\overline{B}(0_{p}, r)\rightarrow M$

is of maximal rank where $\overline{B}(0_{p}, r)=\{Y\in T_{p}M;||Y||\leqq r\},$ $\Vert Y\Vert$ stands for the length
of Y. Let $X$ be a unit tangent vector at $p$ and $c_{p,x}$ : $[0, \infty$ ) $\rightarrow M$ the geodesic
parametri$zed$ by arc length emanating from $p$ with intial direction $X$. Then the
velocity vector $c_{p,x}(r)$ is a unit normal vector to the $gdesic$ sphere $S(p, r)=$

$\exp_{p}(\partial B(0_{p}, r))$ where $\partial B(0_{p}, r)=\{Y\in T_{p}M;||Y\Vert=r\}$ . We denote by $H_{X}(p, r)$ the mean
curvature of $S(p, r)$ with respect to $\dot{c}_{p.X}(r)$ . Let $\Omega_{M}$ be the subset of $M$ which
consists of all points $p$ of $M$ satisfying the condition: there exists an $r>0$ such
that $\exp_{p}:B(O,, r)\rightarrow M$ is of maximal rank and $H_{X}(p, r)\geqq 0$ for all unit tangent
vectors $X$ at $p$ . We now define $\rho_{H}$ : $ M\rightarrow R^{+}\cup t+\infty$ } by

$\rho_{H}(p)=\inf$ {$r>0;H_{X}(p,$ $r)\geqq 0$ for all $X\in T_{p}M(\Vert X\Vert=1)$ } if $P\in\Omega_{r}$ ,
$\rho_{H}(p)=+\infty$ if $peM\backslash \Omega_{H}$ .

We note that $\rho_{H}(p)>0$ if $p\in\Omega_{H}$ . We put $\rho(M)=\sup\rho_{M}$ .
Let $\tilde{M}$ be the universal Riemannian covering manifold of $M$ and $\Pi:\tilde{M}\rightarrow M$

the Riemannian covering map. Then Pfi $=\rho_{r}\circ\Pi$ .
Remark 2. $l$ . If $M$ is a connected, complete Riemannian manifold of nonpoei-

tive sectional curvature then $\Omega_{r}$ is empty. A typical example of a Riemannian
manifold with $\Omega_{r}\neq\emptyset$ is the Euclidean sphere $S^{n}(r)$ of radius $r$ . In this case,



ON MANIFOLDS OF NONNEGATIVE RICCI CURVATURE 197

$\Omega_{H}=S^{n}(r)$ and $p_{X}(p)=\pi r/2$ for any $p\in S^{n}(r)$ .
Now let $p$ be a point of $\Omega_{H}$ and let $r$ be a positive such that $\exp_{p}$ : $\overline{B}(0_{p}, r)\rightarrow M$

is of maximal rank. Let $X$ be an arbitrary unit tangent vector at $p$ . Choose
an orthonormal basis $e_{1},$ $\cdots,$ $e_{n-1}$ in the tangent space to $S(p, r)$ at $c_{p,x}(r)$ . There
exist Jacobi fields $Y_{1}(t),$

$\cdots,$ $Y_{n-1}(t)$ along $c_{p.X}|[0, r]$ satisfying $Y_{\ell}(O)=0_{p},$ $Y_{l}(r)=e_{\ell}$

$(1\leqq i\leqq n-1)$ . Using the second variation formula, $H_{X}(p, r)$ can be expressed by

(2.1) $(n-1)H_{X}(p, r)=-\sum_{\ell=1}^{n-1}I(Y_{\ell})$

$=-\sum_{\ell=1}^{n-1}\int_{0}^{r}\{\Vert Y_{i}^{\prime}(t)\Vert^{2}-\langle R(Y_{\ell}(t),\dot{c}_{p.X}(t))\dot{c}_{p,X}(t), Y_{\ell}(t)\rangle\}dt$

where $Y_{\ell}^{\prime}(t)$ is the covariant derivative of $Y_{\ell}(t)$ along $c_{p,X}$ . If $M$ is the n-dimen-
sional Euclidean sphere $S^{n}(1/\lambda),$ $\lambda>0$ , of radius $ 1/\lambda$ , then we have

(2.2) $ H_{X}(p, r)=-\lambda$ cot $\lambda r$ , $ 0<r<\pi/\lambda$ .
Lemma 2.1. Let $M$ be as above. SuPpose $K_{r}\leqq 1$ and $Ric_{H}\geqq(n-1)\lambda^{2}(0<\lambda\leqq 1)$ .

Then we have
$-\lambda$ cot $\lambda r\leqq H_{X}(p, r)\leqq-\cot r$ $(0<r<\pi)$

for all unit tangent vectors $X$ at every point $p$ of M. If $ H_{X}(p, r)=-\lambda$ cot $\lambda r$ (resP.–

cot r) for some $X\in T_{p}M(||X\Vert=1)$ , then $K_{H}(P(t))=\lambda^{2}$ (resP. 1) for all Plane sections
$P(t)$ containing $\dot{c}_{p,X}(t)(0\leqq t\leqq r)$ .

Proof. Since $K_{K}\leqq 1$ , for each $p\in M$ and an $r(0<r<\pi)\exp_{p}$ : $\overline{B}(0_{p}, r)\rightarrow M$ is
of maximal rank. Fix an $r,$ $ 0<r<\pi$ . Let $p$ be a point of $M$. Let $X$ be an
arbitrary unit tangent vector at $p$ . Choose an orthonormal basis $e_{1},$ $\cdots,$ $e_{n-1}$ in
the tangent space to $S(p, r)$ at $c_{p.X}(r)$ . There are Jacobi fields $Y_{1}(t),$ $\cdots$ , $Y_{-1}(t)$

along $c_{p.X}|[0, r]$ satisfying $Y_{i}(0)=0_{p},$ $Y_{\ell}(r)=e_{\ell}(1\leqq i\leqq n-1)$ . We extend $e_{1},$ $\cdots,$ $e_{n-1}$

to parallel vector fields $e_{1}(t),$ $\cdots,$ $e_{n-1}(t)$ along $c_{p.X}|[0, r]$ , respectively. Put $Z_{\ell}(t)=$

$(\sin\lambda t/\sin\lambda r)e_{\ell}(t),$ $0\leqq t\leqq r,$ $1\leqq i\leqq n-1$ . Since $I(Y_{\ell})\leqq I(Z_{i})(1\leqq i\leqq n-1)$ and $Ric_{r}\geqq$

$(n-1)\lambda^{2}$ , we have $ H_{X}(p, r)\geqq-\lambda$ cot $\lambda r$ . If $ H_{X}(p, r)=-\lambda$ cot $\lambda r$ , then $Y(t)=Z_{\ell}(t)$

$(0\leqq t\leqq r),$ $1\leqq i\leqq n-1$ . From this we obtain $K_{H}(e_{\ell}(t)\wedge\dot{c}_{p.X}(t))=\lambda^{2},0\leqq t\leqq r,$ $ 1\leqq i\leqq$

$n-1$ . Moreover we can show that $K_{r}(P(t))=\lambda^{2}$ for all plane sections $P(t)$ con.
taining $\dot{c}_{p,X}(t)(0\leqq t\leqq r)$ . Similary, $K_{r}\leqq 1$ implies $H_{X}(p, r)\leqq-\cot r$ for all unit
tangent vectors $X$ at every point $p$ of $M$. If $H_{X}(p, r)=-\cot r$ for some $x\in T_{p}M$

$(||X\Vert=1)$ , then $K_{l}(P(t))=1$ for all plane sections $P(t)$ containing $\dot{c}_{p.X}(t)(0\leqq t\leqq r)$ .
Lemma 2.1 implies the following.

Proposition 2.1. Let $M$ be an n-dimensional $(n\geqq 2)$ connected, comPlete
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Riemannian manifold. If $K_{H}\leqq 1$ and $Ric_{r}\geqq(n-1)\lambda^{2}(1/2<\lambda\leqq 1)$ , then $\Omega_{r}=M$.
Moreover, $p_{H}$ is continuous and $\pi\leqq 2\rho_{H}(p)\leqq\pi/\lambda$ for all $p\in M$.

Remark 2.2. We note that there are Riemannian manifolds satisfying $Ric_{r}\geqq$

$(n-1)\lambda^{2}(0<2\lambda\leqq 1)$ and $\Omega_{K}=M$. For example, the Riemannian product manifold
$M=S^{n}(1)\times S^{2}(1)(n=3,4)$ satisfies such conditions. In this case, $ p(M)<\pi$ .

Proposition 2.2. Let $M$ be an n-dimensional $(n\geqq 2)$ connected, comPlete
Riemannian manifold of Positive Ricci curvature. If $\Omega_{H}$ is not emPty, then $M$ is
comPact and the fundamental group $\pi_{1}(M)$ is finite.

Proof. Let $p$ be a point of $\Omega_{H}$ . Suppose that $M$ is not compact. Then
there is a geodesic $ c:[0, \infty$ ) $\rightarrow M$ parametrized by arc length emanating from $p$

with $d_{H}(p, c(t))=t$ for all $t>0$ . By the definition of $\Omega_{H}$ there exists an $r^{\prime}>0$ such
that $\exp_{p}$ : $\overline{B}(0_{p}, r^{\prime})\rightarrow M$ is of maximal rank and $H_{X}(p, r^{\prime})\geqq 0$ for all $X\in T_{p}M$

$(\Vert X\Vert=1)$ . Since $M$ is of positive Ricci curvature, using Lemma 1.1 we can
choose an $r>r^{\prime}$ so that $\exp_{p}:\overline{B}(0_{p}, r)\rightarrow M$ is of maximal rank and $H_{X}(p, r)>0$

for all $X\in T_{p}M(\Vert X\Vert=1)$ . For each $t(t>r)$ let $V(t)$ be a connected open neigh-

borhood of $-(t-r)\dot{c}(t)$ in $\partial B(0_{c(t)}, t-r)$ such that $\exp_{c(t)}$ : $CV(t)\rightarrow M$ is an embedding

where $CV(t)=$ {$sY;0\leqq s\leqq 1$ , Ye $V(t)$ }. We put $W(t)=\exp_{c(t)}V(t)(t>r)$ . Denote
by $H(t)$ the mean curvature (with respect to $\dot{c}(r)$ ) of $W(t)$ at $c(r)$ . Then, $ H(t)\geqq$

$H_{\dot{c}(0)}(p, r)$ . Since $Ric_{H}>0,$ $H(t)<1/(t-r)$ for all $t>r$ . Thus we get $H_{\dot{c}(0)}(p, r)<1/$

$(t-r)$ for all $t>r$ . We obtain $H_{\dot{c}(0)}(p, r)=0$ as $ t\rightarrow\infty$ . This contradicts $H_{\dot{c}(0)}(p, r)>0$ .
Therefore, $M$ is compact. Let $\tilde{M}$ be the universal Riemannian covering manifold
of $M$. It is easy to see $\Omega_{\tilde{H}}\neq\emptyset$ . By the same argument as above, we see that
$\tilde{M}$ is compact. Hence $\pi_{1}(M)$ is finite.

\S 3. Manifolds with $\rho(M)<+\infty$

Theorem 3.1. Let $M$ be an n-dimensional $(n\geqq 2)$ connected, comPlete Rieman-
nian manifold of nonnegative Ricci curvature. If there exist distinct Points $p$

and $q$ of $M$ such that $d_{H}(p, q)\geqq\rho_{H}(p)+\rho_{H}(q)$ , then $M$ is homeomorPhic to a standard
$sPhere$ of dimension $n$ .

Proof. Let $p$ and $q$ be distinct points of $M$ such that $d_{H}(p, q)\geqq\rho_{H}(p)+\rho_{K}(q)$ .
We put $A_{p}=\{X\in T_{p}M;\Vert X\Vert=1, \exp_{p}dX=q\}$ where $d:=d_{H}(p, q)=\rho_{K}(p)+\rho_{H}(q)+2r$,
$r\geqq 0$ . By completeness of $M,$ $A_{p}$ is a nonempty closed subset in the unit sphere
$\partial B(0_{p}, 1)$ in $T_{p}M$. We shall show $A_{p}$ is open in $\partial B(0_{p}, 1)$ . Let $X$ be an arbitrary

unit tangent vector contained in $A_{p}$ and let $c:[0, d]\rightarrow M$ be the minimal geodesic

from $p$ to $q$ with initial direction $X$. Since $c$ is minimal, each $c(t)(0<t<d)$ is
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not a conjugate point of $P$ along $c$ . Hence we can choose a connected open neigh-
borhood $U_{X}$ of $X$ in $\partial B(0_{p}, 1)$ so that $\exp_{p}$ : $\tilde{U}_{X}\rightarrow M$ is an embedding where $\tilde{U}_{\chi}=$

$\{tZ\in T_{p}M;0\leqq t\leqq p_{K}(p)+r, Z\in U_{X}\}$ . By the same reason we can choose a connected
open neighborhood $U_{r}$ of $Y=-\dot{c}(d)$ in $\partial B(0_{q}, 1)$ so that $\exp_{q}$ : $\tilde{U}_{1^{\prime}}\rightarrow M$ is an
embedding where $\tilde{U}_{1^{\prime}}=\{tZ^{\prime}\in T_{q}M;0\leqq t\leqq p_{H}(q)+r, Z^{\prime}\in U_{r}\}$ . Then $W_{1}=\exp_{p}((p_{r}(p)+$

$r)U_{X})$ and $W_{2}=\exp_{q}((p_{r}(q)+r)U_{r})$ are connected hypersurfaces embedded in $M$

such that $c(p_{r}(p)+r)\in W_{1}\cap W_{2}$ , where $(p_{H}(p)+r)U_{X}=\{(p_{r}(p)+r)Z\in T_{p}M;Z\in U_{X}\}$

and $(\rho_{K}(q)+r)U_{r}=\{(p_{K}(q)+r)Z^{\prime}\in T_{q}M;Z^{\prime}\in U_{r}\}$ . Let $\xi_{1}$ and $\xi_{2}$ be unit normal vector
fields on $W_{1}$ and $W_{2}$ respectively which are defined by $\xi_{1}(c_{p.Z}(p_{H}(p)+r))=\delta_{p.z}(p_{r}(p)+r)$

$(Z\in U_{X})$ and $\xi_{2}(c_{q.Z^{\prime}}(p_{H}(q)+r))=-\dot{c}_{q.Z^{\prime}}(p_{H}(q)+r)(Z^{\prime}\in U_{Y})$ . We denote by $H$ the
mean curvature of $W_{i}$ with respect to $\xi_{l},$ $i=1,2$ . Using Lemma 1.1, $H_{1}\geqq 0$ on
$W_{1}$ and $H_{2}\leqq 0$ on $W_{2}$ . Moreover, $W_{1}$ and $W_{2}$ satisfy the other hypotheaes in
Lemma 1.3. Hence, by Lemma 1.3 there exists a connected minimal $hy\mu rsurface$

$W$ embedded in $M$ such that $c(\rho_{H}(p)+r)\in W\subset W_{1}\cap W_{2}$ . We can choose open
neighborhoods $V_{X}$ of $X$ in $\partial B(0_{p}, 1)$ and $V_{r}$ of $Y$ in $\partial B(0_{q}, 1)$ such that $\exp_{p}((p_{K}(p)+$

r) $V_{X}$) $=\exp_{q}((\rho_{H}(q)+r)V_{r})\subset W$. This implies $V_{X}\subset A_{p}$ . Hence $A_{p}$ is open in $\partial B(0_{p}, 1)$ .
Therefore, $A_{p}=\partial B(0_{p}, 1)$ . Then we see that $\exp_{p|B(0_{p}.d)}$ : $B(0_{p}, d)\rightarrow B(P, d)$ is a
diffeomorphism and $M=B(P, d)\cup\{q\}$ . It is now clear that $M$ is homeomorphic
to a standard sphere of dimension $n$ .

Remark 3.1. Let $M$ be as in Theorem 3.1. Suppose that there exist distinct
points $p$ and $q$ of $M$ such that $p_{H}(p)+p_{K}(q)\leqq d_{r}(p, q)$ . From the proof of the
above theorem we see that for each $t,$ $0<t<d:=d_{r}(p, q),$ $ M=B(p, t)\cup B(q, d-t)\cup$

$S(p, t),$ $S(p, t)=\partial B(p, t)=\partial B(q, d-t)$ and $S(p, t)$ is a hyoersurface embedded in $M$.
Suppose now $d-p_{r}(p)-p_{H}(q)=2r>0$ . Using Lemma 1.1, the mean curvature of
$\partial B(Pt),$ $\rho_{K}(p)\leqq t<d$ , with respect to the outer unit normal vector is nonnegative
and the mean curvature of $\partial B(q, t),$ $\rho_{M}(q)\leqq t<d$, with respect to the outer unit
normal vector is nonnegative. By Lemma 1.1, $S(p, t)$ is totally geodesic for each
$t,$ $p_{K}(p)\leqq t\leqq\rho_{B}(p)+2r=d-p_{r}(q)$ . Therefore there is an isometric imbedding from
the Riemannian product manifold $S(p, p_{K}(p))\times[0,2r]$ into $M$. If $d_{r}(p, q)=p_{r}(p)+$

$p_{r}(q)$ , then $S(p, p_{K}(l))$ is a minimal hypersurface in $M$. We see that if $M$ is of
positive Ricci curvature then $d_{r}(p, q)=p_{K}(p)+p_{r}(q)$ .

Remark 3.2. Using a similar method as the proof of Theorem 3.1 we can show
Cheng’s theorem ([31) which is a generalization of Toponogov Sphere Theorem.

As a consequence of Theorem 3.1 we have the following.

Corollary 3.1. Let $M$ be an n-dimensional $(n\geqq 2)$ connected, comPact
Riemannian manifold of nonnegative Ricci curvature. If $d(M^{\rightarrow})\geqq 2p(M)$ , then $M$
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is homeomorPhic to a standard sPhere Of dimension $n$ .
Corollary 3.2. Let $M$ be an n-dimensional $(n\geqq 2)$ connected, complete

Riemannian manifold of Positive Ricci curvature. If $p(M)$ is finite, then $M$ is
comPact and $ d(M)\leqq 2p(M)\leqq\pi/\lambda$ where $\lambda$ is a Positive constant such that
$\lambda^{2}=\inf\{Ric_{K}(X)/(n-1);X\in T_{p}M(\Vert X\Vert=1),P\in M\}$ .

Proof. Since $M$ is of positive Ricci curvature and $\rho(M)$ is finite, by
Proposition 2.2 $M$ is compact. From Remark 3.1 we see $d(M)\leqq 2p(M)$ . Let $p$

be an arbitrary point of $M$. Choose an $r>0$ so that $\exp_{p}$ : $\overline{B}(0_{p}, r)\rightarrow M$ is of
maximal rank. By a similar method as in the proof of Lemma 2.1, $ H_{X}(p_{J}r)\geqq$

$-\lambda$ cot $\lambda r$ for all $x\in T_{p}M(\Vert X||=1)$ where $\lambda$ is a positive constant such that
$\lambda^{2}=\inf\{Ric_{K}(X)/(n-1);X\in T_{q}M(\Vert X\Vert=1), q\in M\}$ . Suppose $ 2p_{M}(p)>\pi/\lambda$ . Then
$H_{X}(p, \rho_{r}(p))>0$ for all $x\in T_{p}M(\Vert X\Vert=1)$ . There exists an $r^{\prime}$ such that $0<r^{\prime}<p_{r}(p)$

and $H_{X}(p, r^{\prime})>0$ for all $x\in T_{p}M(||X||=1)$ . This contradicts the definition of
$p_{K}(p)$ . Hence $ 2p_{r}(p)\leqq\pi/\lambda$ . This $mpletes$ the proof.

From Proposition 2.2 and Corollaries 3.1, 3.2 we have the following.

Theorem 3.2. Let $M$ be an n-dimensional $(n\geqq 2)$ connected, comPlete
Riemannian manifold. SuPpose that $K_{H}\leqq 1$ and $Ric_{H}\geqq(n-1)\lambda^{2},1/2<\lambda\leqq 1$ . Then
$\pi\leqq 2p(M)\leqq\pi/\lambda$ and $d(M)\leqq 2p(M)$ . If $d(M)=2p(M)$ , then $M$ is homeomorphic to a
standard $sPhere$ of dimension $n$ .

Theorem 3.3. Let $M$ be an $n\cdot dimensional$ $(n\geqq 2)$ connected, comPlete
Riemannian manifold satisfying the condition $K_{H}\leqq 1$ and $Ric_{H}\geqq(n-1)\lambda^{2}(1/2<\lambda\leqq 1)$ .

(1) If $ d(M)=2p(M)=\pi$ , then $M$ is isometric to the n-dimensional Euclidean
$sPhereS^{n}(1)$ of radius 1.

(2) If $ d(W=2p(M)=\pi/\lambda$ , then $M$ is isometric to the n-dimensional Euclidean
$sPhereS^{n}(1/\lambda)$ of radius $ 1/\lambda$ .

Proof. We shall prove (1). Since $M$ is compact, we can choose points $P$

and $q$ of $M$ such that $ d_{H}(p, q)=d(M)=\pi$ . Since $M$ is of positive Ricci curvature,
$p_{K}(p)+p_{g}(q)=d_{K}(p, q)=2p(M)$ (see Remark 3.1). This implies $p_{r}(p)=\rho_{H}(q)=$

$p(M)=\pi/2$ . From the proof of Theorem 3.1 we see that $ M=B(p, \pi/2)\cup B(q, \pi/2)\cup$

$S(P, \pi/2),$ $\partial B(p, \pi/2)=\partial B(q, \pi/2)=S(l, \pi/2)$ and $S(p, \pi/2)$ is a hypersurface embedded
in $M$. Since $H_{X}(p, \pi/2)\geqq 0$ for all $x\in T_{p}M(||X||=1)$ , by Lemma 2.1 $H_{X}(p, \pi/2)=$

$-\cot(\pi/2)=0$ for all $x\in T_{p}M(||X\Vert=1)$ . Then for each $x\in T_{p}M$ $(||X||=1)$

$K_{r}(P(t))=1(0\leqq t\leqq\pi/2)$ where $P(t)$ is an arbitrary plane section containing $\dot{c}_{p,X}(t)$ .
This implies that $\overline{B}(p, \pi/2)$ is isometric to a closed metric ball of radius $\pi/2$ in the
n-dimensional Euclidean sphere $S^{n}(1)$ of radius 1. Similary, $\overline{B}(q, \pi/2)$ is isometric
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to a closed metric ball of radius $\pi/2$ in $S^{n}(1)$ . Then we see that $M$ is isometric
to $S^{n}(1)$ .

By the same method as above we can prove (2).

Remark 3.3. We note that (2) of the above theorem also follows from
Cheng’s theorem ([3]).

Theorem 3.4. Let $M$ be an n-dimensional $(n\geqq 2)$ connected, comPtete
Riemannian manifold of nonnegative Ricci curvature. If $p(M)$ is finite, then $M$

is comPact and the fundamental $g\gamma oup\pi_{1}(M)$ of $M$ is finite.
Proof. Let $\tilde{M}$ be the universal Riemannian covering manifold of $M$ with

covering map $\Pi$ . Since $p--p_{H}\circ\Pi,$ $p(\tilde{M})$ is finite. We shall show that $\tilde{M}$ is
compact. If $\tilde{M}$ is not compact, then we can choose distinct points $p$ and $q$ of
$\tilde{M}$ such that $d_{\tilde{H}}(p, q)>\rho_{\tilde{H}}(p)+p_{\tilde{H}}(q)$ . By Theorem 3.1 $\tilde{M}$ is homeomorphic to a
standard sphere. This is a contradiction. Hence $\tilde{M}$ is compact. This completes
the proof.

Theorem 3.5. Let $M$ be an n-dimensional $(n\geqq 2)$ connected, comPact
Riemannian manifold of nonnegative Ricci curvature. SuPpose that $M$ is not
simPty connected and that $p_{K}(p)\leqq d_{H}(p, C(p))$ holds for some $p\in M$, where $C(p)$

stands for the cut locus of $p$ in M. Then there exists a homeomorPhic involution
$\varphi:S^{n}(1)\rightarrow S^{n}(1)$ offixed pojnt free and $M$ is homeomorphic to the quotient manifold
$ S^{n}(1)/\varphi$ of $S^{n}(1)$ obtained by identifying each $x\in S^{n}(1)$ with $\varphi(x)$ .

Proof. Let $p$ be a point of $M$ such that $p_{H}(p)\leqq d_{H}(p, C(p))$ . Let $\tilde{M}$ be the
universal Riemannian covering manifold of $M$ and $\Pi:\tilde{M}\rightarrow M$ the Riemannian
covering map. Let $\Gamma$ be the deck transformation group of $\tilde{M}$ corresponding to
the fundamental group $\pi_{1}(M, p)$ . Each element of $\Gamma_{1}=\Gamma\backslash \{identity\}$ acts on $\tilde{M}$ as
an isometry of fixed point free. Let $p_{1}$ be a point of $\Pi^{-1}(p)$ . There exists a
$\sigma\in\Gamma_{1}$ such that $d_{\tilde{H}}(p_{1}, \sigma(p_{1}))\leqq d_{\tilde{H}}(p_{1}, \gamma(p_{1}))$ for any $\gamma\in\Gamma_{1}$ . We put $P_{2}=\sigma(p_{1})$ and
$d=d_{\tilde{K}}(p_{1},p_{2})$ . Since $p_{H}(p)\leqq d_{H}(p, C(p))$ and $\rho_{\tilde{H}}=p_{H}\circ\Pi,$ $d\geqq 2p_{K}(p)=p_{\tilde{K}}(p_{1})+p_{\tilde{H}}(p_{2})$ .
By the same method as the proof of Theorem 3.1, $\exp_{p_{1}}|B(0_{p_{1}}, d)$ is diffeomorphic
and $\tilde{M}=B(p_{1}, d)\cup\{p_{2}\}$ . Then we see $\Gamma=\{identity, \sigma\}$ . Let $s$ be a point of $S^{n}(1)$

and let $\Phi:T_{p_{1}}\tilde{M}\rightarrow T_{*}S^{n}(1)$ be a linear isometry. We now define a map $\tilde{f}:\tilde{M}\rightarrow S^{n}(1)$

by $\tilde{f}(x)=\exp_{l}(\Phi((\pi/d)\Psi(x)))$ for $x\in\tilde{M}\backslash \dagger P_{2}$ } and $\tilde{f}(P_{2})=-s$ where $\Psi=(\exp_{p_{1}}|B(0_{p_{1}}, d))^{-1}$

and $-s$ denotes the antipodal point of $s$ in $S^{n}(1)$ . Then $\tilde{f}$ is homeomorphic.
Let $\varphi:S^{n}(1)\rightarrow S^{n}(1)$ be a map defined by $\varphi=\tilde{f}\circ\sigma\circ\tilde{f}^{-1}$ . We see that $\varphi$ is a homeo-
morphic involution of fixed point free. Let $ S^{n}(1)/\varphi$ be the quotient manifold of
$S^{n}(1)$ obtained by identifying each $x\in S^{n}(1)$ with $\varphi(x)$ . Define a map $ f:M\rightarrow S^{n}(1)/\varphi$
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by $f(q)=[\tilde{f}(\tilde{q})]$ where $\tilde{q}\in\Pi^{-1}(q)$ and $[\tilde{f}(\tilde{q})]$ stands for the equivalence class containing
$\tilde{f}(\tilde{q})$ . It is easy to see that $f$ is homeomorphic. We complete the proof.
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