YOKOHAMA MATHEMATICAL JOURNAL VOL. 32, 1984

ON MANIFOLDS OF NONNEGATIVE RICCI CURVATURE

By

RYOSUKE ICHIDA

(Received April 19, 1984)

§0. Introduction

On a Riemannian manifold M we can define a function $\rho_M: M \to R^+ \cup \{+\infty\}$ which gives us interesting geometric properties of M where R^+ is the set of all positive real numbers. The definition of ρ_M will be given in §2. The purpose of this paper is to investigate Riemannian manifolds of nonnegative Ricci curvature with $\rho(M) < +\infty$ where $\rho(M) = \sup \rho_M$.

In the following let M be an *n*-dimensional $(n \ge 2)$ connected, complete Riemannian manifold of nonnegative Ricci curvature. If $\rho(M)$ is finite then Mis compact and the fundamental group of M is finite. M is homeomorphic to a standard sphere of dimension n if M is compact and $d(M) \ge 2\rho(M)$ where d(M)denotes the diameter of M. We now suppose that M is compact and is not simply connected and that $\rho_{M}(p) \le d_{M}(p, C(p))$ holds for some point p of M where d_{M} is the distance function on M and C(p) stands for the cut locus of p in M. Then there exists a homeomorphic involution $\varphi: S^{n}(1) \rightarrow S^{n}(1)$ of fixed point free and M is homeomorphic to the quotient manifold $S^{n}(1)/\varphi$ of $S^{n}(1)$ obtained by identifying each $x \in S^{n}(1)$ with $\varphi(x)$ where $S^{n}(1)$ is the *n*-dimensional Euclidean sphere of radius 1.

In §1 we prepare some lemmas. Lemmas 1.2 and 1.3 are basic lemmas of this paper. In §2 we give the definition of ρ_M . We will show in this section that if M is a connected, complete Riemannian manifold satisfying $K_M \leq 1$, $\operatorname{Ric}_M \geq (n-1)\lambda^2$, $1/2 < \lambda \leq 1$, then $\pi \leq 2\rho_M(p) \leq \pi/\lambda$ for all $p \in M$ where K_M (resp. Ric_M) denotes the sectional curvature (resp. Ricci curvature) of M, respectively. In the last section of this paper we investigate Riemannian manifolds of nonnegative Ricci curvature with $\rho(M) < +\infty$.

§1. Notations and Lemmas

Throughout this paper we always assume that manifolds and apparatus on them are of class C^{∞} , unless otherwise stated.

Let M be an n-dimensional $(n \ge 2)$ connected, complete Riemannian manifold

with Riemannian metric \langle , \rangle . We denote by $d_{\mathcal{M}}$ the distance function on Mwhich is induced from the Riemannian metric of M. We denote by d(M) the diameter of M. For a $p \in M$ and an r > 0 we put $B(p, r) = \{q \in M; d_{\mathcal{M}}(p, q) < r\}$, $\overline{B}(p, r) = \{q \in M; d_{\mathcal{M}}(p, q) \leq r\}$ and $\partial B(p, r) = \{q \in M; d_{\mathcal{M}}(p, q) = r\}$. Let exp: $TM \to M$ be the exponential map from the tangent bundle TM of M to M. For each $p \in M \exp_p: T_p M \to M$ is the restriction of exp to the tangent space $T_p M$ to M at p. If X and Y are orthogonal unit tangent vectors at a point of M then the quantity $K_{\mathcal{M}}(P) = \langle R(X, Y)Y, X \rangle$ is called the sectional curvature of the plane section P determined by X and Y where R denotes the Riemannian curvature tensor of M. Let e_1, \dots, e_n be an orthonormal basis of the tangent space T_pM at $p \in M$ and let X be a unit tangent vector at p. Then the quantity $\operatorname{Ric}_{\mathcal{M}}(X) =$ $\sum_{i=1}^{n} \langle R(e_i, X)X, e_i \rangle$ is called the Ricci curvature with respect to X. In this paper, we denote by $K_M \leq \lambda$ if $K_M(P) \leq \lambda$ holds for all plane sections P to M, and we denote by $\operatorname{Ric}_M \geq (n-1)\lambda$ if $\operatorname{Ric}_M(X) \geq (n-1)\lambda$ holds for all unit tangent vectors Xto M.

Let N be a Riemannian manifold of dimension n $(n \ge 2)$ and let $f: S \rightarrow N$ be an isometric immersion of an (n-1)-dimensional Riemannian manifold S into N. (S, f) is called a minimal hypersurface in N if the trace of the second fundamental form of S is zero everywhere. (S, f) is called totally geodesic if the second fundamental form of S vanishes identically.

In the following we shall prepare some lemmas which will be used in the next sections. Let D be an open metric ball in the *n*-dimensional $(n \ge 1)$ Euclidean space \mathbb{R}^n . Let (x_1, \dots, x_n) be the standard coordinate system in \mathbb{R}^n . Let us consider a Riemannian manifold $N=(D\times(-\tau,\tau), ds^2), \tau>0$, whose line element is given by $ds^2 = \sum_{i,j=1}^n g_{ij}(x,t)dx_idx_j+dt^2$. Let \mathbb{V} be the Riemannian connection of N induced from the Riemannian metric of N. For each t, $|t| < \tau$, we denote by H_t the mean curvature of the level hypersurface $S_t = \{(x,t); x \in D\}$ with respect to $\partial/\partial t$. In case n=1, by the mean curvature we mean the geodesic curvature. H_t is given by $H_i = (1/n) \sum_{i,j=1}^n g^{ij} \langle \mathbb{V}_{\partial/\partial x_i} \partial/\partial x_j, \partial/\partial t \rangle$ where $g^{ij}(x, t)$ is the (i, j)-component of the inverse matrix of $(g_{ij}(x, t))$. We can easily show

$$n\partial H_t/\partial t = \operatorname{Ric}_N(\partial/\partial t) + ||A_t||^2$$

where $||A_t||$ stands for the length of the second fundamental form A_t of S_t . From this formula we have the following.

Lemma 1.1. Under the situation stated above, suppose $\operatorname{Ric}_N(\partial/\partial t) \ge 0$. Then $H_t \le H_{t'}$ for any t, t' such that t < t'. If $H_t = H_{t'}$ for t, t' such that t < t', then

S_r is totally geodesic for any $r \in [t, t']$.

Now for a real valued function $u \in C^2(D)$, $|u| < \tau$, let us consider a hypersurface $S = \{(x, u(x)); x \in D\}$ in N. We put $X_i = \partial/\partial x_i + u_i \partial/\partial t$ and $\tilde{g}_{ij}(x) = g_{ij}(x, u(x)) + u_i(x)u_j(x)$ where $u_i = \partial u/\partial x_i$, $1 \le i$, $j \le n$. Let $\xi = \sum_{i=1}^n \xi^i \partial/\partial x_i + \xi^{n+1} \partial/\partial t$ be the unit normal vector field on S defined by

$$\xi^{i} = -u^{i}/(1 + \|\nabla u\|^{2})^{1/2}, \qquad \xi^{n+1} = 1/(1 + \|\nabla u\|^{2})^{1/2}$$

where $\|\nabla u\|^2 = \sum_{\substack{i,j=1\\j=1}}^n g^{ij}(x, u(x))u_iu_j$ and $u^i = \sum_{j=1}^n g^{ij}(x, u(x))u_j$. Let Λ be the mean curvature of S with respect to ξ . Λ is given by $\Lambda = (1/n) \sum_{\substack{i,j=1\\i,j=1}}^n \tilde{g}^{ij} \langle \nabla_{x_i} X_j, \xi \rangle$ where $\tilde{g}^{ij}(x) = g^{ij}(x, u(x)) - u^i(x)u^j(x)/(1 + \|\nabla u\|^2)$. We have

(1.1)

$$\sum_{i,j=1}^{n} \{ (1+\|\nabla u\|^2) g^{ij}(x, u(x)) - u^i u^j \} u_{ij} = n \Lambda(x) (1+\|\nabla u\|^2)^{3/2} - n H(x, u(x)) (1+\|\nabla u\|^2) + \frac{1}{2} \sum_{i,j=1}^{n} (\partial g_{ij}/\partial t)(x, u(x)) u^i u^j + \sum_{i,j,k=1}^{n} \{ (1+\|\nabla u\|^2) g^{ij}(x, u(x)) - u^i u^j \} \Gamma_{ij}^k(x, u(x)) u_k \}$$

where $u_{ij} = \partial^2 u / \partial x_i \partial x_j$, $nH(x, u(x)) = -(1/2) \sum_{\substack{i,j=1\\i,j=1}}^n g^{ij}(x, u(x))(\partial g_{ij}/\partial t)(x, u(x))$ and Γ_{ij}^k denotes the Christoffel's symbol. In (1.1) if we regard Λ as a given continuous function on D, then we can regard (1.1) as a nonlinear differential equation of second order. We put

(1.2)
$$A_{ij}(x, t, p) = (1 + \|p\|^2) g^{ij}(x, t) - p^i p^j$$
$$B(x, t, p) = n \Lambda(x) (1 + \|p\|^2)^{3/2} - n H(x, t) (1 + \|p\|^2) + \frac{1}{2} \sum_{i, j=1}^n (\partial g_{ij} / \partial t)(x, t) p^i p^j$$
$$+ \sum_{i, j, k=1}^n \{ (1 + \|p\|^2) g^{ij}(x, t) - p^i p^j \} \Gamma_{ij}^k(x, t) p_k$$

where $|t| < \tau$, $p = (p_1, \dots, p_n) \in \mathbb{R}^n$, $||p||^2 = \sum_{i,j=1}^n g^{ij}(x,t)p_ip_j$, $p^i = \sum_{j=1}^n g^{ij}(x,t)p_j$, $nH(x,t) = -(1/2)\sum_{i,j=1}^n g^{ij}(x,t)(\partial g_{ij}/\partial t)(x,t)$.

Lemma 1.2. Under the above situation, suppose that $\operatorname{Ric}_{N}(\partial/\partial t) \geq 0$ and $\Lambda \leq H_{0}$ in D. Let u be a solution of the equation (1.1) such that $0 \leq u < \tau$. If u attains the minimum in D, then u is constant.

Proof. Put $E = \{x \in D; u(x) = m\}$ where *m* is the minimum of *u* in *D*. Suppose $D \rightleftharpoons E$. Then *E* is not open in *D*. Therefore we can choose a $x_0 \in D \setminus E$ and an open metric ball D_0 in \mathbb{R}^n of radius r_0 centered at x_0 so that $D_0 \cap E = \emptyset$, $\overline{D_0} \cap$

 $E = \{y_0\}$ and $\overline{D}_0 \subset D$ where $\overline{D}_0 = \{x \in \mathbb{R}^n; \|x - x_0\| \leq r_0\}, \|$ denotes the standard norm of \mathbb{R}^n . Let D_1 be the open metric ball in \mathbb{R}^n of radius r_1 centered at y_0 such that $0 < r_1 < r_0$ and $\overline{D}_1 \subset D$. Then for each $x \in \overline{D}_1$ we have

$$(1.3) r_2 \leq ||x-x_0|| \leq r_8$$

where $r_2 = r_0 - r_1$ and $r_3 = r_0 + r_1$. There exists a constant δ (0< δ <1) satisfying

$$(1.4) u > m + \delta on \overline{D}_0 \cap \partial \overline{D}_1$$

where $\partial \overline{D}_1 = \{x \in \mathbb{R}^n : ||x-y_0|| = r_1\}$. Since the matrix $(A_{ij}(x, t, p))$ is positive definite, there are positive constants λ_1 and λ_2 such that

(1.5)
$$\lambda_1 \|X\|^2 \leq \sum_{i,j=1}^n A_{ij}(x, u(x), p(x)) X_i X_j \leq \lambda_2 \|X\|^2$$

where $x \in \overline{D}_1$, $X = (X_1, \dots, X_n) \in \mathbb{R}^n$, $||X||^2 = \sum_{i=1}^n X_i^2$ and $p(x) = (u_1(x), \dots, u_n(x))$. On \overline{D}_1 we have

$$|B(x, u(x), p(x)) - B(x, u(x), 0)| \leq c \left(\sum_{i=1}^{n} (u_i(x))^2\right)^{1/2}$$

where

(1.6)
$$c = \sup_{\overline{D}_1} \sum_{i=1}^n \int_0^1 |\partial B / \partial p_i(x, u(x), tp(x))| dt < +\infty$$

Since $\operatorname{Ric}_{N}(\partial/\partial t) \geq 0$, $\Lambda \leq H_{0}$ and $0 \leq u < \tau$, by Lemma 1.1 for any $x \in \overline{D}_{1}$

$$B(x, u(x), 0) = n(\Lambda(x) - H(x, u(x))) \leq n(H_0(x) - H_{u(x)}(x)) \leq 0.$$

Thus we get

(1.7)
$$B(x, u(x), p(x)) \leq c \left(\sum_{i=1}^{n} (u_i(x))^2 \right)^{1/2}, \quad x \in \overline{D}_1.$$

Define a real valued function $h: D \rightarrow R$ by

(1.8)
$$h(x) = \exp(-\alpha ||x - x_0||^2) - \exp(-\alpha r_0^2)$$

where α is a positive constant such that

(1.9) $\alpha > \max\left\{(-\log \delta)/r_2^2, (n\lambda_2 + cr_3)/2\lambda_1r_2^2\right\}.$

Put w=u-h. Since h<0 on $\partial \overline{D}_1 \setminus \overline{D}_0$, we have

(1.10)
$$w > m$$
 on $\partial \overline{D}_1 \setminus \overline{D}_0$.

On the other hand, from (1.3), (1.4) and (1.9) we obtain

(1.11) $w > m + \delta - \exp((-\alpha r_2)) > m \text{ on } \partial \overline{D}_1 \cap \overline{D}_0$.

Since $w(y_0) = u(y_0) = m$, by (1.10) and (1.11) $w \mid \overline{D}_1$ attains the minimum in D_1 . Let y be a point of D_1 at which $w \mid \overline{D}_1$ attains the minimum. Using (1.7) we have

(1.12)
$$\sum_{i,j=1}^{n} A_{ij}(y, u(y), p(y))(w_{ij}(y) + h_{ij}(y)) \leq c \left(\sum_{i=1}^{n} (u_i(y))^2\right)^{1/2}.$$

From (1.8)

 $(1.13) \qquad h_i(y) = -2\alpha z_i \eta \quad (1 \leq i \leq n) , \qquad h_{ij}(y) = -2\alpha (\delta_{ij} - 2\alpha z_i z_j) \eta \quad (1 \leq i, j \leq n)$

where $z=(z_1, \dots, z_n)=y-x_0$ and $\eta=\exp(-\alpha ||y-x_0||^2)$. Since $w | \overline{D}_1$ attains the minimum at y, we have

$$(1.14) u_i(y) = h_i(y) \quad (1 \le i \le n)$$

and

(1.15)
$$\sum_{i,j=1}^{n} A_{ij}(y, u(y), p(y)) w_{ij}(y) \ge 0.$$

From (1.3), (1.5), (1.13) and (1.15) we obtain

(1.16) the left hand side of (1.12)

$$\geq 2\alpha\eta(2\alpha\lambda_1 ||z||^2 - n\lambda_2) \geq 2\alpha\eta(2\alpha\lambda_1 r_2^2 - n\lambda_2) .$$

By (1.13) and (1.14), $\left(\sum_{i=1}^{n} (u_i(y))^2\right)^{1/2} = 2\alpha \eta ||z|| \neq 0$. It follows from (1.3), (1.12) and (1.16) that $2\alpha \lambda_1 r_2^2 - n\lambda_2 \leq c ||z|| \leq cr_s$. This contradicts (1.9). Hence we have proved D=E. We complete the proof.

In the rest of this section, let M be an *n*-dimensional $(n \ge 2)$ connected, complete Riemannian manifold and let (W_1, ι_1) and (W_2, ι_2) be connected hypersurfaces embedded in M with unit normal vector fields ξ_1 and ξ_2 respectively, where ι_k denotes the inclusion map, k=1, 2. We denote by H_k the mean curvature of W_k with respect to ξ_k , k=1, 2. For a subset U of W_1 and a positive τ we put $\perp_{\tau}(U) = \{t\xi_1(q) \in TM; |t| < \tau, q \in U\}$ and $\perp_{\tau}^+(U) = \{t\xi_1(q) \in TM; 0 \le t < \tau, q \in U\}$.

Lemma 1.3. Let M, W_1 and W_2 be as above. Suppose that M is of nonnegative Ricci curvature, that is, $\operatorname{Ric}_{\mathfrak{M}}(X) \geq 0$ for all unit tangent vectors X to Mat every point of M, and suppose that $H_1 \geq 0$ on W_1 and $H_2 \leq 0$ on W_2 . Furthermore assume that there is a point p of $W_1 \cap W_2$ satisfying the following conditions: $(1) \xi_1(p) = \xi_2(p), (2)$ For an open neighborhood U_1 of p in W_1 and a positive τ such that $\exp: \perp_{\mathfrak{r}}(U_1) \rightarrow M$ is an embedding there is an open neighborhood of p in W_2 which is contained in $\exp(\perp_{\mathfrak{r}}^+(U_1))$. Then there exists a minimal hypersurface Wembedded in M such that $p \in W \subset W_1 \cap W_2$.

Proof. Let p be a point of $W_1 \cap W_2$ satisfying the conditions (1) and (2) stated above. Choose a local coordinate neighborhood U_1 about p in W_1 and a positive τ so that $\exp: \perp_{\tau}(U_1) \to M$ is an embedding. By Gauss lemma, the line element of $\perp_{\tau}(U_1)$ induced from M by \exp can be expressed by $ds^2 = \sum_{i,j=1}^{n-1} g_{ij}(x,t) dx_i dx_j + dt^2$ where (x_1, \dots, x_{n-1}) is a local coordinate system on U_1 and $|t| < \tau$. By the condition (2) and the implicit function theorem, there exists an open neighborhood V_1 of p in $W_1, V_1 \subset U_1$, which is diffeomorphic to an open metric ball in \mathbb{R}^{n-1} , and there exists a real valued function $u \in \mathbb{C}^{\infty}(V_1)$ satisfying the following conditions: u(p)=0, $u \ge 0$ in V_1 and $p \in V_2 := \{\exp_q u(q)\xi_1(q); q \in V_1\} \subset W_2$. Now in Lemma 1.2 we replace H_0 , Λ and n by H_1 , H_2 and n-1, respectively. Then we can apply Lemma 1.2 to the present situation. By Lemma 1.2, $u \equiv 0$ in V_1 . Then $V_1 = V_2$ and V_1 is a minimal hypersurface in M which is contained in $W_1 \cap W_2$. This completes the proof.

§2. Definition of ρ_M

In this section let M be an n-dimensional $(n \ge 2)$ connected, complete Riemannian manifold with Riemannian metric \langle , \rangle . First we shall give the definition of $\rho_M: M \to R^+ \cup \{+\infty\}$. Suppose that for a $p \in M$ and an $r > 0 \exp_p: \overline{B}(0_p, r) \to M$ is of maximal rank where $\overline{B}(0_p, r) = \{Y \in T_pM; \|Y\| \le r\}$, $\|Y\|$ stands for the length of Y. Let X be a unit tangent vector at p and $c_{p,x}: [0, \infty) \to M$ the geodesic parametrized by arc length emanating from p with initial direction X. Then the velocity vector $\dot{c}_{p,x}(r)$ is a unit normal vector to the geodesic sphere $S(p, r) = \exp_p(\partial B(0_p, r))$ where $\partial B(0_p, r) = \{Y \in T_pM; \|Y\| = r\}$. We denote by $H_x(p, r)$ the mean curvature of S(p, r) with respect to $\dot{c}_{p,x}(r)$. Let Ω_M be the subset of M which consists of all points p of M satisfying the condition: there exists an r>0 such that $\exp_p: \overline{B}(0_p, r) \to M$ is of maximal rank and $H_x(p, r) \ge 0$ for all unit tangent vectors X at p. We now define $\rho_M: M \to R^+ \cup \{+\infty\}$ by

$$\rho_{\mathcal{M}}(p) = \inf \{r > 0; H_{\mathcal{X}}(p, r) \ge 0 \text{ for all } X \in T_{p}M \quad (||X|| = 1) \} \text{ if } p \in \mathcal{Q}_{\mathcal{M}},$$

$$\rho_{\mathcal{M}}(p) = +\infty \quad \text{if } p \in M \setminus \mathcal{Q}_{\mathcal{M}}.$$

We note that $\rho_{\mathcal{M}}(p) > 0$ if $p \in \Omega_{\mathcal{M}}$. We put $\rho(M) = \sup \rho_{\mathcal{M}}$.

Let \tilde{M} be the universal Riemannian covering manifold of M and $\Pi: \tilde{M} \to M$ the Riemannian covering map. Then $\rho_{\tilde{M}} = \rho_{M} \circ \Pi$.

Remark 2.1. If M is a connected, complete Riemannian manifold of nonpositive sectional curvature then Ω_M is empty. A typical example of a Riemannian manifold with $\Omega_M \neq \emptyset$ is the Euclidean sphere $S^n(r)$ of radius r. In this case,

196

 $\Omega_M = S^n(r)$ and $\rho_M(p) = \pi r/2$ for any $p \in S^n(r)$.

Now let p be a point of \mathcal{Q}_{M} and let r be a positive such that $\exp_{p}: \overline{B}(0_{p}, r) \to M$ is of maximal rank. Let X be an arbitrary unit tangent vector at p. Choose an orthonormal basis e_{1}, \dots, e_{n-1} in the tangent space to S(p, r) at $c_{p,X}(r)$. There exist Jacobi fields $Y_{1}(t), \dots, Y_{n-1}(t)$ along $c_{p,X} \mid [0, r]$ satisfying $Y_{i}(0)=0_{p}, Y_{i}(r)=e_{i}$ $(1 \leq i \leq n-1)$. Using the second variation formula, $H_{X}(p, r)$ can be expressed by

(2.1)
$$(n-1)H_{\mathbf{x}}(\mathbf{p},\mathbf{r}) = -\sum_{i=1}^{n-1} I(Y_i)$$
$$= -\sum_{i=1}^{n-1} \int_0^{\mathbf{r}} \{ \|Y_i'(t)\|^2 - \langle R(Y_i(t), \dot{c}_{\mathbf{p},\mathbf{x}}(t))\dot{c}_{\mathbf{p},\mathbf{x}}(t), Y_i(t) \rangle \} dt$$

where $Y_i'(t)$ is the covariant derivative of $Y_i(t)$ along $c_{p,x}$. If M is the *n*-dimensional Euclidean sphere $S^n(1/\lambda)$, $\lambda > 0$, of radius $1/\lambda$, then we have

(2.2)
$$H_x(p, r) = -\lambda \cot \lambda r , \quad 0 < r < \pi/\lambda .$$

Lemma 2.1. Let M be as above. Suppose $K_{\mathfrak{M}} \leq 1$ and $\operatorname{Ric}_{\mathfrak{M}} \geq (n-1)\lambda^2$ $(0 < \lambda \leq 1)$. Then we have

$$-\lambda \cot \lambda r \leq H_x(p, r) \leq -\cot r \quad (0 < r < \pi)$$

for all unit tangent vectors X at every point p of M. If $H_x(p, r) = -\lambda \cot \lambda r$ (resp. $\cot r$) for some $X \in T_p M$ (||X|| = 1), then $K_M(P(t)) = \lambda^2$ (resp. 1) for all plane sections P(t) containing $\dot{c}_{p,x}(t)$ ($0 \le t \le r$).

Proof. Since $K_{\mathfrak{M}} \leq 1$, for each $p \in M$ and an r $(0 < r < \pi) \exp_{p}: B(0_{p}, r) \to M$ is of maximal rank. Fix an r, $0 < r < \pi$. Let p be a point of M. Let X be an arbitrary unit tangent vector at p. Choose an orthonormal basis e_{1}, \dots, e_{n-1} in the tangent space to S(p, r) at $c_{p,x}(r)$. There are Jacobi fields $Y_{1}(t), \dots, Y_{n-1}(t)$ along $c_{p,x} \mid [0, r]$ satisfying $Y_{i}(0) = 0_{p}$, $Y_{i}(r) = e_{i}$ $(1 \leq i \leq n-1)$. We extend e_{1}, \dots, e_{n-1} to parallel vector fields $e_{1}(t), \dots, e_{n-1}(t)$ along $c_{p,x} \mid [0, r]$, respectively. Put $Z_{i}(t) =$ $(\sin \lambda t / \sin \lambda r) e_{i}(t), 0 \leq t \leq r, 1 \leq i \leq n-1$. Since $I(Y_{i}) \leq I(Z_{i})$ $(1 \leq i \leq n-1)$ and $\operatorname{Ric}_{\mathfrak{M}} \geq$ $(n-1)\lambda^{2}$, we have $H_{x}(p, r) \geq -\lambda \cot \lambda r$. If $H_{x}(p, r) = -\lambda \cot \lambda r$, then $Y_{i}(t) = Z_{i}(t)$ $(0 \leq t \leq r), 1 \leq i \leq n-1$. From this we obtain $K_{\mathfrak{M}}(e_{i}(t) \wedge \dot{c}_{p,x}(t)) = \lambda^{2}, 0 \leq t \leq r, 1 \leq i \leq n-1$. Moreover we can show that $K_{\mathfrak{M}}(P(t)) = \lambda^{2}$ for all plane sections P(t) containing $c_{p,x}(t)$ $(0 \leq t \leq r)$. Similary, $K_{\mathfrak{M}} \leq 1$ implies $H_{x}(p, r) \leq -\cot r$ for all unit tangent vectors X at every point p of M. If $H_{x}(p, r) = -\cot r$ for some $X \in T_{p}M$ (||X||=1), then $K_{\mathfrak{M}}(P(t))=1$ for all plane sections P(t) containing $\dot{c}_{p,x}(t)$ $(0 \leq t \leq r)$.

Lemma 2.1 implies the following.

Proposition 2.1. Let M be an n-dimensional $(n \ge 2)$ connected, complete

Riemannian manifold. If $K_{\mathfrak{M}} \leq 1$ and $\operatorname{Ric}_{\mathfrak{M}} \geq (n-1)\lambda^2$ $(1/2 < \lambda \leq 1)$, then $\Omega_{\mathfrak{M}} = M$. Moreover, $\rho_{\mathfrak{M}}$ is continuous and $\pi \leq 2\rho_{\mathfrak{M}}(p) \leq \pi/\lambda$ for all $p \in M$.

Remark 2.2. We note that there are Riemannian manifolds satisfying $\operatorname{Ric}_{M} \geq (n-1)\lambda^{2}$ $(0 < 2\lambda \leq 1)$ and $\Omega_{M} = M$. For example, the Riemannian product manifold $M = S^{n}(1) \times S^{2}(1)$ (n=3, 4) satisfies such conditions. In this case, $\rho(M) < \pi$.

Proposition 2.2. Let M be an n-dimensional $(n \ge 2)$ connected, complete Riemannian manifold of positive Ricci curvature. If $\Omega_{\mathfrak{M}}$ is not empty, then M is compact and the fundamental group $\pi_1(M)$ is finite.

Proof. Let p be a point of Ω_{M} . Suppose that M is not compact. Then there is a geodesic $c: [0, \infty) \rightarrow M$ parametrized by arc length emanating from p with $d_{\mathcal{M}}(p, c(t)) = t$ for all t > 0. By the definition of $\mathcal{Q}_{\mathcal{M}}$ there exists an r' > 0 such that $\exp_p: \overline{B}(0_p, r') \to M$ is of maximal rank and $H_x(p, r') \ge 0$ for all $X \in T_p M$ (||X||=1). Since M is of positive Ricci curvature, using Lemma 1.1 we can choose an r > r' so that $\exp_p: \overline{B}(0_p, r) \to M$ is of maximal rank and $H_x(p, r) > 0$ for all $X \in T_p M$ (||X|| = 1). For each t (t > r) let V(t) be a connected open neighborhood of $-(t-r)\dot{c}(t)$ in $\partial B(0_{c(t)}, t-r)$ such that $\exp_{c(t)} : CV(t) \to M$ is an embedding where $CV(t) = \{sY; 0 \leq s \leq 1, Y \in V(t)\}$. We put $W(t) = \exp_{c(t)} V(t)$ (t > r). Denote by H(t) the mean curvature (with respect to $\dot{c}(r)$) of W(t) at c(r). Then, $H(t) \ge 1$ $H_{c(o)}(p, r)$. Since $\operatorname{Ric}_{M} > 0$, H(t) < 1/(t-r) for all t > r. Thus we get $H_{c(o)}(p, r) < 1/(t-r)$ (t-r) for all t > r. We obtain $H_{c(o)}(p, r) = 0$ as $t \to \infty$. This contradicts $H_{c(o)}(p, r) > 0$. Therefore, M is compact. Let M be the universal Riemannian covering manifold of M. It is easy to see $\Omega_{\widetilde{M}} \neq \emptyset$. By the same argument as above, we see that M is compact. Hence $\pi_1(M)$ is finite.

§3. Manifolds with $\rho(M) < +\infty$

Theorem 3.1. Let M be an n-dimensional $(n \ge 2)$ connected, complete Riemannian manifold of nonnegative Ricci curvature. If there exist distinct points p and q of M such that $d_M(p,q) \ge \rho_M(p) + \rho_M(q)$, then M is homeomorphic to a standard sphere of dimension n.

Proof. Let p and q be distinct points of M such that $d_M(p,q) \ge \rho_M(p) + \rho_M(q)$. We put $A_p = \{X \in T_pM; \|X\| = 1, \exp_p dX = q\}$ where $d: = d_M(p,q) = \rho_M(p) + \rho_M(q) + 2r$, $r \ge 0$. By completeness of M, A_p is a nonempty closed subset in the unit sphere $\partial B(0_p, 1)$ in T_pM . We shall show A_p is open in $\partial B(0_p, 1)$. Let X be an arbitrary unit tangent vector contained in A_p and let $c: [0, d] \rightarrow M$ be the minimal geodesic from p to q with initial direction X. Since c is minimal, each c(t) (0 < t < d) is

198

not a conjugate point of p along c. Hence we can choose a connected open neighborhood U_x of X in $\partial B(0_p, 1)$ so that $\exp_p: \tilde{U}_x \to M$ is an embedding where $\tilde{U}_x =$ $\{tZ \in T_pM; 0 \leq t \leq \rho_M(p) + r, Z \in U_x\}$. By the same reason we can choose a connected open neighborhood U_r of $Y = -\dot{c}(d)$ in $\partial B(0_q, 1)$ so that $\exp_q: \tilde{U}_r \to M$ is an embedding where $U_r = \{tZ' \in T_q M; 0 \leq t \leq \rho_M(q) + r, Z' \in U_r\}$. Then $W_1 = \exp_p((\rho_M(p) + r))$ $r)U_x$ and $W_2 = \exp_q\left((\rho_M(q) + r)U_r\right)$ are connected hypersurfaces embedded in M such that $c(\rho_{\mathcal{M}}(p)+r) \in W_1 \cap W_2$, where $(\rho_{\mathcal{M}}(p)+r)U_x = \{(\rho_{\mathcal{M}}(p)+r)Z \in T_pM; Z \in U_x\}$ and $(\rho_M(q)+r)U_r = \{(\rho_M(q)+r)Z' \in T_qM; Z' \in U_r\}$. Let ξ_1 and ξ_2 be unit normal vector fields on W_1 and W_2 respectively which are defined by $\xi_1(c_{p,z}(\rho_M(p)+r)) = \dot{c}_{p,z}(\rho_M(p)+r)$ $(Z \in U_X)$ and $\xi_2(c_{q,Z'}(\rho_M(q)+r)) = -\dot{c}_{q,Z'}(\rho_M(q)+r)$ $(Z' \in U_Y)$. We denote by H_i the mean curvature of W_i with respect to ξ_i , i=1, 2. Using Lemma 1.1, $H_1 \ge 0$ on W_1 and $H_2 \leq 0$ on W_2 . Moreover, W_1 and W_2 satisfy the other hypotheses in Lemma 1.3. Hence, by Lemma 1.3 there exists a connected minimal hypersurface W embedded in M such that $c(\rho_M(p)+r) \in W \subset W_1 \cap W_2$. We can choose open neighborhoods V_x of X in $\partial B(0_p, 1)$ and V_y of Y in $\partial B(0_q, 1)$ such that $\exp_p((\rho_M(p) +$ $r V_x = \exp_q((\rho_M(q) + r)V_y) \subset W$. This implies $V_x \subset A_p$. Hence A_p is open in $\partial B(0_p, 1)$. Therefore, $A_p = \partial B(0_p, 1)$. Then we see that $\exp_{p \mid B(0_p, d)} \colon B(0_p, d) \to B(p, d)$ is a diffeomorphism and $M=B(p, d) \cup \{q\}$. It is now clear that M is homeomorphic to a standard sphere of dimension n.

Remark 3.1. Let *M* be as in Theorem 3.1. Suppose that there exist distinct points *p* and *q* of *M* such that $\rho_M(p) + \rho_M(q) \leq d_M(p,q)$. From the proof of the above theorem we see that for each *t*, $0 < t < d := d_M(p,q)$, $M = B(p,t) \cup B(q,d-t) \cup$ $S(p,t), S(p,t) = \partial B(p,t) = \partial B(q,d-t)$ and S(p,t) is a hypersurface embedded in *M*. Suppose now $d - \rho_M(p) - \rho_M(q) = 2r > 0$. Using Lemma 1.1, the mean curvature of $\partial B(p,t), \rho_M(p) \leq t < d$, with respect to the outer unit normal vector is nonnegative and the mean curvature of $\partial B(q,t), \rho_M(q) \leq t < d$, with respect to the outer unit normal vector is nonnegative. By Lemma 1.1, S(p,t) is totally geodesic for each $t, \rho_M(p) \leq t \leq \rho_M(p) + 2r = d - \rho_M(q)$. Therefore there is an isometric imbedding from the Riemannian product manifold $S(p, \rho_M(p)) \times [0, 2r]$ into *M*. If $d_M(p,q) = \rho_M(p) + \rho_M(q)$, then $S(p, \rho_M(p))$ is a minimal hypersurface in *M*. We see that if *M* is of positive Ricci curvature then $d_M(p,q) = \rho_M(p) + \rho_M(q)$.

Remark 3.2. Using a similar method as the proof of Theorem 3.1 we can show Cheng's theorem ([3]) which is a generalization of Toponogov Sphere Theorem.

As a consequence of Theorem 3.1 we have the following.

Corollary 3.1. Let M be an n-dimensional $(n \ge 2)$ connected, compact Riemannian manifold of nonnegative Ricci curvature. If $d(M) \ge 2\rho(M)$, then M

is homeomorphic to a standard sphere of dimension n.

Corollary 3.2. Let M be an n-dimensional $(n \ge 2)$ connected, complete Riemannian manifold of positive Ricci curvature. If $\rho(M)$ is finite, then M is compact and $d(M) \le 2\rho(M) \le \pi/\lambda$ where λ is a positive constant such that $\lambda^2 = \inf \{ \operatorname{Ric}_{\mathcal{M}}(X)/(n-1); X \in T_p M (||X||=1), p \in M \}.$

Proof. Since M is of positive Ricci curvature and $\rho(M)$ is finite, by Proposition 2.2 M is compact. From Remark 3.1 we see $d(M) \leq 2\rho(M)$. Let pbe an arbitrary point of M. Choose an r>0 so that $\exp_p: \overline{B}(0_p, r) \to M$ is of maximal rank. By a similar method as in the proof of Lemma 2.1, $H_x(p, r) \geq$ $-\lambda \cot \lambda r$ for all $X \in T_p M$ (||X|| = 1) where λ is a positive constant such that $\lambda^2 = \inf \{\operatorname{Ric}_{\mathfrak{M}}(X)/(n-1); X \in T_q M$ (||X|| = 1), $q \in M\}$. Suppose $2\rho_{\mathfrak{M}}(p) > \pi/\lambda$. Then $H_x(p, \rho_{\mathfrak{M}}(p)) > 0$ for all $X \in T_p M$ (||X|| = 1). There exists an r' such that $0 < r' < \rho_{\mathfrak{M}}(p)$ and $H_x(p, r') > 0$ for all $X \in T_p M$ (||X|| = 1). This contradicts the definition of $\rho_{\mathfrak{M}}(p)$. Hence $2\rho_{\mathfrak{M}}(p) \leq \pi/\lambda$. This completes the proof.

From Proposition 2.2 and Corollaries 3.1, 3.2 we have the following.

Theorem 3.2. Let M be an n-dimensional $(n \ge 2)$ connected, complete Riemannian manifold. Suppose that $K_M \le 1$ and $\operatorname{Ric}_M \ge (n-1)\lambda^2$, $1/2 < \lambda \le 1$. Then $\pi \le 2\rho(M) \le \pi/\lambda$ and $d(M) \le 2\rho(M)$. If $d(M) = 2\rho(M)$, then M is homeomorphic to a standard sphere of dimension n.

Theorem 3.3. Let M be an n-dimensional $(n \ge 2)$ connected, complete Riemannian manifold satisfying the condition $K_{M} \le 1$ and $\operatorname{Ric}_{M} \ge (n-1)\lambda^{2}$ $(1/2 < \lambda \le 1)$.

(1) If $d(M)=2\rho(M)=\pi$, then M is isometric to the n-dimensional Euclidean sphere $S^{n}(1)$ of radius 1.

(2) If $d(M)=2\rho(M)=\pi/\lambda$, then M is isometric to the n-dimensional Euclidean sphere $S^n(1/\lambda)$ of radius $1/\lambda$.

Proof. We shall prove (1). Since M is compact, we can choose points pand q of M such that $d_{\mathfrak{M}}(p,q)=d(M)=\pi$. Since M is of positive Ricci curvature, $\rho_{\mathfrak{M}}(p)+\rho_{\mathfrak{M}}(q)=d_{\mathfrak{M}}(p,q)=2\rho(M)$ (see Remark 3.1). This implies $\rho_{\mathfrak{M}}(p)=\rho_{\mathfrak{M}}(q)=$ $\rho(M)=\pi/2$. From the proof of Theorem 3.1 we see that $M=B(p, \pi/2) \cup B(q, \pi/2) \cup$ $S(p, \pi/2), \ \partial B(p, \pi/2)=\partial B(q, \pi/2)=S(p, \pi/2)$ and $S(p, \pi/2)$ is a hypersurface embedded in M. Since $H_{\mathfrak{X}}(p, \pi/2) \ge 0$ for all $X \in T_p M$ (||X|| = 1), by Lemma 2.1 $H_{\mathfrak{X}}(p, \pi/2) =$ $-\cot(\pi/2)=0$ for all $X \in T_p M$ (||X||=1). Then for each $X \in T_p M$ (||X||=1) $K_{\mathfrak{M}}(P(t))=1$ ($0 \le t \le \pi/2$) where P(t) is an arbitrary plane section containing $c_{p,\mathfrak{X}}(t)$. This implies that $\overline{B}(p, \pi/2)$ is isometric to a closed metric ball of radius $\pi/2$ in the n-dimensional Euclidean sphere $S^n(1)$ of radius 1. Similary, $\overline{B}(q, \pi/2)$ is isometric to a closed metric ball of radius $\pi/2$ in $S^n(1)$. Then we see that M is isometric to $S^n(1)$.

By the same method as above we can prove (2).

Remark 3.3. We note that (2) of the above theorem also follows from Cheng's theorem ([3]).

Theorem 3.4. Let M be an n-dimensional $(n \ge 2)$ connected, complete Riemannian manifold of nonnegative Ricci curvature. If $\rho(M)$ is finite, then M is compact and the fundamental group $\pi_1(M)$ of M is finite.

Proof. Let \widetilde{M} be the universal Riemannian covering manifold of M with covering map Π . Since $\rho_{\widetilde{M}} = \rho_{\widetilde{M}} \circ \Pi$, $\rho(\widetilde{M})$ is finite. We shall show that \widetilde{M} is compact. If \widetilde{M} is not compact, then we can choose distinct points p and q of \widetilde{M} such that $d_{\widetilde{M}}(p,q) > \rho_{\widetilde{M}}(p) + \rho_{\widetilde{M}}(q)$. By Theorem 3.1 \widetilde{M} is homeomorphic to a standard sphere. This is a contradiction. Hence \widetilde{M} is compact. This completes the proof.

Theorem 3.5. Let M be an n-dimensional $(n \ge 2)$ connected, compact Riemannian manifold of nonnegative Ricci curvature. Suppose that M is not simply connected and that $\rho_M(p) \le d_M(p, C(p))$ holds for some $p \in M$, where C(p)stands for the cut locus of p in M. Then there exists a homeomorphic involution $\varphi: S^n(1) \rightarrow S^n(1)$ of fixed point free and M is homeomorphic to the quotient manifold $S^n(1)/\varphi$ of $S^n(1)$ obtained by identifying each $x \in S^n(1)$ with $\varphi(x)$.

Proof. Let p be a point of M such that $\rho_M(p) \leq d_M(p, C(p))$. Let M be the universal Riemannian covering manifold of M and $\Pi: \tilde{M} \to M$ the Riemannian covering map. Let Γ be the deck transformation group of \tilde{M} corresponding to the fundamental group $\pi_1(M, p)$. Each element of $\Gamma_1 = \Gamma \setminus \{\text{identity}\}$ acts on \tilde{M} as an isometry of fixed point free. Let p_1 be a point of $\Pi^{-1}(p)$. There exists a $\sigma \in \Gamma_1$ such that $d_{\tilde{M}}(p_1, \sigma(p_1)) \leq d_{\tilde{M}}(p_1, \gamma(p_1))$ for any $\gamma \in \Gamma_1$. We put $p_2 = \sigma(p_1)$ and $d = d_{\tilde{M}}(p_1, p_2)$. Since $\rho_M(p) \leq d_M(p, C(p))$ and $\rho_{\tilde{M}} = \rho_M \circ \Pi$, $d \geq 2\rho_M(p) = \rho_{\tilde{M}}(p_1) + \rho_{\tilde{M}}(p_2)$. By the same method as the proof of Theorem 3.1, $\exp_{p_1} \mid B(0_{p_1}, d)$ is diffeomorphic and $\tilde{M} = B(p_1, d) \cup \{p_2\}$. Then we see $\Gamma = \{\text{identity}, \sigma\}$. Let s be a point of $S^n(1)$ and let $\varphi: T_{p_1}\tilde{M} \to T_sS^n(1)$ be a linear isometry. We now define a map $\tilde{f}: \tilde{M} \to S^n(1)$ by $\tilde{f}(x) = \exp_{\epsilon}(\Phi((\pi/d)\Psi(x)))$ for $x \in \tilde{M} \setminus \{p_2\}$ and $\tilde{f}(p_2) = -s$ where $\Psi = (\exp_{p_1} \mid B(0_{p_1}, d))^{-1}$ and -s denotes the antipodal point of s in $S^n(1)$. Then \tilde{f} is homeomorphic. Let $\varphi: S^n(1) \to S^n(1)$ be a map defined by $\varphi = \tilde{f} \circ \sigma \circ \tilde{f}^{-1}$. We see that φ is a homeomorphic involution of fixed point free. Let $S^n(1)/\varphi$ be the quotient manifold of $S^n(1)$ obtained by identifying each $x \in S^n(1)$ with $\varphi(x)$. Define a map $f: M \to S^n(1)/\varphi$

by $f(q) = [\tilde{f}(\tilde{q})]$ where $\tilde{q} \in \Pi^{-1}(q)$ and $[\tilde{f}(\tilde{q})]$ stands for the equivalence class containing $\tilde{f}(\tilde{q})$. It is easy to see that f is homeomorphic. We complete the proof.

References

- [1] R. Bishop and R. Crittenden, Geometry of Manifolds, Academic Press, New York, 1964.
- [2] J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, North Holland Mathematical Library, 1975.
- [3] Shiu-Yuen Cheng, Eigenvalue comparison theorem and its geometric applications, Math.
 Z., 143 (1975), 289-297.
- [4] K. Shiohama, The diameter of δ -pinched manifolds, J. Diff. Geom., 5 (1971), 61-74.

Department of Mathematics Yokohama City University 22-2 Seto, Kanazawa-ku Yokohama, 236 Japan