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1. Introduction

An immersion $f$ of an m-dimensional shere $S^{m}$ into an M-dimensional sphere
$S^{r}(r)$ is called an isometric minimal immersion $f:S^{m}(1)\rightarrow S^{r}(r)$ if $f:S^{m}\rightarrow S^{r}(r)$ is a
minimal immersion and, at the same time, $f:S^{m}(1)\rightarrow S^{r}(r)$ is an isometric immer $\cdot$

sion. In the present paper we study some properties of isometric minimal immer-
sions $f_{l}$ which are said to be of order $s$ and which send a standard m-sphere
$S^{m}(1)$ into a sphere $S^{n-1}(r)$ such that $m\geqq 3,$ $s\geqq 4$ and

$n=(2s+m-1)(s+m-2)]/(s!(m-1)])$ ,
$r^{2}=m/(s(s+m-1))$ .

We consider $S^{m}(1)$ as the unit hypersphere of $R^{m+1}$ and $S^{n-1}(r)$ as a hyper.
sphere of $R^{n}$ with radius $r$ and with center at the origin. We fix an orthonormal
basis $\{e_{1}, \cdots, e_{m+1}\}$ in $R^{m+1}$ and an orthonormal basis $\{\overline{e}_{1}, \cdots,\tilde{e}_{n}\}$ in $R^{n}$ . Then the
image $f_{l}(x),$ $x\in S^{m}(1)$ , is expressed by $n$ coordinates $f^{A}(u(x)),$ $A=1,$ $\cdots,$ $n$ , where
$u(x)=u^{1}(x)e_{1}+\cdots+u^{m+1}(x)e_{m+1},$ $\Vert u(x)\Vert=1$ , and $f^{A}(u)$ are homogeneous harmonic
polynomials of degree $s$ in $u^{1},$

$\cdots,$
$u^{m+1}$ satisfying

$\sum_{A}(f^{A})^{2}=r^{2}$

Besides, $f^{A}(u(x))$ must satisfy the isometry condition

$\sum_{A}(\partial f^{A}/\partial x^{\mu})(\partial f^{A}/\partial x^{\lambda})=g_{\mu\lambda}$

where $x^{\lambda}(\lambda=1, \cdots, m)$ are local coordinates of the point $x$ of $S^{m}(1)$ and $g_{\mu\lambda}$ are
the local components of the standard Riemannian metric $g$ on $S^{m}(1)$ .

Such minimal immersions were first studied by M. do Carmo and N. Wallach
[1]. On the other hand the notion of isotropic immersions was introduced by B.
O’Neill [4]. Recently K. Tsukada studied the cases where $f_{l}$ becomes isotropic
[6]. He studied also the relation between helical geodesic immersions and isotropic
immersions.
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The present author also studied isometric minimal immersions $f_{l}:S^{m}(1)\rightarrow S^{n-1}(r)$

by his own way [2] and found that there exists a linear space $D^{m}.$ . of some bi-
symmetric tensors of bi-degree $(s, s)$ . This space is essentially the space $W_{2}$ of
do Carmo and Wallach and to each equivalence class of immersions $f_{l}$ there cor-
responds an element of $D_{l,*}^{m}$ . This space is a linear subspace of $B_{l}^{m}$. which is also
a space of some bi-symmetric tensors of bi-degree $(s, s)$ .

In the present paper j-isotropic elements of $D_{l,}^{m}$ . are defined and higher funda-
mental forms of an immersion $f$. are investigated when the element $C$ of $D_{*\prime}^{m}$.
associated with $f_{l}$ is j-isotropic. For that purpose higher fundamental forms of
a standard minimal immersion $h_{\epsilon}$ are first obtained in explicit form. It is proved
that higher fundamental forms $B_{2},$

$\cdots,$ $B_{j}$ of an immersion $f_{*}$ are isotropic if and
only if $C$ associated with $f$. is j-isotropic.

In \S 2 we reproduce some of the results obtained in [21. There we explain
definitions and notations most frequently used in the present paper. In \S 3 iso-
tropic elements of $D_{**}^{m}$ are defined and their properties are studied. In studying
properties of higher fundamentaI forms it became clear that some properties of
spherical harmonics play an important role. So these together with some properties
of symmetric tensors were studied in [3] and the results are cited in \S 4. These
are used in \S 5 in order to construct some symmetric tensor fields of isometric
minimal immersions which are closely related to higher fundamental forms. \S 6
is devoted to some study on the unit element $U$ of $B_{s,*}^{m}$ , which we use in \S \S 7, 8
in order to get higher fundamental forms of a standard minimal immersion.
Thus an explicit formula is obtained for each fundamental form. In \S 9 we get

some of the higher fundamental forms of an isometric minimal immersion. \S 10 is
devoted to isotropic property of higher fundamental forms.

The author wishes to express his hearty thanks to Professor K. Ogiue for
his kind encouragement and to Dr. K. Tsukada whose study invited the autor to
the present study.

2. Preliminaries

We consider $S^{n}(1)$ as the unit hypersphere of $R^{m+1}$ where we have fixed an
orthonormal basis $\{e_{1}, \cdots, e_{m+1}\}$ . On the other hand we take in $R^{n}$ an orthonormal
basis $\{\tilde{e}_{1}, \cdots,\tilde{e}_{n}\}$ and a hypersphere $S^{n-1}(r)$ where the center is the origin and the
radius is $\gamma$ . $n$ and $\gamma$ are those given in \S 1. Indices used most often in the present
paper are

$A,$ $B,$ $\cdots=1,$ $\cdots\prime n$ ,
$P,$ $Q,$ $\cdots=1,$ $\cdots,$ $n-1$ ,
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$a,$ $b,$
$\cdots,$ $h,$ $i,$ $\cdots=1,$ $\cdots,$ $m+1$ ,

$\alpha,$ $\beta,$
$\cdots,$ $\kappa,$

$\lambda,$ $\cdots=1,$ $\cdots,$ $m$

for which the usual summation convention is used if possible. But this does not
mean that these letters cannot be used otherwise.

We use the position vector $X=X^{A}\tilde{e}_{A}$ for a point of $R^{n}$ and, at the same time,
local coordinates $(Y^{1}, \cdots, Y^{n-1})$ for a point of $S^{n-1}(r)$ . As we consider $S^{n-1}(r)$ as
a hypersphere of $R^{n}$ as stated above, we have $X^{A}=X^{A}(Y^{1}, \cdots, Y^{n-1})$ or shortly
$X^{A}=X^{A}(Y)$ for a point in a coordinate neighborhood of $S^{n-1}(r)$ . We use local
coordinates $(x^{1}, \cdots, x^{m})$ for a point of $S^{m}(1)$ assuming that any immersion $f$ we
$nsider$ in the present study sends each coordinate neighborhood of $S^{m}(1)$ we take
into a coordinate neighborhood of $S^{n-1}(r)$ so that $f$ can be expressed locally by
$Y^{P}=Y^{P}(x^{1}, \cdots, x^{m})$ or $Y^{P}=Y^{P}(x)$ for short where $P=1,$ $\cdots,$ $n-1$ .

We use the position vector $u=u^{i}e_{\ell}$ for a point of $S^{m}(1)$ hence $u(x)=u^{i}(x)e_{\ell}$ for
a point $x$ of $S^{m}(1)$ .

Let $f:S^{m}(1)\rightarrow S^{n-1}(r)$ be an immersion such that

$f(x)=f^{A}(u(x))\tilde{e}_{A}$ , $\sum_{A}(f^{A}(u(x)))^{2}=r^{2}$

where $f^{A}(u)$ are homogeneous harmonic Polynomials of degree $s$ in $u$ , namely, in
$u^{1},$

$\cdots,$
$u^{m+1}$ . Then we have

(2.1) $\Delta_{m}f^{A}=\lambda.f^{A}$ , $\lambda.=s(s+m-1)$

where $\Delta_{m}$ is the Laplacian on the standard sphere $S^{m}(1)$ . $f$ is called an immersion
of order $s$ and we denote it by $f.$ . As a result of a well-known theorem of
Takahashi [5] we see that, if $f$ is an isometric minimal immersion $ S^{m}(1)\rightarrow S^{r}(\rho\rangle$

where $S^{M}(p)$ is a hypersphere of some radius $\rho$ in $R^{r+1}$ , then $f$ is necessarily an
immersion of some order $s$ .

The functions $u^{h}(x)$ are eigenfunctions of $\Delta_{m}$ satisfying $\Delta_{m}u^{h}=mu^{h}$ . It is well-
known that, for each eigenfunction $\psi$ satisfying $\Delta_{m}\phi=\lambda_{\epsilon}\phi$ there exists just one
homogeneous harmonic polynomial

$F=F_{\ell_{1}\cdots\ell}.u^{i_{1}}\cdots u^{i}$.
of degree $s$ such that

$\psi(x)=F_{\ell_{1}\cdots\ell}.u^{\ell_{1}}(x)\cdots u^{\ell}*(x)$ .
The number $n=(2s+m-1)(s+m-2)!/(s!(m-1)!)$ is the dimension of the space
$H_{l}^{n+1}$ of homogeneous harmonic polynomials of degree $s$ . It is also clear that a
homogeneous harmonic polynomial $F$ of degree $s$ determines a symmetric tensor
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$t$ such that $t(v, \cdots, v)=F(v, \cdots, v)$ . This fact allows us to use the letter $F$ for a
symmetric tensor too when it satisfies

$\sum_{\ell}F(e,., e,., v_{\epsilon}, \cdots, v.)=0$

for arbitrary vectors $v_{\epsilon},$ $\cdots,$ $v$. of $R^{m+1}$ .
Definition of tensors $F^{A}$ . Suppose we have an immersion $f_{1}$ of order $s$ . From

what we have stated above we can define $n$ symmetric tensors $F^{A}$ of degree $s$

such that $f^{A}(u(x))=F^{A}(u(x), \cdots, u(x))$ and

(2.2) $\Sigma F^{A}(e_{\ell}, e, v_{8}, \cdots, v_{*})=0$ .
$F^{A}$ are called the tensors of degree $s$ associated with the immersion $f_{l}$ of order $s$ .

Deflnition of $B_{l,}^{m}.$ . The linear space $B^{m}$. is defined as the space such that
$C\in B_{*\prime}^{m}$. if and only if the tensor $C$ of degree $2s$ satisfies the following conditions
(i), (ii), (iii) where $v_{1},$ $\cdots,$ $v_{2}$. are arbitrary vectors of $R^{m+1}$ :

(i) $C(v_{1}, \cdots, v_{l};v_{+1}, \cdots, v_{2*})issymmetricbothinv_{1},$
$\cdots,$ $v$. $andinv_{+1},$ $\cdots,v_{2e}$ ,

(ii) $C(v_{1}, \cdots, v.;v_{+1}, \cdots, v_{2}.)=C(v_{+1}, \cdots, v_{2}.;v_{1}, \cdots, v.)$ ,
(iii) $\sum_{\ell}C(e, e_{\ell}, v_{8}, \cdots, v_{*};v_{*+1}, \cdots, v_{2}.)=0$ .
$B_{l,}^{m}$. is called the space of bi-symmetric harmonic tensors of bi-degree $(s, s)$ .
Definition of $D_{*}^{m}..$ . We define a linear subspace $D_{\epsilon}^{m}.$ . of $B_{l}^{m}$. as follows:
$C\in D^{m},$ . if and only if $C\in B^{m}’$. and satisfies
(iv) $C(w, w, v, \cdots, v;v, \cdots, v)=0$ for arbitrary vectors $v$ and $w$ of $R^{m+1}$ .
Definition of $ f\ldots$. When $f$. is an immersion of order $s$, we define a tensor

$f_{l}.$ . of degree $2s$ by

(2.3) $f_{l}..=\sum_{A}F^{A}\otimes F^{4}$

$f_{l}.$ . belongs to $B^{m}’*$ and is called the tensor of degree $2s$ associated with the
immersion $f.$ .

It is to be minded that, hitherto, isometry condition is not taken into account.
The set of isometric minimal immersions $f_{l}$ of order $s$ was classified by do

Carmo and Wallach [11 into three classes, namely, standard minimal immersions,
non standard full isometric minimal immersions and non-full isometric minimal
lmmersions.

We take an isometric minimal immersion $f$. and a standard minimal immersion
$h.$ . $ f\ldots$ associated with the immersion $f_{l}$ is common to all isometric minimal
immersions belonging to the same equivalence class $[f_{l}]$ as $f_{l}$ (see [2] Theorem 3.
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3). The tensor of degree $2s$ associated with standard minimal immersions $h$. is
denoted by $h,$ . Then we have $f_{l}.,-h_{*}.,$ $\in D_{*\prime}^{m}$ . ([2] \S 6). Conversely, if $\hat{d}\ldots\in D^{m}.$.
and if $t_{1}<t<t_{2}$ where $(t_{1}, t_{2})$ is a certain interval depending on $\hat{d}_{\iota}..$ , then $ h\ldots+t\hat{d}\ldots$

is the tensor $f_{\iota.\iota}$ of degree $2s$ associated with some isometric minimal immersion
$f_{l}:S^{m}(1)\rightarrow S^{n-1}(r)$ . $ C=f..\iota-h\ldots$ is then called the element of $D^{m}.$ . associated with
the isometric minimal immersion $f_{l}$ .

Now, in terms of the position vector $X=X^{A}\overline{e}_{A}$ , the local coordinates $Y^{P}(P=$

$1,$ $\cdots,$ $n-1$) and the local coordinates $x^{\iota}(\kappa=1, \cdots, m)$ , we can write for an iso-
metric minimal immersion

(2.4) $X^{A}(x)=X^{A}(Y(x))=F^{A}(u(x), \cdots, u(x))$ .
Thus, using the notations $X_{P}^{4}=\partial X^{A}/\partial Y^{P},$ $X_{\lambda^{A}}=\partial X^{A}/\partial x^{\lambda},$ $Y_{\lambda^{P}}=\partial Y^{P}/\partial x^{\lambda}$ , we have

(2.5) $X_{\lambda^{A}}=X_{P^{A}}Y_{\lambda^{P}}$

$=sF^{A}(\partial_{\lambda}u(x), u(x),$ $\cdots,$ $u(x))$

where $\partial_{\lambda}=\partial/\partial x^{\lambda}$ . Let us use $\nabla$ as the symbol of covariant differentiation in the
sense of Van der Waerden-Bortolotti with respect to $S^{m}(1)=(S^{m}, g)$ and $S^{n-1}(r)=$

$(S^{n-1},\tilde{g})$ . Hence $\nabla$ may be the Riemannian connection of $S^{m}(1)$ or of $S^{n-1}(r)$

according to cases and $\nabla_{\lambda}u=\partial_{\lambda}u$ . Then as $f_{l}$ is an isometric immersion, we have

$\nabla_{\mu}X_{\lambda^{A}}=Y_{\mu^{Q}}Y_{\lambda^{P}}\nabla_{Q}X_{P^{A}}+X_{P}^{A}\nabla_{\mu}Y_{\lambda^{P}}$

where

$\sum_{A}X_{Q}^{A}X_{P}^{A}=\tilde{g}_{QP}$ , $\nabla_{Q}X_{P^{A}}=-r^{-2}\tilde{g}_{QP}X^{A}$ ,

hence

(2.6) $\nabla_{\mu}X_{\lambda^{A}}=X_{P^{A}}\nabla_{\mu}Y_{\lambda^{P}}-r^{-2}g_{\mu\lambda}X^{A}$

because of $g_{\mu\lambda}=\tilde{g}_{QP}Y_{\mu^{Q}}Y_{\lambda^{P}}$ .
$u^{\hslash}$ are eigenfunctions of the Laplacian on $S^{m}(1)$ and satisfy

(2.7) $\sum_{\ell}(u^{\ell})^{2}=u_{\ell}u^{\ell}=1$ ,

(2.8) $\nabla_{\mu}u^{\ell}\nabla^{\mu}u^{h}=\delta^{\ell h}-u^{\ell}u^{h}$ ,

(2.9) $\nabla_{\mu}u\nabla_{\lambda}u^{\ell}=g_{\mu\lambda}$ ,

(2.10) $\nabla_{\mu}\Delta_{\lambda}u^{h}=-g_{\mu\lambda}u^{h}$

where $u=u^{\ell}$ and $\nabla^{\mu}=g^{\mu\lambda}\nabla_{\lambda}$ .
Thus, in view of (2.10), we get from (2.5)

(2.11) $\nabla_{\mu}X_{\lambda^{A}}=s(s-1)F^{4}(\nabla_{\mu}u, \nabla_{\lambda}u, u, \cdots, u)-sg_{\mu\lambda}X^{A}$ .
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Let us define $X_{\mu\lambda}^{A}$ by

(2.12) $X_{\mu\lambda}^{A}=\nabla_{\mu}X_{\lambda^{A}}+r^{-2}g_{\mu\lambda}X^{A}$ ,

namely, by

(2.12) $X_{\mu\lambda}^{A}=s(s-1)F^{4}(\nabla_{\mu}u, \nabla_{\lambda}u, u, \cdots, u)+(r^{-2}-s)g_{\mu\lambda}X^{A}$ .
Then we have, in view of (2.6),

(2.13) $X_{\mu\lambda}^{A}=X_{P}^{A}\nabla_{\mu}Y_{\lambda^{P}}$ .
The tensors of degree $s$ associated with a standard minimal immersion $h$. are

denoted by $H^{A}$ . Hence we have

$f_{*\cdot*}=\sum_{A}F^{A}\otimes F^{A}$ , $h.,*=\sum_{A}H^{A}\otimes H^{A}$

and

(2.14)
$\sum_{A}F^{A}\otimes F^{A}=\sum_{A}H^{A}\otimes H^{A}+C$ , $C\in D^{m},$ . .

The unit element $U$ of $B_{\epsilon}^{m}$. is defined in \S 4 of [2]. Its formula is
(2.15) $U(w_{1}, \cdots, w_{\iota};v_{1}, \cdots, v_{\iota})$

$=a_{0}S_{w}\langle w_{1}, v_{1}\rangle\cdots\langle w., v_{l}\rangle+\sum_{q=1}^{\sigma}a_{q}S_{w}S_{v}\langle w_{1}, w_{2}\rangle\cdots\langle w_{2q-1}, w_{2q}\rangle$

$\langle v_{1}, v_{2}\rangle$ ... $\langle v_{2q-1}, v_{2q}\rangle$

$\langle w_{2q+1}, v_{2q+1}\rangle\cdots\langle w., v.\rangle$

where $a_{0},$ $a_{1},$ $\cdots,$ $a_{\sigma}$ are certain numbers, $\langle$ , $\rangle$ denotes the ordinary inner product
in $R^{m+1},$ $S_{w}$ (resp. $S_{v}$) is the symmetrizer with respect to $w_{1},$ $\cdots,$ $w_{*}$ (resp. $v_{1},$ $\cdots,$ $v.$)
and $\sigma(=[s/2])$ is the largest integer satisfying $2\sigma\leqq s$ . $U$ and $H^{A}$ satisfy (see [2] \S 6)

(2.16)
$U=(1/c^{\prime})\sum_{A}H^{A}\otimes H^{A}$

where $c^{\prime}=r^{2}/(a_{0}+a_{1}+\cdots+a_{\sigma})$ .
Notations. We prefer to use notations such as $g(\mu\lambda),$ $\varphi(\omega\cdots\kappa)$ for $g_{\mu\lambda},$ $\varphi_{\omega\cdots\iota}$

and so on sometimes. We also use abbreviated notations defined as follows:
$F^{A}(\lambda)=F^{A}(\nabla_{\lambda}u, u, \cdots, u)$ ,

$F^{A}(\omega\cdots\lambda)=F^{A}(\nabla_{w}u, \cdots, \nabla_{\lambda}u, u, \cdots, u)$ ,
$U(\omega\cdots\lambda)=U(\nabla_{\omega}u, \cdots, \nabla_{\lambda}u, u, \cdots, u;u, \cdots, u)$ ,

$U(\omega\cdots\lambda;\delta\cdots\alpha)=U(\nabla_{\omega}u, \cdots, \nabla_{\lambda}u, u, \cdots, u;\nabla_{\delta}u, \cdots, \nabla_{\alpha}u, u, \cdots, u)$ .
If $S_{\ell}\in T_{\ell}^{0}(S^{m}(1))$ is a symmetric tensor field and $t$ is a tangent vector field of $S^{m}(1)$ ,
$S_{\ell}(t, \cdots, t)$ is denoted by $S_{i}(t)$ . Similarly we define $F_{\ell}^{A}(t),$ $X_{\ell}^{A}(t),$ $(DX^{A})(t)$ by
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$F_{i}^{A}(t)=F_{\ell}^{A}(t, \cdots, t, u, \cdots, u)$ (i-linear in t) ,
$F_{0^{A}}(t)=F^{A}(u, \cdots, u)=f^{A}$ (do not depend on t) ,
$X_{1}^{A}(t)=X_{i}^{A}(t, \cdots, t)$ (i-linear in t) ,

$(DX_{\ell}^{A})(t)=\nabla_{t}(X_{\ell}^{A})(t))-iX_{1}^{A}(t, \cdots, t, \nabla_{t}t)$ ($(i+1)$-linear in t)

where $X_{i}^{A}\in T_{\ell}^{0}(S^{m}(1))$ . $\langle$ , $\rangle^{-}$ denotes the inner product in the tangent space of
$S^{n-1}(r)$ with the Riemannian metric $\tilde{g}$ and $\langle$ , $\rangle^{B}$ denotes the ordinary inner pro-
duct in $R^{n}$ .

3. Isotropic elements of $D_{s,s}^{m}$

Deflnition 3.1. We define the function $\Gamma_{p,q}:R^{m+1}\times\cdots\times R^{m+1}\times R^{m+1}\rightarrow R$ by
$\Gamma_{p.q}(w_{1}, \cdots, w_{p+q};v)=C(w_{1}, \ldots, w_{p}, v, \cdots, v;w_{p+1}, \cdots, w_{p+q}, v, \cdots, v)$ .

Deflnition 3.2. We define the function $C_{p.q}:R^{m+1}\times R^{m+1}\rightarrow R$ by restricting $\Gamma_{p,q}$

to the domain $w_{1}=w_{2}=\cdots=w_{p+q}$ so that

$C_{p.q}(w, v)=C(w, \cdots, w, v, \cdots, v;w, \cdots, w, v, \cdots, v)$ .
Thus $C_{p.q}(w, v)$ is of bi-degree $(p, q)$ in $w,$ $C_{p.q}(w, v)=C_{*-p,.-q}(v, w)$ and $C_{p.q}=C_{q.p}$ .

Definition 3.3. We say that $C\in D_{s.s}^{m}$ is isotropic of order $p$ when $C_{p.p}(w, v)$

does not depend on the choice of the orthonormal set $\{v, w\}$ .
$C_{p.q}$ is identically zero for any element $C$ of $D_{*}^{m}.$ . if $p+q\leqq 3$ (see [2] \S 6, \S 7).

Thus we have

(3.1) $C_{p.q}=0$ if $p+q\leqq 3$ or $p+q\geqq 2s-3$

and every element of $D_{s,\epsilon}^{m}$ is isotropic of order 1.
Let $C_{p,q}^{*}$ be the function obtained from $C_{p.q}$ when the domain is restricted to

orthonormal sets $\{v, w\}$ . Considering the rotation

(3.2) $v^{\prime}=v$ cos $\theta+w$ sin $\theta$ , $w^{\prime}=-v$ sin $\theta+w$ cos $\theta$ ,

we can deduce from $C_{3,0}^{*}=C_{2,1}^{*}=0$ the identities

$(s-3)C_{4,0}^{*}+sC_{8,1}^{*}=3C_{2,0}^{*}$ ,
$(s-2)C_{3,1}^{*}+(s-1)C_{2,2}^{*}=2C_{1.1}^{*}+C_{2,0}^{*}$ .

As we have $C_{2,0}^{*}=C_{1,1}^{*}=0$ , we get

$C_{3,1}^{*}=-((s-1)/(s-2))C_{2,2}^{*}$ ,
$C_{4,0}^{*}=(s(s-1)/((s-2)(s-3)))C_{2,2}^{*}$

and this proves that, if $C$ is isotropic of order 2, then $C_{3,1}^{*}$ and $C_{4,1}^{*}$ are also con-
stants.
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Thus we can put, if $\{v, w\}$ is orthonormal,

$C(w, w, w, w, v, \cdots, v;v, \cdots, v)=k$

where $k$ is a constant. Let the set $\{v, w_{1}, w_{2}\}$ be orthonormal and put $w=w_{1}$ cos $\theta+$

$w_{2}$ sin $\theta$ . Then we get

$C(w_{1}, w_{1}, w_{2}, w_{2}, v, \cdots, v;v, \cdots, v)=k/3$ .
Thus we have

$C(e_{1}, e_{1}, e_{2}, e_{2}, e_{1}, \cdots, e_{1};e_{1}, \cdots, e_{1})=0$ ,
$C(e_{2}, e_{2}, e_{2}, e_{2}, e_{1}, \cdots, e_{1};e_{1}, \cdots, e_{1})=k$ ,
$C(e_{a}, e_{a}, e_{2}, e_{2}, e_{1}, \cdots, e_{1};e_{1}, \cdots, e_{1})=k/3$

for $a=3,$ $\cdots,$ $m+1$ . As $C$ satisfies (iii) we get $k+(m-1)k/3=0$ which proves $k=0$

and the following lemma.

Lemma 3.1. If an element $C$ of $D_{s,s}^{m}$ is isotropic of order 2, then $C_{4,0}=C_{3.1}=$

$C_{2.2}=0$ identically.

That this lemma is valid for any set $\{v, w\}$ is proved as follows. Any vector
$w$ is a linear combination of $v$ and a vector $w^{\prime}$ normal to $v$ . In view of the
identities (3.1) we easily get the lemma.

Returning to the orthonormal set $\{v, w\}$ and the rotation (3.2), we get from

(3.3) $C_{4.0}=C_{8,1}=C_{2,2}=0$

the identities
$(s-4)C_{b,0}^{*}+sC_{4,1}^{*}=0$ ,

$(s-3)C_{4.1}^{*}+(s-1)C_{3,2}^{*}=0$ ,
$C_{8.0}^{*}=0$

if $s\geqq 5$ . Thus we get, in view of (3.1) and (3.3),

(3.4) $C_{\iota.0}=C_{4.1}=C_{8.2}=0$ .
The results obtained above prove the following corollary.

Corollary 3.2. Suppose $s\geqq 5$ . If an element $C$ of $D_{l,*}^{m}$ is isotropic of order
2, then $C_{p.q}=0$ identically for any integers $p,$ $q\geqq 0$ such that $p+q\leqq 5$ .

If $s=4,$ $C_{\iota.0}$ does not exist, but (3.4) is valid in the sense, $C_{4,1}=C_{82}=0$ , which
is equivalent to $C_{80}=C_{2.1}=0$ .

Extending the method used in deducing Lemma 3.1 and Corollary 3.2 to more
general cases, we easily obtain the following theorem where $j\cdot isotropic$ elements
are defined as follows:
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PeflnltIon 3.4. Let $C$ be an element of $D^{m},.,$ $m\geqq 3,$ $s\geqq 4$ . $C$ is said to be
$j$-isotropic if $C$ is isotropic of order 2, 3, $\cdots,$

$j$ simultaneously where $j\leqq\sigma=[s/2]$ .
Theorem 3.3. Let $C$ be a $j$-isotropic element of $ D_{1}^{m}\ldots$ Then we have $C_{p.q}=0$

if $p+q\leqq 2j+1$ . If $C$ is a-isotropic, then $C$ vanishes.

It is easy to deduce from (3.1) that every element $C$ of $D_{l}^{m}.$. satisfies

$C(a, b, c, v, \cdots, v;v, \cdots, v)=0$ ,
$C(a, b, v, \cdots, v;c, v, \cdots, v)=0$

for arbitrary vectors $a,$ $b,$ $c,$ $v$ of $R^{m+1}$ (see [2] \S 7). Replacing $v$ by $v+td$ where
$v$ and $d$ are arbitrary vectors of $R^{m+1}$ and $t$ is a variable number, we get

$(s-3)C(a, b, c, d, v, \cdots, v;v, \cdots, v)+sC(a, b, c, v, \cdots, v;d, v, \cdots, v)=0$ ,
$(s-2)C(a, b, d, v, \cdots, v;c, v, \cdots, v)+(s-1)C(a, b, v, \cdots, v;c, d, v, \cdots, v)=0$ ,

hence

$C(a, b, c, v, \cdots, v;d, v, \cdots, v)=-((s-3)/s)C(a, b, c, d, v, \cdots, v;v, \cdots, v)$ ,
$C(a, b, v, \cdots, v;c, d, v, \cdots, v)=-((s-2)/(s-1))C(a, b, c, v, \cdots, v;d, v, \cdots, v)$ .
Suppose $C$ is isotropic of order 2. Then $C_{4.0}=0$ and we have $C(a,$ $b,$ $c,$ $d$ ,

$v,$ $\cdots,$ $v;v,$ $\cdots,$ $v$) $=0$ as $C$ satisfies (i). Thus we have the following lemma.

Lemma 3.4. Let $C$ be isotropic of order 2. Then

$C(a, b, c, d, v, \cdots, v;v, \cdots, v)=0$ ,
$C(a, b, c, v, \cdots, v;d, v, \cdots, v)=0$ ,
$C(a, b, v, \cdots, v;c, d, v, \cdots, v)=0$

hold for any vectors $a,$ $b,$ $c,$ $d,$ $v$ of $R^{m+1}$ .
This lemma states that, if $C$ is isotropic of order 2, then $\Gamma_{p.q}$ is identically

zero for $p+q\leqq 4$ . In order to get the following corollary from Corollary 3.2 and
Lemma 3.4, we can use the process used in deducing Lemma 3.4.

Corollary 3.5. Let $C$ be isotropic of order 2. Then $\Gamma_{p.q}$ vanishes identically

if $p+q\leqq 5$ .
Extending further the method used above we can deduce the following theorem.

Theorem 3.6. Let $C$ be a j-isotropic element of $D^{m},$ . where $ j\leqq\sigma$ . Then $\Gamma_{p.q}$

vanishes identically if $p+q\leqq 2j+1$ .
We also get the following theorem.

Theorem 3.7. Let $C$ be j-isotropic where $2j+2\leqq s$ and let $p,$ $q$ be a pair of
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numbers such that $p+q=2j+2$ . If $C_{p.q}^{*}(w, v)$ does not depend on $w$ , then $C$ is
$(j+1)$ -isotropic.

Proof. As $C$ is j-isotropic, we have $C_{p,q}(w, v)=0$ if $p+q\leqq 2j+1$ . Hence we
have

$(s-p)C_{p+1.q}+(s-q)C_{p,q+1}=0$

for any $p,$ $q$ such that $p+q=2j+1$ . As no one of $s-p$ and $s-q$ vanishes, we
see that we have to prove only the following assertion. If $C_{2j+2.0}^{*}(w.v)$ does not
depend on $w$ , then $C$ is $(j+1)$ -isotrpic. Thus we assume

$C(w, \cdots, w, v, \cdots, v;v, \cdots, v)=c(v)$ .
Then, taking an orthonormal set $\{v, w_{1}, w_{2}\}$ and putting $w=w_{1}$ cos $\theta+w_{2}$ sin $\theta$ , we get

$C(w_{2}, w_{2}w_{1}, \cdots, w_{1}, v, \cdots, v;v, \cdots, v)=c(v)/(2j+1)$ .
Thus we have

$C(e_{1}, e_{1}, e_{2}, \cdots, e_{2}, e_{1}, \cdots, e_{1};e_{1}, \cdots, e_{1})=0$ ,
$C(e_{2}, e_{2}, e_{2}, \cdots, e_{2}, e_{1}, \cdots, e_{1};e_{1}, \cdots, e_{1})=c(v)$ ,
$C(e_{a}, e_{n}, e_{2}, \cdots, e_{2}, e_{1}, \cdots, e_{1};e_{1}, \cdots, e_{1})=c(v)/(2j+1)$

where the third formula is obtained by putting $w_{1}=e_{2},$ $v=e_{1},$ $w_{2}=e_{a}(a=3,$ $\cdots$ ,
$m+1)$ in the formula obtained above. From this result we get, in view of (iii),
$c(v)=0$ which proves Theorem 3.7.

Definition 3.5. From the tensors $F^{A}$ defined in \S 2 we define functions $F_{r^{A}}(w, v)$

which are of degree $r$ in $w$ and of degree $s-r$ in $v$ by

$F_{r}^{A}(w, v)=F^{A}(w, \cdots, w, v, \cdots, v)$ .
Similarly we define $H_{r}^{A}$ from $H^{A}$ . $F_{r}^{A}(w, u)$ (resp. $H_{r}^{A}(w,$ $u)$) where $u$ is the posi-
tion vector of $x\in S^{m}(1)$ are denoted by $F_{r}^{A}(w)$ (resp. $H_{r}^{A}(w)$ ) for short.

Deflnition 3.6. We define $Y_{p.q}:R^{m+1}\times\cdots\chi R^{m+1}\times R^{m+1}\rightarrow R$ by $Y_{p.q}(w_{1},$ $\cdots$ ,
$w_{p+q},$ $v$) $=U(w_{1}, \cdots, w_{p}, v, \cdots, v;w_{p+1}, \cdots, w_{p+q}, v, \cdots, v)$ and $U_{pq}:R^{m+1}\times R^{m+1}\rightarrow R$

by restricting $Y_{p.q}$ to the domain $w_{1}=\cdots=w_{p+q}$ , thus $U_{p,q}(w, v)=U(w,$ $\cdots,$ $w$ ,
$v,$ $\cdots,$ $v;w,$ $\cdots,$ $w,$ $v,$ $\cdots,$ $v$). Hence, in view of (2.15), $U_{p.q}(w, v)$ has constant
value depending only on $p$ and $q$ if the set $\{w, v\}$ is orthonormal. Besides $U_{p.q}=0$

if $p+q$ is odd.
From Definition 3.5 and (2.14) we get

(3.5) $\sum_{A}F_{q^{A}}(w, v)F_{r^{A}}(w, v)=\sum_{A}H_{q^{A}}(w, v)H_{r^{A}}(w, v)+C_{q.r}(w, v)$ .
On the other hand we have, in view of (2.16),



ISOMETRIC MINIMAL IMMERSIONS OF SPHERES 169

(3.6) $\sum_{A}H_{q^{A}}(w, v)H_{r^{A}}(w, v)=c^{\prime}U_{q,r}(w, v)$ .

Thus we have the following theorem.

Theorem 3.8. Let $C$ be the element of $D_{*}^{m}.$ . associated with an isometric mini-
mal immersion $f.:S^{m}(1)\rightarrow S^{n-1}(r)$ . The following condition $(\alpha)$ is equivalent to $(\beta)$ .

$(\alpha)$ $C$ is $j\sim isotropic$

$(\beta)$
$\sum_{A}F_{q^{A}}(w, v)F_{r^{A}}(w, v)$ is independent of the choice of the orthonormal set

$\{w, v\}$ for all $q,$ $r$ such that $q+r\leqq 2j+1$ .

4. Some properties of spherical harmonics and symmetric tensors

In this paragraph we give some results obtained in another paper [3]. Thus
proof is omitted here.

A spherical harmonic $\varphi$ of order $s$ on the m-sphere is considered as a homo-
geneous harmonic polynomial $\tilde{\varphi}$ of degree $s$ in $R^{m+1}$ restricted to the unit hyper-
sphere $S^{nl}(1)$ . A homogeneous harmonic polynomial $\tilde{\varphi}$ of degree $s$ determines a
symmetrit tensor $t$ of degree $s$ in $R^{m+1}$ satsfying $t(u, \cdots, u)=\tilde{\varphi}(u, \cdots, u)$ and

(4.1) $|$

$\sum_{\ell}t(e_{l}, e_{\ell}, v, \cdots, v)=0$

where $\{e_{1}^{1}, \cdots, e_{m+1}\}$ is an orthonormal basis of $R^{m+1}$ . We use the same letter $\varphi$

for this tfnsor too.
$Fro\triangleleft$ a spherical harmonic $\varphi$ on $S^{m}(1)$ we get

$|$
$\partial\varphi/\partial x^{\lambda}=s\varphi(\partial u/\partial x^{\lambda}, u, \cdots, u)$

$|$ $=s\varphi(\nabla_{\lambda}u, u, \cdots, u)$

where $ui\{$ the position vector of a point of $S^{m}(1)$ as in \S 2. Let $t_{1},$ $\cdots,$
$t_{\ell}$ be arbitrary

tangent Vector fields of $S^{m}(1)$ . Then we can define a symmetric tensor field $\varphi_{\ell}$

on
$S^{m}(1)by||$

$\varphi_{\ell}(t_{1}, \cdots, t_{\ell})=\varphi(t_{1}, \cdots, t_{\ell}, u, \cdots, u)$

and get
$|$

$\varphi_{\lambda_{1}\cdots\lambda_{i}}=\varphi(\nabla_{\lambda_{1}}u, \cdots, \nabla_{\lambda_{i}}u, u, \cdots, u)$

as the local components since a tangent vector $t$ can be written locally as $t=t^{\lambda}\nabla_{\lambda}u$ .
We may write $\varphi(\lambda_{1}\cdots\lambda_{\ell})$ for the local components and adopt the abbreviation

$\varphi_{\ell}(t, \cdots, t)=\varphi_{i}(t)$ .
From the tensor fields $\varphi_{0}(=\varphi),$ $\varphi_{1},$ $\cdots,$ $\varphi$. we define for each integer $i=$

$0,1,$ $\cdots,$ $s$ a symmetric tensor field $\Phi_{\ell}$ as follows.
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Definition 4.1. Let $x_{\ell.q}(q=0,1, \cdots, k)$ be given by

(4.2) $((i-2q+2)(i-2q+1)/2)x_{\ell,q-1}=q(m+2i-2q-2)x_{i.q}$ ,
$x.0=1$

where $k=[i/2]$ . Then $\Phi_{\ell}$ satisfies

(4.3) $\Phi_{i}(t)=s(s-1)\cdots(s-i+1)\sum_{q=1}^{k}x_{\ell,q}\varphi_{\ell-2q}(t)$

for any local unit tangent vector field $t$ . Especially $\Phi_{0}(t)=\varphi_{0}(t)=\varphi$ .
Deflnition 4.2. $D\varphi_{\ell}$ is a symmetric tensor field of degree $i+1$ satisfying

$(D\varphi_{i})(t)=\nabla_{t}(\varphi_{\ell}(t))-i\varphi_{\ell}(t, \cdots, t, \nabla_{t}t)$

for an arbitrary tangent vector field $t$ . Thus the local components of $ D\varphi$ are
$S_{\lambda.\ell+1}\nabla_{\lambda_{1}}\varphi(\lambda_{2}\cdots\lambda_{\ell+1})$ where $S_{\lambda.\ell+1}$ is the symmetrizer with respect to $\lambda_{1},$

$\cdots,$ $\lambda_{\ell+1}$ .
$D\Phi_{\ell}$ is defined similarly.

Lemma 4.1. Let $y_{i.q}(q=1, \cdots, h(=[(i+1)/2]))$ be determined by

(4.4) $y_{\ell.q}=(s-i+2q)x_{\ell.q}-(i-2q+2)x_{\ell.q-1}-(s-i)x_{\ell+1.q}$ if $q=1,$ $\cdots,$ $k(=[i/2])$ ,
$y_{\ell.h}=-x_{\ell,k}-(s-i)x_{\ell+1.\hslash}$ which appear only when $i$ is odd.

Then the following identity holds at every point of $S^{m}(1)$ and for any unit tangent
vector $t$ ,

(4.5) $(D\Phi_{\ell})(t)-\Phi_{i+1}(t)=s(s-1)\cdots(s-i+1)[\sum_{q=1}^{k}y_{\ell.q}\varphi_{\ell+1-2q}(t)+y_{\ell h}\varphi_{0}]$ .

Lemma 4.2. The local components $\Phi(\lambda_{1}\cdots\lambda_{\ell})$ of the symmetric tensor field
$\Phi_{\ell}$ satisfy

(4.6) $g^{\nu\mu}\Phi(\nu\mu\lambda_{3}\cdots\lambda_{i})=0$ .
Theorem 4.3. Let $i$ be any integer $1\leqq i\leqq s-1$ . Then we have

(4.7) $\Phi_{\ell+1}(t)=(D\Phi)(t)-(s-i+1)y_{\ell.1}\Phi_{\ell-1}(t)$

at every pojnt of $S^{m}(1)$ and for any unit tangent vector $t$ .
Remark. The key of the proof of Lemma 4.1 is

(4.8) $\nabla_{\mu}\varphi(\lambda_{1}\cdots\lambda_{\ell})=(s-i)\varphi(\mu\lambda_{1}\cdots\lambda_{\ell})-iS_{\lambda.\ell}g(\mu\lambda_{1})\varphi(\lambda_{2}\cdots\lambda_{\ell})$ .
We consider for a while the Euclidean m-space $R^{m}$ with a basis $\{f_{1}, \cdots, f_{*}\}$

and put $ h_{\mu\lambda}=\langle f_{\mu}, f_{\lambda}\rangle$ . Let $P_{\ell}(=P_{\ell.0})$ be a symmetric tensor of degree $i$ with
components $P_{\ell}(\lambda_{1}\cdots\lambda_{\ell})=P_{i}(f_{\lambda_{1}}, \cdots,f_{\lambda_{l}})$ . We define from $P_{i}$ a series of symmetric
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tensors $P_{\ell.q}(q=1, \cdots, k(=[i/2]))$ of degree $i-2q$ inductively by

$-h^{\nu\mu}P_{\ell.q}(\nu\mu\lambda_{2q+s}\cdots\lambda_{\ell})=P_{\ell,q+\iota}(\lambda_{2q+8}\cdots\lambda_{\ell})$

where $h^{\nu\mu}$ are determined by $h^{\nu\mu}=h^{\mu\nu},$ $h^{\nu\mu}h_{\mu\lambda}=\delta_{\lambda^{\nu}}$ and $q=0,1,$ $\cdots,$ $k-1$ .
Lemma 4.4. Let $Q_{\ell}$ be a symmetric tensor of degree $i$ defined from $P_{\ell-2p.q}$

$(q=0,1, \cdots, k-p)$ by

(4.9) $Q(t)=\sum_{q=0}^{k-p}\alpha_{\ell}.{}_{p+q}P_{\ell-2p,q}(t)$

where $h_{\nu\mu}t^{\nu}t^{\mu}=1$ . Then, putting $\alpha_{\ell.p-1}=0$ , we have

(4.10) $-(i(i-1)/2)Q_{i.1}(t)$

$=\sum_{q=0}^{k-p}\{r(m+2i-2r-2)\alpha_{i.r}-((i-2r+2)(i-2r+1)/2)\alpha_{i.r-1}\}P_{\ell-2p.q}(t)$

where $r=P+q$ .
This lemma is used when we prove Lemma 4.2.
We use the next lemma to get a property of the unit element $U$ of $B^{m}..$ .
Lemma 4.5. Let $S_{i}$ be a symmetric tensor of degree $i$ and $T_{-2}$ be a sym-

metric tensor of degree $i-2$ such that $S_{i}(t)=T_{\ell-2}(t)$ when $t$ satisfies $h_{\mu\lambda}t^{\mu}t^{\lambda}=1$ .
Then we have

$S_{\ell}(t)+\sum_{q=1}^{k}x_{\ell.q}S_{\ell,q}(t)=0$ , $k=[i/2]$ .

5. Symmetric tensor flelds $X_{i}^{A}$ and $\dot{X}_{i}^{A}$

As $F^{A}(u, \cdots, u)$ as well as $H^{A}(u, \cdots, u)$ are spherical harmonics of order $s$

when $u$ is the position vector of the moving point of $S^{m}(1)$ , we can apply the
results of \S 4 to $F^{A}$ and $H^{4}$ as follows.

We have defined in \S 3 $F_{i}^{A}$ and $H_{\ell}^{A}$ (see Definition 3.5). Taking a local unit
tangent vector field $t$ we get $F_{i}^{A}(t)$ and $H_{i}^{4}(t)$ .

Definition 5.1. We define symmetric tensor fields $X^{A}$ and $\dot{X}_{\ell}^{A}$ by

(5.1) $X_{\ell}^{A}(t)=s(s-1)\cdots(s-i+1)\sum_{q=0}^{k}x_{i,q}F_{\ell-2q}^{4}(t)$ ,

(5.1) $\dot{X}_{\ell}^{A}(t)=s(s-1)\cdots(s-i+1)\sum_{q=0}^{k}x.{}_{q}H_{\ell-2q}^{4}(t)$ .

The analogy between Definition 4.1 and Definition 5.1 is obvious. Thus we
get, as an analogy of Lemma 4.1,
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(5.2) $(DX_{i}^{A})(t)-X_{\ell+1}^{A}(t)=s(s-1)\cdots(s-i+1)[\sum_{q=1}^{k}y_{\ell.q}F_{i+1-2q}^{A}(t)+y_{\hslash},X^{4}]$

where $X^{A}=F^{A}(u, \cdots, u)$ , and a similar formula for a standard minimal immersion.
Denoting the local components of the tensor fields $X_{\ell}^{A}$ by $X^{A}(\lambda_{1}\cdots\lambda_{\ell})$ we get

(5.3) $g^{\nu\mu}X^{A}(\nu\mu\lambda_{8}\cdots\lambda_{\ell})=0$

from Lemma 4.2. A similar formula is obtained for a standard minimal immersion.
From Theorem 4.3 we get the following $threm$ .
Theorem 5.1. The tensor fields $X_{\ell}^{A}$ and $X_{t^{A}}^{o}$ satisfy

(5.4) $X_{i+1}^{A}(t)=(DX_{\ell}^{A})(t)-(s-i+1)y_{\ell.1}X_{i-1}^{A}(t)$ ,

(5.4) $\dot{X}_{\ell+1}^{A}(t)=(D\dot{X}_{\ell}^{A})(t)-(s-i+1)y_{\ell,1}\dot{X}_{i-1}^{A}(t)$

where $t$ is an arbitrary unit tangent vector and $i=1,$ $\cdots,$ $s-1$ .
6. Some property of the unit element $U$

Let us consider at a fixed point $x$ of $S^{m}(1)$ and let $v$ be a unit tangent vector
of $S^{m}(1)$ at $x$ .

According to the definition of $U(\lambda_{1}\cdots\lambda_{i};\kappa_{1}\cdots\kappa_{h})$ in \S 2 and the equation
(2.16) we have

$U(\lambda_{1}\cdots\lambda_{\ell};\kappa_{1}\cdots\kappa_{h})v^{\iota_{1}}\cdots v^{\kappa_{h}}=(1/c^{\prime})\sum_{A}H^{A}(\lambda_{1}\cdots\lambda_{\ell})H_{h}^{A}(v)$ .
Supposing $h$ is fixed we denote the left hand side by $U(\lambda_{1}\cdots\lambda_{\ell}:v)$ . Then we get

$g^{\nu\mu}U(\nu\mu\lambda_{3}\cdots\lambda_{i}:v)=-U(\lambda_{8}\cdots\lambda_{i};v)$

as $H^{A}$ , being spherical harmonics, satisfy

$g^{\nu\mu}H^{A}(\nu\mu\lambda_{3}\cdots\lambda_{\ell})=-H^{A}(\lambda_{3}\cdots\lambda_{\ell})$

because of (2.8) and (4.1).

On the other hand, as we have (2.15) for $U$ and as $u^{\ell}$ satisfy $u_{\ell}\nabla_{\lambda}u^{\ell}=0$ and
(2.9), there exists a tensor $V_{\ell-2}$ of degree $i+h-2$ satisfying

$U(\lambda_{1}\cdots\lambda_{\ell};\kappa_{1}\cdots\kappa_{h})=S_{\lambda,\ell}g(\lambda_{1}\lambda_{2})V_{\ell-2}(\lambda_{8}\cdots\lambda_{\ell};\kappa_{1}\cdots\kappa_{h})$

if $i\geqq h+2$ . Thus we get

$U(\lambda_{1}\cdots\lambda_{l}:v)=S_{\lambda.\ell}g(\lambda_{1}\lambda_{2})V_{\ell-2}(\lambda_{8}\cdots\lambda_{i}:v)$

where
$V_{-2}(\lambda_{8}\cdots\lambda_{\ell}:v)=V_{\ell-2}(\lambda_{8}\cdots\lambda_{i};\kappa_{1}\cdots\kappa_{h})v^{\iota_{1}}\cdots v^{\iota_{\hslash}}$ .
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This shows that the tensor $U_{\ell^{*}}$ of degree $i$ with components $U(\lambda_{1}\cdots\lambda_{\ell}:v)$ and
the tensor $V_{i-2}^{*}$ of degree $i-2$ with components $V_{\ell-2}(\mu_{1}\cdots\mu_{i-2}:v)$ satisfy $U_{\ell^{*}}(t)=$

$V_{\ell-2}^{*}(t)$ for any unit tangent vector $t$ .
Thus, as an application of Lemma 4.5, we get

$U_{\ell^{*}}(t)+\sum_{q=1}^{k}x_{\ell.2}U_{\ell-2q}^{*}(t)=0$ , $k=[i/2]$ .
Hence, using the notation defined by

$U_{\ell:h}(t, v)=U(\lambda_{1}\cdots\lambda_{i};\kappa_{1}\cdots\kappa_{h})t^{\lambda_{1}}\cdots t^{\lambda}v^{*}1\cdots v^{\iota_{h}}$ ,

we get the following lemma.

Lemma 6.1. Let $t$ be any unit tangent vector and $v$ be any tangent vector.
If $i\geqq h+2$ , the unit element $U$ of $B^{m}\prime l$ satisfies

$U_{:h}(t, v)+\sum_{q=1}^{k}x_{\ell.q}U_{\ell-2q:h}(t, v)=0$ .

7. The property of symmetric tensors $\dot{X}_{i}^{A}$

We prove following five lemmas where $t,$ $t_{1},$ $t_{2}$ are arbitrary local unit tangent
vector fields.

Lemma 7.1. The tensor fields $X_{\ell^{A}}^{o}$ satisfy

(7.1) $\sum_{A}\dot{X}_{\ell}^{A}(t_{1})H_{j}^{A}(t_{2})=0$ if $i>j$ .

Proof. From Lemma 6.1 we get, if $i\geqq h+2$ ,

$\sum_{A}H_{1}^{A}(t)H_{h}^{A}(v)+\sum_{q=1}^{k}x_{\ell.q}\sum_{A}H_{\ell-2q}^{A}(t)H_{h}^{A}(v)=0$ ,

hence
$\sum_{A}\dot{X}_{\ell}^{A}(t)H_{h}^{A}(v)=0$ .

On the other hand, if $i=h+1,$ $\sum_{A}H_{\ell-2q}^{A}(t)H_{h}^{A}(v)$ vanishes identically as $i-2q+h$ is
odd. This proves the lemma.

Corollary 7.2. The tensor fields $\dot{X}_{\ell}^{A}$ and $\dot{X}_{j}^{A}$ satisfy

(7.2) $\sum_{A}\dot{X}_{i}^{A}(t_{1})\dot{X}_{j}^{4}(t_{2})=0$ if $i\neq j$ .
Proof. This is almost immediate.

Lemma 7.3. If $j\leqq i-2$ , we have

(7.3) $\sum_{A}H^{A}(\mu_{1}\cdots\mu_{j})\nabla_{\lambda}\dot{X}^{A}(\lambda_{1}\cdots\lambda_{\ell})=0$ ,
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(7.4) $\sum_{A}\dot{X}^{A}(\mu_{1}\cdots\mu_{j})\nabla_{\lambda}X^{o_{A}}(\lambda_{1}\cdots\lambda_{\ell})=0$ .
Proof. In view of Lemma 7.1 we have

$\sum_{A}H^{4}(\mu_{1}\cdots\mu_{j})\nabla_{\lambda}\dot{X}^{A}(\lambda_{1}\cdots\lambda_{\ell})=-\sum_{A}X^{o_{A}}(\lambda_{1}\cdots\lambda_{\ell})\nabla_{\lambda}H^{A}(\mu_{1}\cdots\mu_{j})$ .
As we have, in view of (4.8),

$\nabla_{\lambda}H^{A}(\mu_{1}\cdots\mu_{j})=(s-j)H^{A}(\lambda\mu_{1}\cdots\mu_{j})-jS_{\mu,j}g(\lambda\mu_{1})H^{A}(\mu_{2}\cdots\mu_{j})$ ,

we get the lemma by virtue of Lemma 7.1 and Corollary 7.2.

Lemma 7.4. No one of the symmetric tensor fields $\dot{X}_{\ell}^{A}$ vanishes identically.

Proof. As a result of Lemma 9 of [31, if $\dot{X}_{\ell}^{A}$ vanishes identically for some $A$

and $i$ , then $H^{A}(u, \cdots, u)$ vanishes identically for this number $A$ . As $h$. is a
standard minimal immersion, this cannot occur.

Lemma 7.5. If $i=1,$ $\cdots,$ $s-1$ , we have

(7.5) $\dot{X}_{\ell+1}^{A}(t)=(DX_{\ell}^{A})(t)-(s-i+1)y_{\ell,1}X_{\ell-1}^{A}(t)oo$

Proof. This is a direct result of Theorem 4.3.

8. Higher fundamental forms of a standard minimal immersion

The i-th fundamental form $B_{\ell}(i=2, \cdots, s)$ of an isometric minimal immersion
$f_{l}:S^{m}(1)\rightarrow S^{n-1}(r)$ is a symmetric form, $B_{\ell}\in T_{0}^{1}(S^{n-1}(r))\otimes T_{\ell}^{0}(S^{m}(1))$ , and satisfies the
following conditions. These conditions completely determime $B$ (see [1], [6]).

For convenience sake we define $B_{1}$ by $B_{\lambda^{P}}=Y_{\lambda^{P}}$ . $B_{2}$ has local components
$B_{\mu\lambda^{P}}=\nabla_{\mu}Y_{\lambda^{P}}$ which may be written $B^{P}(\mu\lambda)$ .

Local components of $B_{\ell}$ are also written $B^{P}(\lambda_{1}\cdots\lambda_{\ell})$ . The condition to be
satisfied by $B_{\ell}$ is given as follows when lower fundamental forms $B_{j},$ $j<i$ , are
already given.

We define $B_{1}^{*}$ and $B_{2}^{*}$ by their local components $Y_{\lambda}^{P}$ and $\nabla_{\mu}Y_{\lambda}^{P}$ , hence
$B_{1}^{*}=B_{1},$ $B_{2}^{*}=B_{2}$ . $B_{j^{*}}$ where $j\leqq i$ is defined by its local components

$B^{*P}(\lambda_{1}\cdots\lambda_{j})=S_{\lambda.j}\nabla_{\lambda_{1}}B^{P}(\lambda_{2}\cdots\lambda_{j})$ .
When tangent vectors $t_{1},$

$\cdots,$
$t$ of $S^{m}(1)$ at $x$ are given, $B_{j^{*}}(t, \cdots, t_{j})$ is a

tangent vector of $S^{n-1}(r)$ at $Y=f.(x)$ . When $t_{1},$ $\cdots,$
$t_{\ell}$ range over $T_{x}(S^{m}(1))$ arbi-

trarily, $B_{j}^{*}(t_{1}, \cdots, t_{j})$ spans a linear subspace of $T_{r}(S^{n-1}(r))$ which we denote by
$L_{j}^{*}$ . The linear subspace of $T_{r}(S^{n-1}(r))$ spanned by $L_{1}^{*},$

$\cdots,$ $L_{j}^{*}$ is denoted by
$L_{j}$ . The projection to the linear subspace of $T_{r}(S^{n-1}(r))$ complementary and nor-
mal to $L_{j}$ is denoted by $N_{j}$ . Then $B=N_{i-1}B_{\ell^{*}}$ .
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Theorem 8.1. Let $h.:S^{m}(1)\rightarrow S^{n-1}(r)$ be a standard minimal immersion and $H^{A}$

be the tensors associated with $h_{*}$ . Then the symmetric tensor fields $\dot{X}_{\ell}^{A}$ and the
i-th fundamental form $B_{i}^{l}$ of the immersion $h$. are related by

(8.1) $\dot{X}_{\ell}^{A}(t)=X_{P}^{A}\dot{B}_{\ell}^{P}(t)$

where $\dot{B}_{\ell}^{P}(t)=B^{o_{P}}(t, \cdots, t)$ and $X^{A}(Y(x))=H^{A}(u(x), \cdots, u(x))$ .
Proof. (8.1) is valid if $i=1,2$ . Assume (8.1) is valied for $2\leqq i\leqq h$ where $h$

is a natural number less than $s$ . Then we have, in view of $\nabla_{Q}X_{P}^{A}=-r^{-2}\tilde{g}_{QP}X^{A}$

and $B_{1}^{Q}(t)B_{\ell^{P}}(t)\tilde{g}_{QP}=0$ , where $X^{A}=\dot{X}^{A},$ $B_{1}^{Q}=\dot{B}_{\iota^{Q}}$ ,

$(D\dot{X}_{\ell}^{A})(t)=(t^{\mu}Y_{\mu^{Q}}\nabla_{Q}X_{P}^{A})\dot{B}_{i}^{P}(t)+X_{P^{A}}(D\dot{B}_{\ell}^{P})(t)$

$=X_{P}^{4}(D\dot{B}_{\ell}^{P})(t)$ .
From this and Lemma 7.5 we get

$ X_{\ell+1}^{A}(t)=X_{P}^{A}(DB^{P})(t)-(s-i+1)y_{i.1}X_{P^{A}}\dot{B}_{\ell-1}^{P}(t)\circ$ ,

hence $\dot{X}_{h+1}^{A}(t)=X_{P}^{A}\hat{B}_{h+1}^{P}(t)$ where $\hat{B}_{h+1}^{P}(t)$ is defined by

$B_{h+1}^{P}(t)=(DB_{h^{P}}^{l})(t)-(s-h+1)y_{h,1}\dot{B}_{h-1}^{P}(t)$ .
On the other hand, in view of Corollary 7.2, we have $\sum_{A}\dot{X}_{h+1}^{A}(t_{1})\dot{X}_{j}^{A}(t_{2})=0$ for
$j=1,$ $\cdots,$

$h$ , hence

$\tilde{g}_{QP}\hat{B}_{h+1}^{Q}(t_{1})B_{j^{P}}(t_{2})=0$ .
This proves that $\hat{B}_{h+1}$ is the $(h+1)$ -th fundamental form $\dot{B}_{h+1}$ . Repeating this
process we can prove Theorem 8.1.

9. Higher fundamental forms of an isometric minimal immersion
We consider an isometric minimal immersion $f_{l}:S^{m}(1)\rightarrow S^{n-1}(r)$ where the

element $C$ of $D^{m},$ . associated with $f$. is j-isotropic. Then, from (2.14) and Theo $\cdot$

rem 3.6, we get, if $p+q\leqq 2j+1$ ,

$\sum_{A}F_{q^{A}}(t_{1})F_{p^{A}}(t_{2})=\sum_{A}H_{q^{A}}(t_{1})H_{p^{A}}(t_{2})$ ,

hence
$\sum_{A}X_{q^{A}}(t_{1})X_{p^{A}}(t_{2})=\sum_{A}\dot{X}_{q^{A}}(t_{1})\dot{X}_{p^{A}}(t_{2})$

and also, in view of (5.4),

$\sum_{A}X_{q^{4}}(t_{1})(DX_{p-1}^{A})(t_{2})=\sum_{A}\dot{X}_{q^{A}}(t_{1})(D\dot{X}_{p-1}^{A})(t_{2})$ .
Using the above result, Lemma 7.1, Corollary 7.2 and the method used in
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proving 7.3, we get the following lemma.

Lemma 9.1. Let $C$ be j-isotropic. Then we have

$\sum_{A}X_{\ell}^{4}(t_{1})F_{h}^{A}(t_{2})=0$ , $\sum_{A}X_{\ell}^{4}(t_{1})X_{h}^{A}(t_{2})=0$ if $h<i\leqq j+1$ ,

$\sum_{A}F^{A}(\mu_{1}\cdots\mu_{h})\nabla_{\lambda}X^{A}(\lambda_{1}\cdots\lambda_{i})=0$ and

$\sum_{4}X^{A}(\mu_{1}\cdots\mu_{h})\nabla_{\lambda}X^{A}(\lambda_{1}\cdots\lambda)=0$ if $h+1<i\leqq j+1$ .
Now we can prove the following $threm$ .
Theorem 9.2. Let $f_{*}$ be an isometric minimal immersion: $S^{m}(1)\rightarrow S^{n-1}(r)$ such

that the element $C$ of $D_{l,*}^{m}$ associated with $f_{l}$ is j-isotropic. If $i\leqq j+1$ , the $sym$.
metric tensor fields $X_{i}^{A}$ and the i-th fundamental form $B_{\ell}$ of the immersion $f_{l}$

are related by

(9.1) $X_{\ell}^{A}(t)=X_{P^{A}}B_{\ell}^{P}(t)$ .
Proof. As $B_{1}$ and $B_{2}$ are given by $B_{\lambda^{P}}=Y_{\lambda^{P}}$ and $B^{P}(\mu\lambda)=\nabla_{\mu}Y_{\lambda^{P}}$ respectively,

(9.1) is valid if $i\leqq 2$ . Assume (9.1) is valid for $i=3,$ $\cdots,$
$h$ where $h$ is a natural

number $\leqq j$ . Then we get, in view of $\nabla_{Q}X_{P^{A}}=-r^{-2}\overline{g}_{QP}X^{A}$ ,

$(DX_{\ell}^{A})(t)=(t^{\mu}Y_{\mu^{Q}}\nabla_{Q}X_{P}^{A})B_{c^{P}}(t)+X_{P^{A}}(DB_{\ell}^{P})(t)$

$=X_{P}^{A}(DB_{\ell}^{P})(t)$ ,

hence, as in the case of a standard minimal immersion $h.$ ,

$X_{h+1}^{A}(t)=X_{P^{A}}\{(DB_{h^{P}})(t)-(s-h+1)y_{h.1}B_{h-1}^{P}(t)\}$ .
On the other hand, in view of Lemma 9.1, we have

: $X_{h+1}^{A}(t_{1})X_{i}^{4}(t_{2})=0$ for $i=1,$ $\cdots,$
$h$

as $h\leqq j$ . This proves that (9.1) is valid for $i=h+1$ as in the case of $h_{s}$ . In such
a way Theorem 9.2 is proved.

$i=j+1$ is the best value for $i$ in (9.1), for we can prove the following theorem.

Theorem 9.3. Let $f_{*}$ be an isometric minimal immersion $S^{m}(1)\rightarrow S^{n-1}(r)$ . If
the tensors $X_{\ell}^{4}$ and the i-th fundamental form $B_{\ell}$ satisfy (9.1) for $i=2,$ $\cdots,$ $j+1$ ,

then the element $C$ of $D_{\epsilon,*}^{m}$ associated with $f_{*}$ is j-isotropic.

Proof. (9.1) is always valid for $i=2$ and $C$ is always l-isotropic. Hence

we need not consider the case $j=1$ . If (9.1) is valid for $i=3$, we get, for
any unit tangent vector $t,$ $\sum X_{\epsilon^{A}}(t)X_{1}^{A}(t)=0$ from $\tilde{g}_{QP}B_{8}^{Q}B_{1}^{P}=0$ . Hence, in view
of $s^{2}\sum_{A}F_{1}^{4}(t)F_{1}^{A}(t)=1$ , we $fi^{4}nd$ that $\sum_{A}F_{\epsilon^{A}}(t)F_{1}^{A}(t)$ is a constant which depends
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neither on $t$ nor on $u$ . On the other hand, as $\sum_{A}H_{\epsilon^{A}}(t)H_{1}^{A}(t)=c^{\prime}U_{3,1}(t, u)$ is also
a constant of the same property, so is also $C_{3.1}(t, u)$ . Hence we get $C_{3,1}(w, v)=$

const for orthonormal vectors $w,$ $v$ of $R^{m+1}$ and $C$ is 2-isotropic by virture of
Theorem 3.7.

Let $h$ be less than $j$ and assume that the following assertion has been proved
to be true. If (9.1) is valid for $i=3,$ $\cdots,$ $h+1$ , then $C$ is h-isotropic. Let us
assume furthermore that (9.1) holds for $i=3,$ $\cdots,$ $h+2$ . Then

$\sum_{A}X_{h+2}^{A}(t)X_{p^{A}}(t)=0$ for $p=0,1,$ $\cdots,$
$h$ ,

hence

$\sum_{A}X_{h+2}^{A}(t)F_{h}^{A}(t)=0$ .

On the other hand, as $\sum_{A}H_{q^{A}}(t)H_{p^{A}}(t)$ does not depend on $u$ and the unit tangent
vector $t$ , and $C$ is $h\cdot isotropic$ , the same is true for $\sum_{A}F_{q^{A}}(t)F_{h}^{A}(t)$ if $q\leqq h+1$ . Thus
we get, in view of (5.1),

$\sum_{A}F_{h+2}^{A}(t)F_{h}^{A}(t)=const$

which depends neither on $t$ nor on $u$ . Hence $C_{h+2’ h}(t, u)$ has the same property.
$C$ being h-isotropic, this proves that $C$ is $(h+1)$ -isotropic by virture of $Threm$
3.7. This process can be repeated until we get Theorem 9.3.

10. Isotropic fundamental forms

The i-th fundamental form $B_{\ell}$ is said to be isotropic if $\langle B_{\ell}(t), B_{\ell}(t)\rangle^{-}$ , namely,
$\tilde{g}_{QP}B_{\ell}^{Q}(t)B_{t^{P}}(t)$ does not depend on the unit tangent vector $t$ at each point $x$ of
$S^{m}(1)$ . If $\langle B_{l}(t), B_{\ell}(t)\rangle^{\sim}$ depends neither on $t$ nor on $x,$ $B_{\ell}$ is said to be constant
isotropic. Similarly the $R^{n}$ valued i-th symmetric form $X_{\ell}=X_{\ell}^{A}\tilde{e}_{A}$ is said to be
isotropic or constant isotropic according as $\langle X_{i}(t), X_{\ell}(t)\rangle^{E}$ , namely, $\sum_{A}X_{\ell}^{A}(t)X_{\ell}^{A}(t)$

does not depend on the unit tangent vector $t$ at each point $x$ of $S^{m}(1)$ or depends
neither on $t$ nor on $x$ .

A proposition which treats a little more general cases than the following one
was proved by Tsukada [6].

Proposition 10.1. The j-th fundamental form of an isometric minimal immer-
sion $f_{*}$ (resp. standard minimal immersion $h_{*}$ ) $:S^{m}(1)\rightarrow S^{n-1}(r)$ is denoted by $B_{j}$

(resp. $B_{j}$). Let $i$ be an integer such that $2\leqq i\leqq minimum$ (degree of $f_{l}$ , degree of
$h.)$ . If $B_{p}$ is isotropic for $p=2,$ $\cdots,$

$i$ , then

$\langle B_{p}(t_{1}, \cdots, t_{p}), B_{p}(t_{p+1}, \cdots, t_{2p})\rangle^{\sim}=\langle B_{p}^{o}(t_{1}, \cdots, t_{p}), B_{p}^{o}(t_{p+1}, \cdots, t_{2p})\rangle^{-}$
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A standard minimal immersion $h$. is an immersion such that the element $C$

of $D_{l}^{m},$ . associated with $h_{*}$ vanishes, hence $[s/2]$ -isotropic. Hence, for a standard
minimal immersion, we have, in view of (7.1),

$\langle B_{i}^{o}(t),\dot{B}(t)\rangle^{-}=\langle\dot{X}_{\ell}(t),\dot{X}_{\ell}(t)\rangle^{B}$

$=s(s-1)\cdots(s-i+1)\sum_{A}X_{\ell^{A}}^{o}(t)H_{\ell}^{A}(t)$

$=ts(s-1)\cdots(s-i+1))^{2}\sum_{A}H_{\ell}^{A}(t)\sum_{q=0}^{k}x_{\ell}.{}_{q}H_{\ell-2q}^{A}(t)$

$=(s(s-1)\cdots(s-i+1))^{2}c^{\prime}\sum_{q=0}^{k}x_{\ell.q}U_{\ell.\ell-2q}(t, u)$ .

As $U_{p,q}(t, u)$ does not depend on the choioe of the orthonormal set $\{t, u\},$ $B_{\ell}$ is
constant isotropic [6].

Deflnition 10.1. The set $B$ of fundamental forms $B_{2},$ $B_{8},$ $\cdots$ is said to be
j-isotropic when $B_{2},$

$\cdots,$
$B_{j}$ are isotropic.

We study the relation between the case $C$ is j-isotropic and the case $B$ is
j-isotropic.

Theorem 10.2. Let $f.:S^{m}(1)\rightarrow S^{n-1}(r)$ be an isometric minimal immersion such
that the associated element $C$ of $D_{l}^{m}.$ . is $j$-isotropic. Then the set $B$ is j-constant
isotropic.

Proof. As $C$ is j-isotropic, (9.1) is valid for $i\leqq j+1$ . Thus we get for $i\leqq j$

$\langle B_{\ell}(t), B_{i}(t)\rangle^{\sim}=\sum_{A}X_{\ell}^{A}(t)X_{\ell}^{A}(t)$

$=(s(s-1)\cdots(s-i+1))^{2}\sum_{A}F_{\ell}^{A}(t)\sum_{q=0}^{k}x_{\ell.q}F_{\ell-2q}^{4}(t)$

$=(s(s-1)\cdots(s-i+1))^{2}\sum_{A}H_{\ell}^{A}(t)\sum_{q=0}^{k}x_{\ell},{}_{q}H_{\ell-2q}^{A}(t)$

$=\langle B^{o}(t),\dot{B}_{\ell}(t)\rangle^{-}$

since $C_{p,q}(t, u)=0$ when $p+q\leqq 2j+1$ . As $B_{\ell}$ is constant isotropic, $B$ is also con-
stant isotropic.

In order to prove the converse of Theorem 10.2 without leaning on Proposi-
tion 10.1, we first prove the following lemma.

Lemma 10.3. If $B_{2}$ is isotropic, then $C$ is 2-isotropic.

Proof. As we have $\sum_{A}F_{2}^{A}(t)X^{A}=-(s(s+m-1))^{-1}$ and $\sum_{A}(X^{A})^{2}=r^{2}$ , we get

: $(X_{2}^{A}(t))^{2}-\sum_{A}(X_{2^{A}}^{o}(t))^{2}=(s(s-1))^{2}\sum_{A}[(F_{2}^{A}(t)+(1/m)X^{A})^{2}-(H_{2}^{A}(t)+(1/m)\dot{X}^{A})^{2}]$
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$=(s(s-1))^{2}[\sum_{A}(F_{2}^{A}(t))^{2}-\sum_{A}(H_{2}^{A}(t))^{2}]$

$=(s(s-1))^{2}C_{2,2}(t, u)$ .
As $X_{2}^{A}=X_{P^{A}}B_{2}^{P},$ $X_{2^{A}}^{O}=X_{P^{A}}^{o}B_{2^{P}}^{o}$ where $B_{2}$ and $B_{2}^{o}$ are isotropic, $C_{2.2}(t, u)$ does not
depend on the unit tangent vector $t$ . Thus $C$ is 2-isotropic by Theorem 3.7.

Remark. If we use Proposition 10.1, we get $C_{2,2}(t, u)=0$ immediately and
need not use $Threm3.7$ .

Next was assume that the converse of Theorem 10.2 is valid for $j\leqq a$ where
$a$ is some natural number. Thus we consider the case $C$ is a-isotropic and $B$ is
$(a+1)$-isotropic. Then we have, in view of Theorem 9.2, $X_{a+1}^{A}=X_{P}^{A}B_{a+1}^{P}$ and
$\dot{X}_{a+1}^{A}=X_{P^{A}}^{o}B_{a+1}^{o_{P}}$ . On the other hand we have

$\sum_{A}(X_{a+1}^{A}(t))^{2}-\sum_{A}(X_{a+1}^{o_{A}}(t))^{2}$

$=(s(s-1)\cdots(s-a))^{2}[\sum_{A}[F_{a+1}^{A}(t)+\sum_{q=1}^{b}x_{a+1.q}F_{a+1-2q}^{A}(t)]^{2}$

$-\sum_{A}[H_{a+1}^{A}(t)+\sum_{q=1}^{b}x_{a+1}.{}_{q}H_{a+1-2q}^{A}(t)]^{2}]$

where $b=[(a+1)/2]$ , and this does not depend on the unit tangent vector $t$ by
virtue of the assumption. Besides,

$\sum_{A}F_{p^{A}}(t)F_{q^{A}}(t)-\sum_{A}H_{p^{A}}(t)H_{q}^{A}(t)=C_{p.q}(t, u)$

vanishes if $p+q\leqq 2a+1$ by Theorem 3.3. Hence

$C_{a+1.a+1}(t, u)=\sum_{A}(F_{a+1}^{A}(t))^{2}-\sum_{A}(H_{a+1}^{A}(t))^{2}$

does not depend on $t$ and $C$ is $(a+1)$-isotropic.
The following $threm$ is easily deduced from the above result.

Theorem 10.4. Let $f.:S^{m}(1)\rightarrow S^{n-1}(r)$ be an isometric minimal immersion such
that the set $B$ of fundamental forms is j-isotropic. Then the element $C$ of $D^{m},$ .
associated with $f$. is j-isotropic.

The following corollary is immediately obtained.

Corollary 10.5. Let the set $B$ be j-isotropic. Then $B$ is j-constant isotropic.
The $R^{n}$ valued i-th form $X_{\ell}$ satisfies $X_{\ell}^{A}(t)=X_{P^{A}}B_{\ell}^{P}(t)$ if $i\leqq j+1$ .

From Theorem 10.4 we see that, if $B$ is $[s/2]$-isotropic, then $f_{l}$ is a standard
minimal immersion [6].
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