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1. Introduction

Let $D$ be the open unit disc in the complex plane $C$ and $\partial D$ be its boundary.
We denote by $m$ the normalized Lebesgue measure on $\partial D$ . Let $L^{\infty}$ be the space
of bounded measurable functions on $\partial D$ with respect to $m$ . For a function $f$ in
$L^{\infty},$ $||f\Vert$ denotes the essential supremum norm. $H^{\infty}$ denotes the space of bounded
analytic functions in $D$ . Now we regard $H^{\infty}$ as a (essentially) uniformly closed
subalgebra of $L^{\infty}$ by considering its boundary functions. We denote by $M(B)$ the
maximal ideal space of a $mmutative$ Banach algebra $B$. We put $X=M(L^{\infty})$ .
We identify $L^{\infty}$ with $C(X)$ the algebra of continuous functions on $X$. We denote
by $\hat{m}$ the lifting measure of $m$ from $\partial D$ to $X$, that is, $\hat{m}$ is the probability

measure on $X$ such that $\int_{X}fd\hat{m}=\int_{\partial D}fdm$ for every $f$ in $L^{\infty}$ . A uniformly closed

subalgebra between $H^{\infty}$ and $L^{\infty}$ is called a Douglas algebra. $H^{\infty}+C$ is the
smallest Douglas algebra containing $H^{\infty}$ properly, where $C$ is the space of con.
tinuous functions on $\partial D$ . [$8|,$ [ $10|$ and [19] are convenient references for $H^{\infty}$ and
Douglas algebras.

Throughout this $pa\mu r,$ $B$ will represent a Douglas algebra. A measure $\mu$ on
$X$ is called an annihilating measure for $B$, which we write $\mu\perp B$, if $\int_{X}fd\mu=0$

for every $f$ in $B$ . We denote by $B^{\perp}$ the set of annihilating measures for $B$. Also
supp $\mu$ and $\Vert\mu||$ denote the support set and the total variation of the measure $\mu$

respectively. To study the properties of Douglas algebras, we need to know the
properties of annihilating measures on $X$ for Douglas algebras. Recall that the
$threms$ of general uniform algebras deeply depend on annihilating measures (see

[3] and [6]). For example, an interpolation set, a peak set and the essential set
for $B$ can be described by means of annihilating measures for $B$. Let $E$ be a
closed subset of $X$. Here $E$ is called an interpolation set for $B$ if the restriction
algebra of $B$ onto $E,$ $B_{|B}$ , coincides with $C(E)$ , the space of continuous functions
on $E$ , a peak set for $B$ if there is a function $f$ in $B$ such that $f=1$ on $E$ and
$|f|<1$ on $X\backslash E$ , and a weak peak set for $B$ if $E$ is the intersection of some peak sets
for $B$. Also $E$ is called the essential set for $B$ if $E$ is the smallest closed subset
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of $X$ for which if $f\in L^{\infty}$ vanishes on $E$ , then $f\in B$ . We denote by $\Gamma$ the essential
set for $B$. For measures $\mu$ and $\lambda$ on $X,$ $\lambda\ll\mu$ means that $\lambda$ is absolutely continuous
with respect to $\mu$ . While, $\lambda\perp\mu$ means that $\lambda$ and $\mu$ are mutually singular.

The following is the key theorem of this paper.

Theorem 2.1. Let $B\supset H^{\infty}+C$ and $\{\mu_{n}\}_{n=1}^{\infty}$ be a sequence of measures on $X$ such
that $\mu_{n}\in B^{\perp}for$ every $n$ . Let $\{\lambda_{n}\}_{n=1}^{\infty}$ be a sequence of measures on $X$ such that
$\lambda_{n}\ll\mu_{n}$ for every $n$ . Then there is a Blaschke product $b$ such that $b\lambda_{n}\in B^{\perp}for$

every $n$ .
This is a dual version of Axler-Sundberg’s factorization theorem ([2], [20]).

We will obtain the other results of this $pa\mu r$ as applications of the above theorem.
In Section 2, we will prove our key theorem. In Section 3, we will give some

results of interpolation sets and weak peak sets for $B$. Theorem 3.1 gives a charac-
terization of interpolation sets by means of representing measures. Here, a measure
$\mu_{x}$ on $X$ is called a representing measure for a point $x$ in $M(B)$ if $\{$

every $f$ in $B$. As a corollary, we will get that a union set of tw

$fd\mu_{x}=f(x)$ for
$x$

$0$ interpolation
sets for $B$ is also an interpolation set. We will give in $Threm3.2$ that every
peak interpolation set for $B$ is contained in an open-closed interpolation set. As
a corollary, we will get that there are no peak interpolation sets for $H^{\infty}$ . In
Section 4, we will give some remarks on the essential set for $B$. It is important
to know the essential set for a given Douglas algebra (see [121, [131). We will
give the essential sets for some concrete Douglas algebras.

In Section 5, we will study M-ideals of $L^{\infty}/H^{\infty}$ . Let $Y$ be a Banach space
and let $Z$ be its closed subspace. $Z$ is called an M-ideal of $Y$ if there is a pro-
jection $P$ from the dual space of $Y,$ $Y^{*}$ , onto the annihilating subspace of $Z$ in
$Y^{*},$ $Z^{\perp}$ , such that

$||x\Vert=\Vert Px||+||x-Px\Vert$ for every $x$ in $Y*$ .
The projection $P$ satisfying the above conditions is called an L-projection ([1]).

We already know that if $B/H^{\infty}$ is an M-ideal of $L^{\infty}/H^{\infty}$ , then $B$ has the best
aPproximation Property and some other properties (see [14], [22], $[\mathfrak{B}]$ ). So it
is imrrtant to determine a Douglas algebra $B$ such that $B/H^{\infty}$ is an M-ideal
of $L^{\infty}/H^{\infty}$ . $Threm5.1$ is a characterization of $B$ so that $B/H^{\infty}$ is an M-ideal
of $L^{\infty}/H^{\infty}$ , which is given in [7] (it is obtained by the authors independently).
As corollaries of $Threm5.1$ , we will get some known theorems in [14], [21]

and [22]. And we will give a Douglas algebra $B$ such that $B/H^{\infty}$ is not an $M$.
ideal of $L^{\infty}/H^{\infty}$ (Theorem 5.2). In [15], Luecking and Younis gave the following
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conjecture: If $B/H^{\infty}$ is an M-ideal of $L^{\infty}/H^{\infty}$ , then $B=(H^{\infty}+C)_{B}$ for some weak
peak set $E$ of $X$ for $H^{\infty}+C$ . Here, for a weak peak set $E$ for $B$, we put $B_{B}=$

$\{f\in L^{\infty}; f_{|B}\in B_{|B}\}$ , then $B_{B}$ becomes a Douglas algebra. Corollary 5.9 will shed
light on this conjecture, and Corollary 5.10 will give an interesting result: If a
measure $\mu$ on $X$ annihilates $H^{\infty}+C$ , then $\hat{m}(supp\mu)=0$ .

In Section 6, we will give some results of interpolation sets and weak peak
sets. For $h$ in $H^{\infty}$ , we put $Z(h)=\{x\in M(H^{\infty}+C);h(x)=0\}$ . If $q$ is an interpolating
Blaschke product, then $Z(q)$ is an interpolation set for $H^{\infty}$ . We will prove that
for every interpolating Blaschke product $q$ , there exists an interpolating Blaschke
product $b$ such that $Z(q)\cup Z(b)$ is not an interpolation set for $H^{\infty}(Pro\mu)sition6.1)$ .
Also we will give a measure $\mu$ on $X$ with $\mu\in B^{\perp}$ so that supp $\mu$ is not a weak
peak set for $B$ . Then we will give a closed $G_{\delta}$-set $E$ of $X$ with $\hat{m}(E)=0$ so that
$E$ is not a peak set for $H^{\infty}$ .

2. Proof of the key theorem

For a measure $\mu$ on $X$ in $(H^{\infty})^{\perp}$ , we put $\mu=\mu_{a}+\mu_{l}$ , where $\mu_{a}\ll\hat{m}$ and $\mu.\perp\hat{m}$ .
By Hoffman and Singer’s theorem ([10, p. 186]), we have $\mu_{a}\in(H^{\infty})^{\perp}$ and $\mu_{l}\in$

$(H^{\infty}+C)^{\perp}$ . We identify $H_{0}^{1}=\{f\in L^{1}(m);f\perp H^{\infty}\}$ , the usual Hardy space, with $\{f\in$

$L^{1}(\hat{m});f\perp H^{\infty}\}$ . Then we have $(H^{\infty})^{\perp}=H_{0^{1}}\oplus(H^{\infty}+C)^{\perp}$ .
To prove Theorem 2.1, we need some lemmas. In [20], Sundberg gave a

refinement of Axler’s factorization theorem [2].

Lemma 2.1. For a sequence $\{f_{n}\}_{n=1}^{\infty}$ in $L^{\infty}$ , there is a Blaschke Product $b$ such
that $bf_{n}\in H^{\infty}+C$ for every $n$ .

For a subset $J$ of $L^{\infty},$ $[J]$ denotes the uniformly closed subalgebra of $L^{\infty}$

generated by $J$.
Lemma 2.2. If $B\supset H^{\infty}+C$ and $\{f_{n}\}_{n=1}^{\infty}\subset L^{\infty}$ , then there is a Blaschke product

$b$ such that $b[B,f_{n}; n=1,2, \cdots]\subset B$.
Proof. We put

$J=$ {$f_{n_{1}}^{k_{1}}f_{n_{2}}^{k_{2}}\cdots f_{n\ell}^{k_{i}}$ ; $k_{i},$
$n_{i}$ are positive integers and $ i=1,2,\cdots$ }.

By Lemma 2.1, there is a Blaschke product $b$ such that $bJ\subset H^{\infty}+C$ . Then we
have

$b[B,f_{n}; n=1,2, \cdots]=b[B, J]\subset[B, H^{\infty}+C]\subset B$ .
Corollary 2.1. Let $B\supset H^{\infty}+C$ and $\{f_{n}\}_{n=1}^{\infty}\subset L^{\infty}$ . Then there is a Blaschke

$produc\ell b$ such that
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$b\mu\in[B,f_{n}; n=1,2, \cdots]^{\perp}$ for every $\mu\in B^{\perp}$ .
Theorem 2.1. Let $B\supset H^{\infty}+C$ and $\{\mu_{n}\}_{n=1}^{\infty}$ be a sequence of measures on $X$ such

that $\mu_{n}\in B^{\perp}for$ every $n$ . Let $\{\lambda_{n}\}_{n=1}^{\infty}$ be a sequence of measures on $X$ such that
$\lambda_{n}\ll\mu_{n}$ for every $n$ . Then there exists a Blaschke product $b$ such that $b\lambda_{n}\in B^{\perp}for$

every $n$ .
Proof. For each $n$ , we put

$d\lambda_{n}=f_{n}d|\mu_{n}|$ , where $f_{n}eL^{1}(|\mu_{n}|)$ , and
$d\mu_{n}=\psi_{n}d|\mu_{n}|$ , where $|\psi_{n}|=1$ a.e. $d|\mu_{n}|$ ,

Since $\phi_{n}C(X)=\phi_{n}L^{\infty}$ is dense in $L^{1}(|\mu_{n}|)$ , there is a sequence $\{f_{n.k}; k=1,2, \cdots\}$ in
$L^{\infty}$ such that
(1) $f_{n.k}\phi_{n}\rightarrow f_{n}$ in $L^{1}(|\mu_{n}|)$ -norm as $ k\rightarrow\infty$ .
By Lemma 2.1, there exists a Blaschke product $b$ such that

$bf_{n,k}\in H^{\infty}+C$ for every $n,$ $k=1,2,$ $\cdots$ .
Then for each $n$ , we get $\mu_{n}\perp bf_{n.k}B$ for every $k=1,2,$ $\cdots$ . This means that
$bf_{n,k}\mu_{n}=bf_{n.k}\psi_{n}|\mu_{n}|\in B^{\perp}$ . Then by (1), we get

$b\lambda_{n}=bf_{n}|\mu_{n}|\in B^{\perp}$ for every $n$ .
3. Interpolation sets

For a closed subset $E$ of $X$ and a measure $\mu$ on $X$, we denote by $\mu_{|B}$ the
restriction of the measure $\mu$ onto $E$ . The following lemma is known as
Glicksberg’s peak set $threm$ for general uniform algebras [9].

Lemma 3.1. Let $E$ be a closed subset of $X$.
(a) $E$ is a weak peak set for $B$ if and only if $\mu_{|B}\in B^{\perp}for$ every $\mu\in B^{\perp}$ .
(b) $E$ is a weak Peak interpolation set for $B$ if and only if $\mu_{\dagger B}=0$ for every

$\mu\in B^{\perp}$ .
Lemma 3.2. Let $E$ be a closed subset of $X$.
(a) If $E$ is an interlolation set for $H^{\infty}+C$ , then $\hat{m}(E)=0$ .
(b) If $\hat{m}(E)=0$ and $E$ is a weak Peak set for $H^{\infty}+C$ , then $E$ is a weak peak

set for $H^{\infty}$ .
(c) If $E$ is a weak peak interpolation set $H^{\infty}+C$ , then so is for $H^{\infty}$ .
Proof. (a) Suppose that $\hat{m}(E)\neq 0$ . By [6, p. 18], $E$ has an ooen-cloaed interior

$\dot{E}$ such that $\hat{m}(\dot{E})=\hat{m}(E)$ . Then $H^{\infty}+C$ has an ooen-closed interpolation set. By
Axler’s $threm[2]$ , we have $|H^{\infty}+C|=|L^{\infty}|$ on $X$, and so there is a function $h$
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in $H^{\infty}+C$ with $|h|=x_{\dot{E}}$ , where $\chi_{\dot{E}}$ is the $characteristic^{\tau}$,function of $\dot{E}$ . Then we
have

$H^{\infty}+C\supset h(H^{\infty}+C)=$ {$f\in L^{\infty}$ ; $f=0$ on $\dot{E}^{C}$}.

This implies that the essential set for $H^{\infty}+C$ is contained in $\dot{E}^{c}$ . But this is a
contradiction, because $X$ is the essential set for $H^{\infty}+C$ (see in Section 4).

(b) For $\mu\in(H^{\infty})^{\perp}$ , we put $\mu=\mu_{a}+\mu.$ , where $\mu_{a}\ll\hat{m}$ and $\mu.\perp\hat{m}$ . Sinoe $\mu_{l}\in$

$(H^{\infty}+C)^{\perp}$ , we have $\mu_{|B}\in(H^{\infty}+C)^{\perp}$ by Lemma 3.1 (a). Since $\mu_{a1B}=0$ , we get

$\mu_{|B}=\mu_{|B}\in(H^{\infty}+C)^{\perp}\subset(H^{\infty})^{\perp}$ .
Again by Lemma 3.1 (a), $E$ is a weak peak set for $H^{\infty}$ .

(c) By (a), we get $\hat{m}(E)=0$ . Using Lemma 3.1 (b), we can lead the conclusion
by the same way as (b).

The following are corollaries of Theorem 2.1.

Corollary 3.1. If $E$ is a closed subset of $X$ such that $\overline{B_{|B}}=C(E)$ , where $B_{|P}^{-}$

is the uniform closure of $B_{|B}$ , then $E$ is a weak peak interpolation set for $B$.
Proof. First, suppose that $B\supset H^{\infty}+C$ . Let $\mu\in B^{\perp}$ . By Theorem 2.1, there

exists a Blaschke product $b$ such that $b\mu_{|B}\in B^{\perp}$ . Since $\overline{B_{|B}}=C(E)$ , we get $b\mu_{|B}=0$ .
Hence $\mu_{|B}=0$ . This implies that $E$ is a weak peak interpolation set for $B$ by

Lemma 3.1 (b). Next, suppose that $B=H^{\infty}$ . Then we have

$C(E)=\overline{H_{|B}^{\infty}}\subset\overline{(H^{\infty}+C)_{|B}}\subset C(E)$ .
Consequently we get $\overline{(H^{\infty}+C)_{|B}}=C(E)$ . By the first part, $E$ is a weak peak inter-
polation set for $H^{\infty}+C$ . Immediately, we get the conclusion by Lemma 3.2 (c).

Corollary 3.2. Let $E$ be a closed subset of X. If $E$ is an interPolation set

for $B$, then $E$ is a weak Peak set for $B$.
Corollary 3.3. For a sequence $\{f_{n}\}_{n=1}^{\infty}$ in $L^{\infty}$ , both $B$ and $[B,f_{n}; n=1,2, \cdots]$

have the same interpolation sets of $X$.
The following $threm$ is a characterization of an interpolation set for $B$.
Theorem 3.1. Let $E$ be a closed subset of X. Then the following assertions

are equivalent.
(a) $E$ is not an interpolation set for $B$ .
(b) There is a pojnt $x$ in $M(B)\backslash X$ such that $supp\mu_{x}\subset E$ .
(c) There is a pojnt $x$ in $M(B)\backslash X$ such that $\mu_{x}(E)\neq 0$ .
Proof. Put $B_{0}=\{f\in L^{\infty}; f_{|B}\in B_{B}^{-}\}$ . Then $B_{0}$ is a Douglas algebra.
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$(a)\Rightarrow(b)$ Suppose that $E$ is not an interpolation set for $B$. By Corollary 3.1,
we have $B_{0}\neq L^{\infty}$ . By Chang-Marshall’s theorem ([4, 16]), there is a point $x$ in
$M(B_{0})\backslash X$ such that

$B_{01\sup p\mu x}=H_{1\sup p\mu x}^{\infty}$ and supp $\mu_{x}\subset E$ .
Since $H^{\infty}\subset B\subset B_{0}$ , we have $B_{1\sup P\mu x}=H_{1\sup p\mu x}^{\infty}$ . This implies $x\in M(B)$ . This leads
us the assertion (b).

$(b)\Rightarrow(c)$ It is trivial.
$(c)\Rightarrow(a)$ Let $x\in M(B)\backslash X$ such that $\mu_{x}(E)\neq 0$ . If $x$ is contained in $D$ , then

$B=H^{\infty}$ and $\mu_{x}\ll\hat{m}$ . This means that $\hat{m}(E)\neq 0$ . By Lemma 3.2 (a), $E$ is not an
interpolation set for $H^{\infty}+C$ and so is for $H^{\infty}$ . If $x$ is not contained in $D$ , then
we have $x\in M(B+C)$ . Clearly, $B+C=H^{\infty}+C$ if $B=H^{\infty}$ , and $B+C=B$ if $B\neq H^{\infty}$ .
By [10, p. 179], there is a Blaschke product $b$ such that $b(x)=0$ . Then we get
$b\mu_{x}\in(B+C)^{\perp}$ and $(b\mu_{x})_{|B}\neq 0$ . By Lemma 3.1 (b), $E$ is not a weak peak interpolation
set for $B+C$ , and then $E$ is neither for $B$. Now the assertion is proved by
Corollary 3.2.

As an immediate corollary from Theorem 3.1 (c), we get the following. The
corresponding result is not true for general uniform algebras.

$c$

Corollary 3.4. Let $E_{1}$ and $E_{2}$ be closed subsets of X. If both $E_{1}$ and $E_{2}$ are
interpolation set for $B$, then the union $E_{1}\cup E_{2}$ is an interpolation set for $B$.

Remark 3.1. If we take closed subsets $E_{1}$ and $E_{2}$ of $M(H^{\infty}+C)$ instead of
$X$, then Corollary 3.4 is not true for $H^{\infty}$ (see Section 6).

Theorem 3.2. If $E$ is a peak interpolation set of $X$ for $B$, then there is an
open-closed subset $U$ of $X$ such that

(a) $E\subset U$, and
(b) $U$ is an interpolation set for $B$ .
Proof. If $E$ is open-closed, we do not need to prove. Now we assume that

$E$ is not open-closed. Suppose that there is not an open-closed subset $U$ satisfying
(a) and (b). Since $E$ is a peak set, $E$ is a $G_{\delta}$-set and hence there is a sequence
$\{U_{n}\}_{n=1}^{\infty}$ of open-closed subsets of $X$ such that

(1) $U_{n+1}\subsetneqq U_{n}$ for every $n$ ,
(2) $\cap U_{n}=E$ , and

$n$

(3) $U_{n}$ is not an interpolation set for $B$ for every $n$ .
By (3) and Corollary 3.1, we have $\overline{B_{|U_{n}}}\neq C(U_{n})$ . Thus there is a sequence $\{\mu_{n}\}_{n=1}^{\infty}$

of measures such that
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(4) supp $\mu_{n}\subset U_{n}$ ,
(5) $||\mu_{n}\Vert=1$ and $\mu_{n}\in B^{\perp}$ for every $n$ .

By $Threm2.1$ , there is a Blaschke product $b$ such that
(6) $b|\mu_{n}|\in B^{\perp}$ for every $n$ .

Let $\mu_{0}$ be a $weak-*cluster$ measure of $\{|\mu_{n}|;n=1,2, \cdots\}$ . Then $\Vert\mu_{0}||=1$ by (5),

and supp $\mu_{0}\subset E$ by (1), (2) and (4). By (6), we have $|\mu_{n}|\in bB^{\perp}$ , consequently we
get $\mu_{0}\in bB^{\perp}$ , that is, $b\mu_{0}\in B^{\perp}$ . This means that $E$ is not an interrlation set for
$B$ and this contradiction leads us the conclusion.

Corollary 3.5. There is not a peak interpolation set $E$ for $B$ such that
$ E\cap\Gamma\neq\emptyset$ .

Corollary 3.6. If $\Gamma=X$, then $B$ has no peak interpolation sets.

Corollary 3.7. For a sequence $\{f_{n}\}_{n\approx 1}^{\infty}$ in $L^{\infty},$ $[H^{\infty},f_{n}; n=1,2, \cdots]$ does not
have any peak interpolation sets.

Proof. This follows from the fact that $X$ is the essential set for [ $H^{\infty},f_{n}$ ;
$n=1,2,$ $\cdots$ ] (see Section 4).

4. Essential sets.

Here we will study the essential set $\Gamma$ for $B$ . To see the properties of $\Gamma$ ,
the following lemma is a basic one ([3, p. 146]).

Lemma 4.1. $\Gamma$ coincides with the closure of $\cup\{supp\mu;\mu\in B^{\perp}\}$ .
Since $H_{0}^{1}\subset(H^{\infty})^{\perp}$ and $X=suppf$ for every $f\in H_{0^{1}}(f\neq 0),$ $X$ is the essential set

for $H^{\infty}$ . Also $X$ is the essential set for $H^{\infty}+C$ . Because if the essential set for
$H^{\infty}+C$ is a proper subset of $X,$ $H^{\infty}+C$ has a non-trivial idempotent, and so
$M(H^{\infty}+C)$ is not connected. But this is a contradiction [10, p. 188].

In [23, Theorem 2], Younis gave that both $B$ and $[B,f_{n} ; n=1,2, \cdots],$ $f_{n}\in L^{\infty}$ ,
have the same essential set. This is an easy consequence of Corollary 2.1 and
Lemma 4.1. In [23, Proposition 3], he proved the following to answer a question
in [16]: If $S$ is a peak set for $H^{\infty}+C$ , then $S$ is the essential set for $(H^{\infty}+C)_{S}$ .
More generally we have

Proposition 4.1. If $S$ is a closed $G_{\delta}$-set of $X$, then $ S\cap\Gamma$ is the essential set
for the Douglas algebra $\{f\in L^{\infty}; f_{|S}\in\overline{B_{1S}}\}$ .

Proof. If we put $B_{0}=\{f\in L^{\infty}; f_{|S}\in\overline{B_{1S}}\}$ , then $B_{0}$ is a Douglas algebra. Let
$E$ be the essential set for $B_{0}$ . It is easy to see $E\subset S$ . Since $B\subset B_{0}$ , we have
$ E\subset\Gamma$ and $E\subset\Gamma\cap S$. Now suppose that $E\subsetneqq\Gamma\cap S$ . Then there exists an open-
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closed subset $U$ of $X$ such that $ E\cap U=\emptyset$ and $\Gamma\cap S\cap U\neq\emptyset$ . Since $S\cap U$ is an
interpolation set for $B_{0}$ , we have

$C(S\cap U)=B_{0^{1}s\cap\sigma}\subset\overline{B_{|s\cap U}}\subset C(S\cap U)$ .
By Corollary 3.1, $S\cap U$ is a weak peak interpolation set for $B$ . Since $S\cap U$ is a
$G_{\delta}$-set, $S\cap U$ is a peak set for $B$ . Then $S\cap U$ belongs to $ X\backslash \Gamma$ by Corollary 3.5.
Thus we get $\Gamma\cap S\cap U=\emptyset$ , but this is a contradiction.

Remark 4.1. Proposition 4.1 is not true for a weak peak set $S$ for $B$ . For,

let $B=H^{\infty}$ and $S=X_{1}\cup\{x\}$ , where $x\in X,$ $x\not\in X_{1}$ and $X_{1}$ is the fiber at $\lambda=1$ . Then
$S$ is a weak peak set for $H^{\infty}$ . But $X_{1}$ is the essential set for $H_{s}^{\infty}$ .

In [23, Proposition 2], Younis proved that $\Gamma_{0}=\cup\{supp\mu_{x}; x\in M(B)\backslash X\}$ is dense
in $\Gamma$ . We note that this fact also follows from the results in Section 3: It is
easy to see $\Gamma_{0}\subset\Gamma$ . If $\Gamma_{0}$ is not dense in $\Gamma$ , we take an open-closed subset $U$ of
$X$ such that $\Gamma_{0}\cap U=\emptyset$ and $\Gamma\cap U\neq\emptyset$ . Then $\Gamma\cap U$ is not an interpolation set.
By Theorem 3.1, we have $\Gamma_{0}\cap U\supset\Gamma_{0}\cap\Gamma\cap U\neq\emptyset$ . But this is a contradiction.

5. $M$-ideals of $L^{\infty}/H^{\infty}$

Let $B_{1}$ and $B_{2}$ be closed subspaces of continuous functions on a compact

Hausdorff space with $B_{1}\subsetneqq B_{2}\subsetneqq C(K)$ . $B_{2}/B_{1}$ is called an M-ideal of $C(K)/B_{1}$ if
there is an L-projection $P:B_{\iota^{\perp}}\rightarrow B_{2}^{\perp}$ (onto) with the property

$\Vert\mu\Vert=||P\mu\Vert+\Vert\mu-P\mu||$ for every $\mu\in B_{1}^{\perp}$

Gamelin, Marshall, Younis and Zame [7] give the following characterization
of M-ideals in $C(K)/B_{1}$ .

Theorem 5.1. $B_{2}/B_{1}$ is an M-ideal of $C(K)/B_{1}$ if and only if for each $\mu\in B_{1}^{\perp}$

there exists $f_{\mu}\in L^{1}(|\mu|)$ such that
(a) $f_{\mu^{2}}=f_{\mu}$ a.e. $d|\mu|$ ,
(b) $\mu-f_{\mu}\mu\perp B_{2}^{\perp}$ , and
(c) $f_{\mu}\mu\in B_{2}^{\perp}$ .
If ( $f_{\mu}$ ; $f_{\mu}\in L^{1}(|\mu|),$ $\mu\in B_{1}^{\perp}$ } satisfies (a), (b) and (c), we call it the system of

idempotents for $B_{2}/B_{1}$ .
Corollary 5.1. Let $B_{1},$ $B_{2}$ and $B_{\epsilon}$ be closed subspaces with $B_{1}\subsetneqq B_{2}\subsetneqq B_{\epsilon}\subsetneqq C(K)$ .

Suppose that $B_{2}/B_{1}$ is an M-ideal of $C(K)/B_{1}$ . Then $B_{S}/B_{1}$ is an M.ideal of $C(K)/B_{1}$

if and only if $B_{8}/B_{2}$ is an M-ideal of $C(K)/B_{2}$ .
Proof. Since $B_{8}^{\perp}\subset B_{2}^{\perp}\subset B_{1}^{\perp}$ , the necessary part follows from the definition
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of M-ideals. SuPpose that $B_{\epsilon}/B_{2}$ is an M-ideal. Let $\{f_{\mu} ; f_{\mu}\in L^{1}(|\mu|), \mu\in B_{1}^{\perp}\}$ be the
system of idempotents for $B_{2}/B_{1}$ and let $\{g_{\nu}; g_{\nu}\in L^{1}(|\nu|), \nu\in B_{2}^{\perp}\}$ be the system of
idempotents for $B_{\epsilon}/B_{2}$ . We identify $f_{\mu}$ with the measure $ f_{\mu}\mu$ . Then it is easy
to see that $\{f_{\mu}g_{J_{\mu}}; \mu\in B_{1}^{\perp}\}$ is the system of idempotents for $B_{\epsilon}/B_{1}$ .

On the rest of this section, we study the case when $B_{\ell}$ are Douglas algebras.
The following three known results are easy consequences of Theorem 5.1.

Corollary 5.2 ([14]). $H^{\infty}+C/H^{\infty}$ is an M-ideal of $L^{\infty}/H^{\infty}$ .
Proof. We have that $H^{\infty\perp}=H_{0}^{1}\oplus(H^{\infty}+C)^{\perp}$ , For $\mu\in H^{\infty\perp}$ , we put $\mu=\mu_{a}+\mu_{\iota}$ ,

where $\mu_{a}\ll\hat{m}$ and $\mu.\perp\hat{m}$ . Then there is an idempotent $f_{\mu}\in L^{1}(|\mu|)$ such that $\mu_{a}=f_{\mu}\mu$ .
Then it is easy to see that $\{f_{\mu} ; \mu\in H^{\infty\perp}\}$ is the system of idempotents for $H^{\infty}+C/H^{\infty}$ .

Corollary 5.3 ([21]). If $E$ is a weak peak non-interPolation set for $B$, then
$B_{B}/B$ is an M-ideal of $L^{\infty}/B$.

Proof. For $\mu\in B^{\perp}$ , we put

$f_{\mu}=\left\{\begin{array}{ll}1 & on E\\0 & on X\backslash E.\end{array}\right.$

It is trivial that the essential set for $B_{B}$ is contained in $E$ by the definition of $B_{B}$

(see Section 1). Also it is easy to see that $\{f_{\mu} ; \mu\in B^{\perp}\}$ is the system of idempotents
for $B_{B}/B$. The condition (b) follows from Lemma 4.1. The condition (c) follows
from Lemma 3.1 (a).

The following corollary is given by Marshall and Zame in their unpublished
note without using Theorem 5.1. But we shall prove it using Theorem 5.1.

Corollary 5.4. Let $B_{0}$ be a Douglas algebra with $B_{0}\supset H^{\infty}+C$ and $\{f_{n}\}_{n\leftarrow 1}^{\infty}\subset L^{\infty}$ .
If $B$ satisfies $B_{0}\subsetneqq B\subset[B_{0},f_{n}; n=1,2, \cdots]$ , then

(a) $B/B_{0}$ is not an M-ideal of $L^{\infty}/B_{0}$ , and
(b) $B/H^{\infty}$ is not an M-ideal of $L^{\infty}/H^{\infty}$ .
Proof. Suppose that $B/B_{0}$ is an Mideal of $L^{\infty}/B_{0}$ . Let $\{f_{\mu}; \mu\in B_{0^{\perp}}\}$ be the

system of idempotents for $B/B_{0}$ . Then we have $f_{\mu}=1$ by Corollary 2.1 and
Theorem 5.1 (b). This implies $B_{0}=B$ . But this is a contradiction and we get
(a). To see (b), suppose that $B/H^{\infty}$ is an M-ideal. By the definition of Mideals,
$B/B_{0}$ becomes an M-ideal of $L^{\infty}/B_{0}$ . But this contradicts (a).

Corollary 5.4 gives us the following result which has a connection with [13,

Section 5].

Corollary 5.5. If $B\ni H^{\infty}+C$ and $B/H^{\infty}$ is an Mideal of $L^{\infty}/H^{\infty}$ , then
(a) there are no maximal subalgebras between $H^{\infty}$ and $B$, and
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\langle $b$) for every Douglas algebra $B_{1}$ with $B_{1}\subsetneqq B,$ $B/B_{1}$ is not separable.

Proof. (a) Suppose that $B_{0}$ is a maximal subalgebra with $H^{\infty}\subset B_{\mathfrak{v}}\subsetneqq B$. Then
$B=[B_{0},f]$ for some $f\in B$ . By Corollary 5.4, $B/H^{\infty}$ is not an M-ideal of $L^{\infty}/H^{\infty}$ .

(b) If $B/B_{1}$ is separable, then $B=[B_{1},f,;n=1,2, \cdots]$ for some sequence
$\{f_{n}\}_{n=1}^{\infty}$ in $B$. Also by Corollary 5.4, we get a contradiction.

Remark 5.1. In Section 6, we will give a Douglas algebra $B$ which has a
maximal subalgebra between $H^{\infty}$ and $B$ .

Using Theorem 2.1, we shall give examples of Douglas algebras $B$ such that
$B/H^{\infty}$ are not M-ideals, which are not covered by Corollary 5.4.

Theorem 5.2. Let $B$ be a Douglas algebra. If there exists a closed subset $E$

of $X$ and another Douglas algebra $B_{1}$ satisfying the following conditions $(a)-(d)$ ,
then $B/H^{\infty}$ is not an M-ideal of $L^{\infty}/H^{\infty}$ .

(a) $B_{1}\supset H^{\infty}+C$ .
(b) $E$ is a weak peak set for $B$ .
(c) $E$ is not a weak peak set for $B_{1}$ .
(d) $B_{|B}=\overline{B_{1|B}}$ .
Proof. By (c), we have $\overline{B_{1|E}}\neq B_{1^{1}.B}$ ( $[6$ , p. 65]). By (b) and (d), we get

$B_{B}\supsetneq B_{1}$ . We shall see
(1) $B_{B}/B_{1}$ is not an M-ideal of $L^{\infty}/B_{1}$ .

To see (1), suppose that $B_{B}/B_{1}$ is an M-ideal of $L^{\infty}/B_{1}$ . By Theorem 5.1, there is
the system of idempotents $\{f_{\mu} ; f_{\mu}\in L^{1}(|\mu|), \mu\in B_{1}^{\perp}\}$ . For each $\mu\in B_{1}^{\perp}$ , by Theorem
2.1 there is a Blaschke product $b$ such that $b\mu_{|B}\in B_{1}^{\perp}$ . By (d), we have $b\mu_{|B}\in B_{E^{1}}$ .
This implies that $f_{\mu}=\chi_{E}$ , the characteristic function for $E$ . Then $\chi_{B}\mu\in B_{B}^{\perp}$ by
(c) of Theorem 5.1, and then $\chi_{B}\mu\in B_{1}^{\perp}$ by (d). By Lemma 3.1 (a), $E$ is a weak
peak set for $B_{1}$ This contradicts (c). Thus we get (1).

To prove our assertion, suppose that $B/H^{\infty}$ is an M-ideal of $L^{\infty}/H^{\infty}$ . By (c),

(d) and Corollary 3.1, $E$ is not an interpolation set for $B$ . By (b) and Corollary
5.3, $B_{E}/B$ is an M-ideal of $L^{\infty}/B$ . We note that $H^{\infty}\subsetneqq B\subset B_{B}$ . If $B=B_{B}$ , then
$B_{B}/H^{\infty}$ is an M-ideal of $L^{\infty}/H^{\infty}$ by our assumption. If $B\neq B_{B}$ , then also $B_{B}/H^{\infty}$

is an M-ideal of $L^{\infty}/H^{\infty}$ by Corollary 5.1. Since $H^{\infty}\subset B_{1}\subsetneqq B_{B},$ $B_{B}/B_{1}$ is an Mideal
of $L^{\infty}/B_{1}$ by the definition of M-ideals. But this contradicts (1).

The following is a direct corollary of Theorem 5.2.

Corollary 5.6. Let $E$ be a closed subset of $X$ which is not a weak peak set for
$H^{\infty}+C$ . We put $B=\{f\in L^{\infty}$ ; $f_{|B}\in\overline{H^{\infty}+C_{|B}\}}$ , then $BfH^{\infty}$ is not an M-ideal of $L^{\infty}/H^{\infty}$ .
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Remark 5.1. If $E$ is a closed subset of $X$ and $E$ is not a weak peak set for
$H^{\infty}+C$ , then we have

$\{f\in L^{\infty}; f_{|B}\in\overline{H^{\infty}+Cff}\}=\dagger f\in L^{\infty}$ ; $f_{|B}\in\overline{H_{|B}^{\infty}}$}.

Corollary 5.7. Let $f\in L^{\infty}$ be a peaking function for a closed subset $E$ of $X$,

that is, $f=1$ on $E$ and $|f|<1$ on $X\backslash E$ . We put $B=[B_{0}(1-f), H^{\infty}]$ for any Douglas

algebra $B_{0}$ . If $E$ is not a weak peak set for $H^{\infty}+C$, then $B/H^{\infty}$ is not an M-ideal

of $L^{\infty}/H^{\infty}$ .
Proof. Since $f\in B,$ $E$ is a peak set for $B$ . Since $E$ is not a weak peak set

for $H^{\infty}+C$ , we have $H^{\infty}+C\subsetneqq B$ and $B_{|B}=\overline{H_{|B}^{\infty}}=\mapsto\infty+C_{|B}$. If we put $B_{1}=H^{\infty}+C$,

then every assumption of Theorem 5.2 is satisfied.
The following is a special case of Corollary 5.7.

Corollary 5.8. If $E$ is a proper open-closed subset of $X$ and $B$ is a Douglas
algebra, then $[B\chi_{B}, H^{\infty}]/H^{\infty}$ is not an M-ideal of $L^{\infty}/H^{\infty}$ .

Proof. Every proper open-closed subset of $X$ is not a peak set for $H^{\infty}+C$ .
In [15], Luecking and Younis gave the following conjecture of M-ideals: If

$BfH^{\infty}$ in an M-ideal of $L^{\infty}/H^{\infty}$ , then $B=(H^{\infty}+C)_{B}$ for some weak peak set $E$ of
$X$ for $H^{\infty}+C$. The following theorem sheds light on this conjecture.

Theorem 5.3. Let $\{\mu_{n}\}_{n=1}^{\infty}$ be a sequence of measures on $X$ such that $\mu_{n}\in B^{\perp}$

for every $n$ , and let $E$ be the closure of $\cup\{supp\mu_{n}; n=1,2, \cdots\}$ in X. If $B/H^{\infty}$

is an M-ideal of $L^{\infty}/H^{\infty}$ , then $B_{|B}=H_{|B}^{\infty}$ .
To see this, we need the following lemma proved in [11, Theorem 3].

Lemma 5.1. Let $Z$ be an M-ideal of a Banach space Y. Then for each $y$

in $Y,$ $Z$ coincides with the linear span (not closed) of {$x\in Z$ ; dist $(y,$ $Z)=\Vert y-x||$ },

where dist $(y, Z)=\inf\{\Vert y-x||;x\in Z\}$ .
Proof of Theorem 5.3. By Theorem 2.1, there is a Blaschke product $b$ such

that

(1) $b|\mu_{n}|\in B^{\perp}$ for every $n$ .
Then it is easy to see that $\overline{b}\not\in B$ and dist $(\overline{b}, B)=1$ . We may now assume that
$\Vert\mu_{n}||=1$ for every $n$ . Put

$J=\{f\in B;||\overline{b}-f||=dist(\overline{b}, B)\}$ .
Since $B/H^{\infty}$ is an M-ideal of $L^{\infty}/H^{\infty}$ by our assumption, Lemma 5.1 implies that
the linear span of
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(2) {$g+H^{\infty}$ ; $g\in B$ and $\Vert\overline{b}-g+H^{\infty}\Vert=dist(\overline{b}+H^{\infty},$ $B/H^{\infty})$}

coincides with $B$ . Let $g$ be a function in $B$ satisfying (2). Then there is $h\in H^{\infty}$

such that $||\overline{b}-g+H^{\infty}\Vert=||\overline{b}-g-h\Vert$ , because $H^{\infty}$ has the best approximation property.
Since dist $(\overline{b}+H^{\infty}, B/H^{\infty})=dist(\overline{b}, B)$ , we get $g+h\in J$. Thus we have

(3) the linear span of $\{J+H^{\infty}\}$ coincides with $B$ .

Let $f\in J$. Then $\int_{X}fbd|\mu_{n}|=0$ by (1). Since $1=\Vert\overline{b}-f||=\Vert 1-bf||$ , we get

$1=\int_{X}(1-bf)d|\mu_{n}|\leqq\Vert 1-bf\Vert=1$ .

This implies that $bf=0$ a.e. $d|\mu_{n}|$ , and then $f=0$ on supp $\mu_{n}$ for every $n$ . Con-
sequently, we get $f=0$ on $E$ . This means that $B_{|B}=H_{1B}^{\infty}$ by (3).

The following corollary answers partially to the M-ideal conjecture.

Corollary 5.9. Suppose that $B/H^{\infty}$ is an M-ideal of $L^{\infty}/H^{\infty}$ . If $\Gamma$ coincides
with the closure of $\cup\{supp\mu_{n}; n=1,2, \cdots\}$ for some sequence of measures $\{\mu_{n}\}_{n=1}^{\infty}$

in $B^{\perp}$ , then $\Gamma$ is the weak peak set for $H^{\infty}$ and $B=H_{\Gamma}^{\infty}$ .
Proof. Since $\Gamma$ is the weak peak set for $B$ ([3, p. 145]), $B_{|\Gamma}$ is closed. By

Theorem 5.3, $H_{|\Gamma}^{\infty}=B_{|\Gamma}$ is closed. Immediately we get $B=H_{\Gamma}^{\infty}$ .
As a corollary of Theorem 5.3, we get an interesting result of annihilating

measures for $H^{\infty}+C$.
Corollary 5.10. Let $\{\mu_{n}\}_{n=1}^{\infty}$ be a sequence of measures on $X$ such that $\mu_{n}\in$

$(H^{\infty}+C)^{\perp}for$ every $n$ . If we put $E$ the closure of $U\{supp\mu_{n} ; n=1,2, \cdots\}$ in $X$,
then $\hslash(E)=0$ .

Proof. Suppose that $\hat{m}(E)>0$ . Then there exists a function $f$ in $C$ such
that $f\neq 0$ on $E$ and $f=0$ on some subset of $E$ with positive measure for $\hat{m}$ . Since
$H^{\infty}+C/H^{\infty}$ is an M-ideal of $L^{\infty}/H^{\infty}$ by Corollary 5.2, there is a function $F$ in $H^{\infty}$

such that $F=f$ on $E$ by Theorem 5.3. Then we get $F=0$ , because $F$ vanishes
on the $\hat{m}\cdot positive$ set. But this is a contradiction and thus we get the conclusion.

6. Some examples

In this section, we will give some examples related the previous sections. In
Corollary 3.4, we proved that a union set of two interpolation sets of $X$ for $H^{\infty}$

is also an interpolation set. First, we will study a union set for some interpola-
tion sets of $M(H^{\infty})$ for $H^{\infty}$ . For two points $x$ and $y$ in $M(H^{\infty})$ , we put
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$\rho(x, y)=\sup\{|f(x)|;f\in H^{\infty}, ||f||<1,f(y)=0\}$ .
If $z$ and $w$ are points in $D$ , then we have $\rho(x, y)=|z-w|/|1-\overline{w}z|$ . A sequence
$\{z_{n}\}_{n=1}^{\infty}$ in $D$ is called an interpolating sequence if $\{\{h(z_{n})\}_{n\approx 1}^{\infty} ; h\in H^{\infty}\}=l^{\infty}$ . If $\{z_{n}\}_{n<1}^{\infty}$

is an interpolating sequence, a Blaschke product

$q(z)=\prod_{=1}^{\infty}\frac{-\overline{z}_{n}}{|z_{n}|}$ .
$\frac{z-z_{n}}{1-\overline{z}_{n}z}$

is called an interpolating Blaschke product associated with zeros $\{z_{n}\}_{n=1}^{\infty}$ . The
following lemma is well known as Carleson’s theorem (see [8, p. 287]).

Lemma 6.1. Let $\{z_{n}\}_{n=1}^{\infty}$ be a sequence in D. Then the following conditions
are equivalent.

(a) $\{z_{n}\}_{n-1}^{\infty}$ is an interpolating sequence.
(b) There is a p0sitive constant $\delta$ such that

$(\#)$
$\delta\leqq\inf(1-|z_{n}|^{2})|q^{\prime}(z_{n})|=\inf\prod_{k\neq}\rho(z_{n}, z_{k})$ ,

where $q$ is an interpolatjng Blaschke product associated with zeros $\{z_{n}\}_{n=1}^{\infty}$ .
(c) There is a positive constant $a$ such that $\rho(z_{n}, z_{k})\geqq\sigma$ for every $n\neq k$

and $\sum_{n=1}^{\infty}(1-|z_{n}|)\delta_{*}n$ is a Carleson measure, where a positive measure $\mu$ on $D$ is
called a Carleson measure if $\int_{\partial D}|f|d\mu\leqq C||f\Vert_{1}$ for every $f$ in $H^{1}$ , the usual
Hardy space.

By Lemma 6.1 and the following lemma, it is easy to see that for each inter-
polating sequence, there exists an interpolating sequence such that a union of
these two interpolating sequences is not an interpolating sequence.

Lemma 6.2 (see [8, p. 310]). Let $\{z_{n}\}_{n=1}^{\infty}$ be an interpolating sequence such
that $0<\delta\leqq\inf_{\sim k}\prod_{\neq\sim}\rho(z_{n}, z_{k})$ , and let $\{w_{n}\}_{n=1}^{\infty}$ be a sequence in $D$ such that $\rho(w_{n}, z_{n})\leqq$

$\delta/3$ for every $n$ . Then $\{w_{n}\}_{n=1}^{\infty}$ is an interpolatjng sequence.

A typical interpolating set of $M(H^{\infty}+C)$ for $H^{\infty}$ is obtained by using an inter.
polating sequence as follows.

Lemma 6.3 ([10, p. 205]). Let $q$ be an interpolating Blaschke product as $\cdot$

sociated with zeros $\{z_{n}\}_{n=1}^{\infty}$ . Then we have $Z(q)=c1(\{z_{n}\}_{n=1}^{\infty})\backslash \{z_{n}\}_{n=1}^{\infty}$ , and $Z(q)$ is an
interpolation set for $H^{\infty}$ , where cl $(\{z_{n}\}_{n=1}^{\infty})$ is the $weak-*closure$ of $\{z_{n}\}_{n=1}^{\infty}$ in $M(H^{\infty})$ .

The following proposition proves that a union set of two interpolation sets
of $M(H^{\infty}+C)$ for $H^{\infty}$ is not an interpolation set for $H^{\infty}$ .

Proposition 6.1. For each interpolating Blaschke product $q$, there is an inter-
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p0lating Blaschke product $b$ such that $Z(q)\cup Z(b)$ is not an interp0lati0n set for $H^{\infty}$ .
To prove Proposition 6.1, we need the following lemmas.

Lemma 6.4. If $E$ is an interpolatjon set of $M(H^{\infty})$ for $H^{\infty}$ , then inf {$\rho(x, y)$ ;
$x,$ $y\in E,$ $x\neq y$} $>0$ .

Lemma 6.5 (see [8, pp. 404-405]). Let $\{z_{n}\}_{n=1}^{\infty}$ be an interpolating sequence with
$\delta>0$ in $(\#)$ , and let $q$ be an interpolating Blaschke product associated with zeros
$\{z_{n}\}_{n=1}^{\infty}$ . Then for each $\lambda>0$ satisfying $0<\lambda\leqq\delta/3$ , there exists $r=r(\lambda)>0$ such that
$\{z\in D;|q(z)|<r\}$ is the union of pairwise disjoint domains $V_{n},$ $z_{n}\in V_{n}$ and $ V_{n}\subset$

$\{zeD;\rho(z, z_{n})<\lambda\}$ .
Proof of Proposition 6.1. Let $\{L_{m}\}_{m=1}^{\infty}$ be a sequence of disjoint subsets of

positive integers such that

(1) $L_{m}$ is an infinite subset for $m=1,2,$ $\cdots$ .
We put $L_{m}=\{n_{m.k}\}_{k=1}^{\infty}$ . If we put

$U_{n}^{m}=\{z\in D;\rho(z, z_{n})<\delta/3m\}$ ,

then for each fixed $m,$ $U_{n}^{m}(n=1,2, \cdots)$ are disjoint subsets. By Lemma 6.5,

there is $r_{m}>0$ such that $\{z\in D;|q(z)|<r_{m}\}$ is the union of pairwise disjoint domains
$V_{n}^{m},$ $z_{n}\in V_{n}^{m}$ and
(2) $V_{n}^{m}\subset U_{n}^{m}$ .
We may assume that $\{r_{m}\}_{m=1}^{\infty}$ is a decreasing sequence. Since $V_{n}^{m}$ is a connected
subset, we have $\{|q(z)|;z\in V_{n}^{m}\}=[0, r_{m})$ . Then there is $\zeta_{n.k}\in D$ such that

(3) $\zeta_{m.k}\in V_{n_{m,k}}^{m}$ , and

(4) $r_{m+1}<|q(\zeta_{m.k})|<r_{m}$ .
Since $V_{n_{m,k}}^{m}\subset U_{n_{m,k}}^{m}\subset U_{n_{m.k}}^{1}$ by (2), $\{\zeta_{m.k}\}_{m.k\approx 1}^{\infty}$ is an interpolating sequence by

Lemma 6.2. Let $b$ be an interpolating Blaschke product associated with zeros
$\{\zeta_{m,k}\}_{m.k\Rightarrow 1}^{\infty}$ . To show that $Z(b)\cup Z(q)$ is not an interpolation set for $H^{\infty}$ , let $x_{m}$ be

one of the points in cl $(\{z_{n_{m,k}}\}_{k=1}^{\infty})\backslash \{z_{n_{m.k}}\}_{k=1}^{\infty}$ and let $y_{m}$ be one of the points in
cl $(\{\zeta_{n,k}\}_{k=1}^{\infty})\backslash \{\zeta_{m.k}\}_{k\Rightarrow 1}^{\infty}$ for each $m$ . Since $q(x_{m})=0$ and $r_{m+1}\leqq|q(y_{m})|\leqq r_{m}$ by (4), we
have $x_{m}\neq y_{m}$ . By (2) and (3), we have $\rho(\zeta_{m.k}, z_{n_{m.k}})<\delta/3m$ for $k=1,2,$ $\cdots$ . Then
there exists $x_{m}$ in cl $(\{z_{n_{m,k}}\}_{k=1}^{\infty})\backslash \{z_{n_{m.k}}\}_{k=1}^{\infty}$ and $y_{m}$ in cl $(\{\zeta_{m.k}\}_{k=1}^{\infty})\backslash \{\zeta_{m,k}\}_{k=1}^{\infty}$ such that

$\rho(y_{m}, x_{m})\leqq\varlimsup_{k\rightarrow\infty}\rho(\zeta_{m,k},$ $ z_{n_{m.k}}\rangle$ $\leqq\delta/3m$ .
This means that $y_{m},$ $x_{m}\in Z(b)\cup Z(q)$ and $\rho(y_{m}, x_{m})\rightarrow 0(m\rightarrow\infty)$ . By Lemma 6.4,
$Z(b)\cup Z(q)$ is not an interpolation set for $H^{\infty}$ .
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Here we give one more remark on an interpolating Blaschke product.

Proposition 6.2. For each interpolatjng Blaschke product $q$, there is a non-
interpolating simple Blaschke product $b$ such that $Z(b)=Z(q)$ , where simple means
that every zero pojnt in $D$ of $b$ has zero’s order 1.

Proof. For each $n$ , we take an open subset $U_{n}$ of $D$ such that
(1) $z_{n}\in D_{n}$ ,
(2) $sup\{|q(z)|;z\in U_{n}\}\rightarrow 0(n\rightarrow\infty)$ ,
(3) $U_{n}\subset\{z\in D;\rho(z, z_{n})<\delta/3n\}$ .

Let $\{w_{n}\}_{n=1}^{\infty}$ be a sequence with $w_{n}\in U_{n}$ and $w_{n}\neq z_{n}$ . By Lemma 6.2, $\{w_{n}\}_{n=1}^{\infty}$ is an
interpolating sequence, we put $b_{0}$ the interpolating Blaschke product with zeros
$\{w_{n}\}_{n=1}^{\infty}$ . By (2), we have $q(w_{n})\rightarrow 0(n\rightarrow\infty)$ , and so that $q=0$ on cl $(\{w_{n}\}_{n\Leftarrow 1}^{\infty})\backslash \{w_{n}\}_{n=1}^{\infty}$ .
Thus we get $Z(q)\supset Z(b_{0})$ by Lemma 6.3. We put $b=qb_{0}$ , then $b$ is a Blaschke
product with simple zeros $\{w_{n}, z_{n}\}_{n=1}^{\infty}$ and

$Z(b)=Z(q)\cup Z(b_{0})=Z(q)$ .
By (3), we have $\rho(w_{n}, z_{n})\rightarrow 0(n\rightarrow\infty)$ . By Lemma 6.1, $b$ is not an interpolating
Blaschke product.

It is known that there are no Douglas algebras which are maximal among
the proper Douglas algebras (see [10, p. 194]). While, it is proved in [5] that for
every Douglas algebra $B$ such that $H^{\infty}+C\subsetneqq B$, there exists another Douglas
algebra $B^{\prime}$ such that $H^{\infty}+C\subsetneqq B^{\prime}\subsetneqq B$ . The following proposition proves that for
some Douglas algebra $B$ with $B2H^{\infty}+C$, there exists a Douglas algebra which
is maximal among proper Douglas algebras contained in $B$ . The idea of the proof
can be found in [17].

Preposition 6.3. There exist two Douglas algebras $B_{1}$ and $B_{2}$ with $ H^{\infty}+C\subsetneqq$

$B_{1}\subsetneqq B_{2}\subsetneqq L^{\infty}$ such that there are no proper Douglas algebras between $B_{1}$ and $B_{2}$ .
Proof. Let $B_{0}$ be a Douglas algebra with $B_{0}\subsetneqq L^{\infty}$ . By Chang-Marshall’s

theorem, there is an inner function $\phi$ such that $\overline{\phi}\not\in B_{0}$ . We put $B_{2}=[B_{0},\overline{\phi}]$ . By
[20], we have $B_{2}\subsetneqq L^{\infty}$ . Let $\Lambda$ be the family of Douglas algebras $B_{\lambda}$ such that

$B_{0}\subset B_{\lambda}\subsetneqq B_{2}$ and $\overline{\phi}\not\in B_{\lambda}$ .
Let $\{B_{\alpha}\}_{a}$ be a totally ordered subset in $\Lambda$ , where the order in $\Lambda$ is defined by
inclusion. We denote by $B^{\prime}$ the closed subalgebra generated by $\{B_{\alpha}\}_{\alpha}$ . Since
$||\overline{\phi}-h||\geqq 1$ for every $h\in B_{\alpha}$ , we have $\Vert\overline{\phi}-g\Vert\geqq 1$ for every $g\in B^{\prime}$ , because $\{B_{\alpha}\}_{a}$ is
the increasing family. Thus we get $\overline{\phi}\not\in B^{\prime}$ . By $Zom’ s$ lemma, there exists a
maximal Douglas algebra $B_{1}$ in $\Lambda$ . Suppose that $B$ is a Douglas algebra with
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$B_{1}\subsetneqq B\subset B_{2}$ . By our construction, we get $\overline{\phi}\in B$ . Since $B_{0}\subset B_{1}\subset B$, we have
$B_{2}\supset B\supset[B_{0},\overline{\phi}]=B_{2}$ . This leads us the assertion.

In the last part of this section, we give two results of weak peak sets. In
[22], Younis gave that if $B$ is a Douglas algebra and $\mu$ is an extreme point of
the unit ball of $B^{\perp}$ , then supp $\mu$ is a weak peak set for $B$ .

Proposition 6.4. Let $B$ be a Douglas algebra such that $B\subsetneqq L^{\infty}$ . Then there
exists a measure $\mu$ on $X$ such that

(a) $\mu\in B^{\perp}and$

(b) supp $\mu$ is not a weak peak set for $B$ .
Proof. Since $B\subsetneqq L^{\infty}$ , there is a representing measure $\mu_{x}$ for $x\in M(B)\backslash X$.

Then there is a Blaschke product $b$ such that $b(x)=0$ ([10, p. 179]). It is easy to
see that $b\mu_{x}\in B^{\perp}$ . We put $W=$ {$ y\in$ supp $\mu_{x}$ ; ${\rm Re} b(y)\geqq 0$}. Then clearly $b\mu_{x|W}\not\in B^{\perp}$ ,
because $\int_{W}bd\mu_{x}\neq 0$ . If we put $S=supp(b\mu_{x|1V})$ , then $b\mu_{x1S}=b\mu_{x|W}$ and $b\mu_{x1S}\not\in B^{\perp}$ .
Hence by Lemma 3.1 (a), $S$ is not a weak peak set for $B$ . By Theorem 2.1, we
get a Blaschke product $b_{0}$ such that $b_{0}b\mu_{x|S}\in B^{\perp}$ . Now we put $\mu=b_{0}b\mu_{x|S}$ . Then
$\mu$ satisfies (a) and (b).

In [18, Proposition 6.31, Pelczy\’{n}ski stated that there is a closed non.empty
$G_{\delta}$-set $F$ of $X$ with $\hat{m}(F)=0$ which is not a peak set for $H^{\infty}$ . But he did not
give a concrete example.

Proposition 6.5. Let $U$ be an open-closed subset of X. If $ X_{\lambda}\supsetneq U\cap X_{\lambda}\neq\emptyset$ ,
where $X_{\lambda}$ is the fiber at $\lambda\in\partial D$ , then $U\cap X_{\lambda}$ is a closed $G_{\delta}$-set with $\hat{m}(U\cap X_{\lambda})=0$ ,

and $U\cap X_{\lambda}$ is not a peak set for $H^{\infty}$ .
Proof. Suppose that $U\cap X_{\lambda}$ is a peak set for $H^{\infty}$ . Let $f$ be a function in

$H^{\infty}$ such that $f=1$ on $U\cap X_{\lambda}$ and $|f|<1$ on $X\backslash (U\cap X_{\lambda})$ . Since $U\cap X_{\lambda}$ is an open-
closed subset of $X_{\lambda}$ , we have

$sup\{|f(x)|;x\in X_{\lambda}\backslash (U\cap X_{\lambda})\}<1$ .
Hence a sequence of functions $\{(f_{|X_{\lambda}})*\}_{n=1}^{\infty}$ converges uniformly to a characteristic
function $\chi_{U\cap X_{\lambda}}$ on $X_{\lambda}$ . Since $f_{|X}\lambda\in H_{|X_{\lambda}}^{\infty}$ , this implies that $\chi_{U\cap X}\lambda\in H_{1X\lambda}^{\infty}$ . But this
is a contradiction, because $H_{1X_{\lambda}}^{\infty}$ does not have non-trivial idempotents ([10, p. 188]).

The part of this work was done while the both authors were Visiting Scholars
at the University of California, Berkeley.
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