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1. Introduction and results

Let $F$ be a nonlattioe distribution function with finite and positive mean
$\mu=\int_{-\infty}^{\infty}xdF(x)$ . For sequences $\{a(n)\}.eN$ of positive numbers we define the gen $\cdot$

eralized renewal measure

$V(D=\sum_{n=1}^{\infty}a(n)F^{*n}(I)$ ,

where $I$ is a bounded interval on $R$ and $F^{*n}(I)=F^{*n}(b)-F^{*n}(a)$ for $I=(a, b$],
$F^{*n}(x)$ being the n-th convolution of $F$. In this paper, we intend to give some
asymptotic results of Blackwell type, i.e., we shall examine the asymptotic
behaviour of

(1.1) $V((t, t+h$]) $=\sum_{n=1}^{\infty}a(n)F^{*n}((t,t+h$]), $h>0$ ,

as $ t\rightarrow\infty$ .
Let us recall the following renewal theorem by Kalma [5].

Theorem A. ([5] Theorems 5.17 and 5.18).

(i) Let $a(n)=n^{\theta},$ $\theta>0$ , in (1.1), and suPpose that when $\theta$ is an integer

$\int_{-\infty}^{0}|x|^{\theta+1}dF(x)<\infty$

and when $\theta$ is not an integer

(1.2) $\int_{-\infty}^{0}|x|^{[\theta]+2}dF(x)<\infty$ .

Then

(1.3) $V((t, t+h$]) $\sim\frac{h}{\mu^{\theta+1}}t^{\theta}$ as $ t\rightarrow\infty$ .

(ii) Let $a(n)=n^{\theta},$ $\theta<0$ , and suppose that



124 MAKOTO MAEJIMA AND EDWARD OMEY

(1.4) $\int_{0}^{\infty}x^{|\theta|}dF(x)<\infty$ .
Then (1.3) holds.

In this paper, we shall generalize $Threm$ A (i) to the case where $\{a(n)\}$ is
regularly varying at infinity, imposing similar conditions. We also improve and
extend Theorem A (ii).

Theorem 1. SuPpose $a(x)=x^{\theta}L(x),$ $\theta eR$ , where $L(x)$ is a slowly varyingfunction.
(i) Case $\theta>-1$ . If

(1.2) $\int_{-\infty}^{0}|x|^{[\theta]+2}dF(x)<\infty$ ,

then

(1.5) $V((t, t+h$]) $\sim\frac{h}{\mu^{\theta+1}}a(t)$ as $ t\rightarrow\infty$ .
(ii) Case $\theta=-1$ . SuppOse that

(1.6) $\int_{-\infty}^{0}|x|^{2}dF(x)<\infty$

and further

(a) $L$ is monotone decreasing and $\int_{0}^{\infty}\frac{x}{L(x)}dF(x)<\infty$

$or$

(b) $x^{1+\delta}(1-F(x))\rightarrow 0$ as $ x\rightarrow\infty$ for some $\delta>0$ .
Then we have (1.5).

(iii) Case $\theta<-1$ , integer. Suppose $L$ is constant or (1.6) holds, and further
suppOse

(1.7) $1-F(x)=o(a(x))$ as $ x\rightarrow\infty$ .
Then have (1.5).

(iv) Case $\theta<-1$ , non-integer. If (1.7) holds, then (1.5) holds.

Remarks. (1) In (i), if $-1<\theta<0$ , then condition (1.2) is automatically
satisfied because of the finite mean. Statement (i) means that if $\theta$ is non-integer,
we can generali$zea(x)=x^{\theta}$ to general slowly varying functions under the same
moment condition (1.2)

(2) Condition (1.7) is weaker than
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$\int_{0}^{\infty}\frac{1}{a(x)}dF(x)<\infty$ ,

which is corresponding to condition (1.4). Hence if $a(x)=x^{\theta},$ $\theta<-1$ , our state-
ments (iii) and (iv) also relax Kalma’s moment condition (1.4) to get his result.
If $\theta<-1$ and $\theta$ is non-integer, as seen in (iv), we can generali$zea(x)=x^{\theta}$ to general
slowly varying functions under weaker condition (1.7).

(3) For lattice distribution, a similar theorem can be formulated and proved.

Generalized renewal measures $V(I)$ have been studied by many authors (e.g.,

Embrechts-Omey [21, Greenwood-Omey-Teugels [31, Heyde [41, Kalma [51, Kawata
[6] and Smith [71). Recently in [11 we have proved similar results for the dis-
tribution function $F$ concentrated on $[0, \infty$). Our present $Threm1$ generalizes

some parts of the results in [11 to the general case where $F((-\infty, 0))\geq 0$ . The
main idea of the proof is quite different.

2. Preliminaries.

Lemma 1. Let $a(x)=x^{\theta}L(x),$ $\theta\leq 0$ . If
$1-F(x)=o(a(x))$ as $ x\rightarrow\infty$ ,

then for each $n$ ,

$1-F^{*n}(x)=o(a(x))$ as $ x\rightarrow\infty$ .
Proof. Let $X_{1},$ $X_{2},\cdots,$ $X_{n}$ be independent and identically distributed random

variables having common distribution function $F$. Then for $x>0$ , since

$\bigcap_{\ell=1}^{n}\{X_{\ell}\leq\frac{x}{n}\}\subset\{S_{n}\leq x\}$ ,

where $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ , we have

$0\leq 1-F^{*n}(x)=P\{S_{n}>x\}\leq n(1-F(\frac{x}{n}))$ .

Hence $1-F(x)=o(a(x))$ implies $1-F^{*n}(x)=o(a(x))$ .
Lemma 2. Let $b(x)$ be a regularly varying function at infinity with index

$\theta,$ $\theta GR$ and suPpose that a stochastic process $\eta(t)$ converges to $c(0<c<\infty)$ in Pro $\cdot$

bability as $ t\rightarrow\infty$ . Then

$\underline{b(\eta(t)t)}\rightarrow c^{\theta}$ in probability at $ t\rightarrow\infty$ .
$b(t)$

Proof. We have for any $\epsilon>0$ and $\delta>0$
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$P\{|\frac{b(\eta(t)t)}{b(t)}c^{\theta}|>\epsilon\}=P\{|\frac{b(\eta(t)t)}{b(t)}c^{\theta}|>\epsilon,$ $|\eta(t)-c|\leq\delta\}$

$+P\{|\frac{b(\eta(t)t)}{b(t)}c^{\theta}|>\epsilon,$ $|\eta(t)-c|>\delta\}\equiv I_{1}+I_{2}$ ,

say. Since $\eta(t)\rightarrow c$ in probability, $I_{2}\rightarrow 0$ as $ t\rightarrow\infty$ for any $\delta>0$ .
Next consider $I_{1}$ . For fixed $ 0<\alpha<\beta<\infty$ , we know that

$\frac{b(yt)}{b(t)}\rightarrow y^{\theta}$

uniformly in $y\in[\alpha, \beta]$ . Hence, for any $\epsilon>0$ , there exist $\delta=\delta(\epsilon)>0$ and $t_{0}=t_{0}(\delta(\epsilon), \epsilon)$

such that

$|y^{\theta}-c^{\theta}|<\frac{\epsilon}{2}$ for $|y-c|\leq\delta$

and

$|\frac{b(yt)}{b(t)}y^{\theta}|<\frac{\epsilon}{2}$ for all $t\geq t_{0}$ .

Therefore

$|\frac{b(yt)}{b(t)}c^{\theta}|<\epsilon$ for $|y-c|\leq\delta$ .

This argument shows that $I_{1}\rightarrow 0$ as $ t\rightarrow\infty$ .
In proving the theorem, we may and do assume that the slowly varying

function $L(x)$ in $a(x)$ is bounded on any bounded intervals. The reason is as
follows. For any slowly varying function $L(x)$ , we can find a slowly varying
function $L_{1}(x)$ such that $L_{1}(x)$ is bounded on any bounded intervals and $ L(x)/L_{1}(x)\rightarrow$

$1$ as $ x\rightarrow\infty$ . That is, for any $\epsilon>0$ ,

$(1-\epsilon)L_{1}(n)\leq L(n)\leq(1+\epsilon)L_{1}(n)$

for all $n\geq n_{0}(\epsilon)$ , say. Since the first moment of $F$ is finite, we have

$\sum_{n-1}^{n_{0}}n^{\theta}L(n)F^{*n}((x, x+h])=o(\frac{1}{x})$

and

$\sum_{n=1}^{n_{0}}n^{\theta}L_{\iota}(n)F^{*n}((x, x+h]=o(\frac{1}{x})$ .

Therefore in case $\theta>-1$ , if statement (1.5) is true for $L_{1}(n)$ , then it is also true
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for $L(n)$ . Also, in case $\theta\leq-1$ , because of assumption (1.7) and Lemma 1,

$\sum_{n=1}^{n_{0}}n^{\theta}L(n)F^{*n}((x, x+h])=o(a(x))$

and

$\sum_{n=1}^{n_{0}}n^{\theta}L_{1}(n)F^{*n}((x, x+h])=o(a(x))$ .
We have used here that (1.7) is also satisfied in case $\theta=-1$ under condition (a)

or (b) in statement (ii). So again, if (1.5) holds for $L_{1}(n)$ , so it does for $L(n)$ .
In the following proof, we assume that $L(x)$ is bounded on any bounded

intervals.
We also note that the convergence of the series $V(I)$ for bounded intervals

$I$ is assured under our moment conditions.

3. Proof of Theorem 1 (i)

Our proof is based on the following result due to Kalma ([5], Theorem 1.15).

Lemma 3. Let $F$ be nonlattice and $U(x)=\sum_{n=0}^{\infty}F^{*n}(x)$ . For $h>0$ and $t\geq t_{0},$ $t_{0}$

being some positive number, define a family of integer-valued random variables
$\xi(t)$ by

$P\{\xi(t)=m\}=\frac{F^{*m}((t,t+h])}{U((t,t+h])}$ .
Then as $ t\rightarrow\infty$

$\frac{\xi(t)}{t}\rightarrow\frac{1}{\mu}$ in probability.

By the definition of $\xi(t)$ , we have

(3.1) $V((t, t+h$]) $=a(t)E[\frac{a(\xi(t))}{a(t)}]U((t, t+h])$ ,

so that by the ordinary Blackwell renewal theorem for $U(t)$

(3.2) $\lim_{\rightarrow\infty}\frac{1}{a(t)}V((t, t+h$]) $=\frac{h}{\mu}\lim_{t\rightarrow\infty}E[\frac{a(\xi(t))}{a(t)}]$ .
It follows from Lemmas 2 and 3 that

$\frac{a(\xi(t))}{a(t)}=\frac{a(\frac{\xi(t)}{t}\cdot t)}{a(t)}\rightarrow\frac{1}{\mu^{\theta}}$

in probability
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as $ t\rightarrow\infty$ . Hence the proof of the statement will be completed if on the $right_{A}^{v}hand$

side of (3.2) we can interchange the expectation and the limit.
Since we have assumed that $L$ is bounded on bounded intervals, for any

$\gamma>0,$ $y_{0}>0$ and $\epsilon>0$ , there exists $t_{0}=t_{0}(\epsilon)$ such that

$\frac{a(yt)}{a(t)}<(\epsilon+y_{0}^{\gamma})y^{\theta-\gamma}$ for $t\geq t_{0},0<y\leq y_{0}$

and

$\frac{a(yt)}{a(t)}\leq(\epsilon+y_{0}^{-\gamma})y^{\theta+\gamma}$ for $t\geq t_{0},$ $y\geq y_{0}$ ,

(see Taqqu [8] Lemma 4.1). Therefore we have

(3.3) $\frac{a(\xi(t))}{a(t)}<c\{(\frac{\xi(t)}{t})^{\theta+\gamma}+(\frac{\xi(t)}{t})^{\theta-\gamma}\}$ for $t\geq t_{0}$ .
Here and below $C$ denotes some absolute positive constant. Take $\gamma such_{\wedge}^{v.r}that$

$[\theta+\gamma]=[\theta]$ and $\theta-\gamma>-1$ (which is possible since $\theta>-1$).

If we apply Theorem A to case $a(n)=n^{\theta+\gamma}$ or $=n^{\theta-\gamma}$ , we have

$\sum_{n=1}^{\infty}n^{\theta+\gamma}F^{*n}((t, t+h])\sim\frac{t^{\theta+\gamma}}{\mu^{\theta+\gamma+1}}h$ as $ t\rightarrow\infty$

and

$\sum_{n=1}^{\infty}n^{\theta-\gamma}F^{*n}((t, t+h])\sim\frac{t^{\theta-\gamma}}{\mu^{\theta-\gamma+1}}h$ as $ t\rightarrow\infty$ ,

because of condition (1.2). This together with relation (3.1) and the ordinary
Blackwell renewal theorem for $U$ implies

(3.4) $E[(\frac{\xi(t)}{t})^{\theta+\gamma}]\rightarrow\frac{1}{\mu^{\theta+\gamma}}$ as $ t\rightarrow\infty$

and

(3.5) $E[(\frac{\xi(t)}{t})^{\theta-\gamma}]\rightarrow\frac{1}{\mu^{\theta-\gamma}}$ as $ t\rightarrow\infty$ .
Note that if $0\leq X_{n}\leq Y_{n},$ $X_{n}\rightarrow X$ and $Y_{n}\rightarrow Y$ in probability respectively and if $ EY_{n}\rightarrow$

$ EY<\infty$ , then $EX_{n}\rightarrow EX$. Hence it follows from $(3.3)-(3.5)$ , Lemmas 2 and 3 that

$\lim_{t\rightarrow\infty}E[\frac{a(\xi(t))}{a(t)}]=\frac{1}{\mu^{\theta}}$ .
The proof is thus completed.
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4. Proof of Theorem 1 (ii), (iii), (iv)

Let $a(x)=x^{\theta}L(x)$ , where $\theta\leq-1$ . We prove the conclusion by induction method
with respect to $\theta$ similarly to [1].

The following lemma was stated in [1] for $F$ with $F((-\infty, 0))=0$ , and is
similarly proved for general $F$.

Lemma 4. Let $Q(x)=\int_{-\infty}^{l}ydF(y)$ . Then for $n\geq 1$ and all $h>0$ ,

$tF^{*n}((t, t+h])\leq nF^{*(n-1)}*Q((t, t+h])\leq(t+h)F^{*n}((t,t+h])$ .

We have proved that (1.5) holds for $-1<\theta\leq 0$ , under condition $\int_{-\infty}^{0}|x|^{2}dIXx\rangle$

$<\infty$ when $\theta=0$ . Let $\beta\leq 0$ , and suppose (1.5) holds for $\theta=\beta$ :

(4.1) $\sum_{n=1}^{\infty}n^{\prime}L(n)F^{*n}((t, t+h$]) $\sim\frac{h}{\mu^{+1}}t^{\prime}L(t)$ .

Then we shall prove (1.5) holds for $\theta=\beta-1$ :

(4.2) $G((t, t+h$]) $\equiv\sum_{n=1}^{\infty}n^{\prime-1}L(n)F^{*n}((t, t+h$]) $\sim\frac{h}{\mu}t^{\prime-1}L(t)$ .

By Lemma 4,

$G((t, t+h])\leq\frac{1}{t}\sum_{n=1}^{\infty}n^{\prime}L(n)F^{*(n-1)}*Q((t, t+h])$

and

$G((t,t+h])\geq\frac{1}{t+h}\sum_{n=1}^{\infty}n^{\prime}L(n)F^{*(n-1)}*Q((t, t+h])$ .

Let

$W(I)\equiv\sum_{n=1}^{\infty}n^{\prime}L(n)F^{*(n-1)}(I)$ .

Then to prove (4.2) it is enough to show that

(4.3) $W*Q((t, t+h$]) $\sim_{\mu}^{h}-i^{\prime}L(t)$ as $ t\rightarrow\infty$ .

By Lemma 1 and by exactly the same argument as in [1], we get, under the
induction hypothesis (4.1) that

(4.4) $W((t, t+h$]) $\sim_{\mu^{+1}}^{h}-t^{l}L(t)$ as $ t\rightarrow\infty$ .
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First consider case $\beta<0$ . We have

(4.5) $W*Q((t,t+h$]) $=(\int_{-\infty}^{t/2}+\int_{\ell/2}^{\infty})(W(t+h-s)-W(t-s))dQ(s)$

$\equiv I_{1}+I_{2}$ ,

say. In $I_{1}$ , we have $t-s\geq t/2$ so that by (4.4) the integrand in $I_{1}$ is less than, for
large $x$ ,

$C(t-s)^{\prime}L(t-s)\leq c(\frac{t}{2})^{\beta}L(\frac{t}{2})\leq Ct^{l}L(t)$ .
Then it follows from Lebesgue’s theorem that

(4.6) $\frac{I_{1}}{t^{l}L(t)}\rightarrow\int_{-\infty}^{\infty}\frac{h}{\mu^{l+1}}dQ(s)=\frac{t}{\mu^{+1}}$ as $ t\rightarrow\infty$ .
In $I_{2}$ , we have

$W(t+h-s)-W(t-s)\leq CU((t-s, t+h-s])\leq Ch$

so that

$I_{2}\leq Ch\int_{\ell/2}^{\infty}dQ(s)=Ch\int_{\ell/2}^{\infty}sdF(s)$ .

Recall that $a(x)=x^{l-1}L(x),$ $\beta<0$ , and condition (1.7), then

(4.7) $\frac{I_{2}}{t^{\prime}L(t)}\leq\frac{Ch}{ta(t)}\int_{\ell/2}^{\infty}sdF(s)$

$=\frac{Ch}{ta(t)}\{\frac{t}{2}(1-F(\frac{t}{2}))+o(\int_{\ell/2}^{\infty}a(s)ds)\}$

$\sim\frac{Ch}{ta(t)}\dagger o(ta(t))+o(\frac{\frac{t}{2}a(\frac{t}{2})}{-\beta})\}\rightarrow 0$ as $ t\rightarrow\infty$ .
From $(4.5)-(4.7)$ we conclude that (4.3) holds.

Next consider case $\beta=0$ . Consider $I_{1}$ as in (4.5). Again by (4.4), in $I_{1}$ ,

$\frac{W(t+h-s)-W(t-s)}{L(t-s)}$

is bounded. Also note that

$\frac{(t-s)^{-1}L(t-s)}{t^{-1}L(t)}$

is bounded. Now
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(4.8) $I_{1}=\int_{-\infty}^{0}+\int_{0}^{t/2}\equiv I_{11}+I_{12}$ ,

say. Then

$\frac{I_{11}}{L(t)}=\int_{-\infty}^{0}\frac{W(t+h-s)-W(t-s)}{L(t-s)}\cdot\frac{(t-s)^{-1}L(t-s)}{t^{-1}L(t)}\cdot\frac{t-s}{t}dQ(s)$

$=\int_{-\infty}^{0}f_{\ell}(s)dQ(s)$ ,

say. Since

$0\leq f_{t}(s)\leq C\frac{t-s}{t}\leq C(1-s)$ for large $t$ ,

$\int_{-\infty}^{0}(1-s)dQ(s)<\infty$

and

(because of (1.6))

$f_{\ell}(s)\rightarrow h$ as $ t\rightarrow\infty$ ,

we have

(4.9) $\frac{I_{11}}{L(t)}\rightarrow h\int_{-\infty}^{0}dQ(s)$ .
Also in $I_{12}$ , since

$0\leq f_{\iota}(s)\leq C\frac{t-s}{t}\leq C$ ,

we have

(4.10) $\frac{I_{12}}{L(t)}\rightarrow h\int_{0}^{\infty}dQ(s)$ .

Combining $(4.8)-(4.10)$ , we have

$I_{1}\sim h\mu L(t)$ as $ t\rightarrow\infty$ .
Next consider $I_{2}$ in (4.5). First suppose (a) in (ii). Then we have

$\frac{I_{2}}{L(t)}\leq\frac{Ch}{L(t)}\int_{\ell/2}^{\infty}sdF(s)\leq Ch\int_{\ell/2}^{\infty}\frac{s}{L(s)}dF(s)\rightarrow 0$ as $ t\rightarrow\infty$ .
Next suppose (b) in (ii). We have for fixed large $t_{0}>0$ ,

$I_{2}=\int_{t/2}^{\ell-\ell_{0}}+\int_{\ell-\iota_{0}}^{\infty}\equiv I_{21}+I_{22}$ ,
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say. As to $I_{21}$ , for large $t$

$\frac{I_{21}}{L(t)}\leq C\int_{\ell/2}^{t-\ell_{0}}\frac{L(t-s)}{L(t)}dQ(s)\leq Ct^{\delta/2}\int_{\ell/2}^{\ell-t_{0}}(t-s)^{\delta/2}dQ(s)$

$\leq Ct^{\delta}2^{-\delta/2}|_{i/2}^{i-\ell_{0_{dQ(s)\leq Ct^{1+\delta}}}}(1-F(\frac{t}{2}))\rightarrow 0$ as $\ell\rightarrow\infty$ .

As to $I_{22}$ , for large $t$ again

$\frac{I_{22}}{L(t)}\leq\frac{C}{L(t)}\int_{\ell-\ell_{0}}^{\ell}dQ(s)\leq Ct^{\delta}\int_{\ell-\ell_{0}}^{\infty}sdF(s)$

$=Ct^{\delta}\{(t-t_{0})(1-F(t-t_{0}))+\int_{t-\ell_{0}}^{\infty}(1-F(s))ds\}$

$=c_{t^{\delta}}\{0)\}$
$\rightarrow 0$ as $ t\rightarrow\infty$ .

This proves (4.3) for $\beta=0$ .
If $\theta<-1$ and is integer, condition (1.7) includes condition (b). So, in state-

ments (iii) and (iv), we do not have to state condition (b) explicitly. The proof
of the theorem is thus completed.
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